Unsupervised pattern discovery in human chromatin structure through genomic segmentation
Michael M. Hoffman, Orion J. Buske, Zhiping Weng, Jeff A. Bilmes and William Stafford Noble
Nature Methods. 9(5):473-476, 2012.
Abstract
We trained Segway, a dynamic Bayesian network method, simultaneously on chromatin data from multiple experiments, including positions of histone modifications, transcription-factor binding and open chromatin, all derived from a human chronic myeloid leukemia cell line. In an unsupervised fashion, we identified patterns associated with transcription start sites, gene ends, enhancers, transcriptional regulator CTCF-binding regions and repressed regions. Software and genome browser tracks are at http://noble.gs.washington.edu/proj/segway.
Nature Methods
Home