Research statement
William Stafford Noble

The trend in biology toward the development and application of high-throughput, genome-
and proteome-wide assays necessitates an increased reliance upon computational techniques
to organize and understand the results of biological experiments. Without appropriate com-
putational tools, biologists cannot hope to fully understand, for example, a complete genome
sequence or a collection of hundreds of thousands of mass spectra. My research focuses on
the development and application of methods for interpreting complex biological data sets.
These methods may be used, for example, to uncover distant structural and functional re-
lationships among protein sequences, to identify transcription factor binding site motifs, to
classify cancerous tissues on the basis of microarray mRNA expression profiles, to predict
properties of local chromatin structure from a given DNA sequence, and to accurately map
tandem mass spectra to their corresponding peptides.

The goals of my research program are to develop and apply powerful new computational
methods to gain insights into the molecular machinery of the cell. In selecting research areas
to focus on, I am drawn to research problems in which I can solve fundamental problems in
biology and human disease while also pushing the state of the art in machine learning.

Pattern recognition in diverse and heterogeneous genomic and proteomic data
sets

Genome sciences is, in many ways, a data-driven enterprise because available technologies
define the types of questions that we can ask. FEach assay—DNA sequencing, the yeast
two-hybrid screen, tandem mass spectrometry —provides one view of the molecular activity
within the cell. An ongoing theme in my research is the integration of heterogeneous data
sets, with the aim of providing a unified interpretation of the underlying phenomenon. We
focus, in particular, on inferring gene function and on predicting protein-protein interactions.
For example, to determine whether a given target pair of proteins interact, we take into
account direct experimental evidence in the form of a yeast two-hybrid assay or tandem
affinity purification followed by mass spectrometry. In addition, we consider as evidence the
sequence similarity between the target pair of proteins and one or more pairs of proteins
that are known to interact with one another, the similarity of the target proteins’ mRNA
expression profiles or ChIP-chip expression profiles, and evidence of cellular colocalization.
We have developed a statistical inference framework that considers all of these sources of
evidence, taking into account dependencies among them and weighting each type of evidence
according to its relevance and its trustworthiness.

Much of my research program relies on two complementary classes of methods. The first class
of methods, developed recently in machine learning, are known as kernel methods [78]. An
algorithm is a kernel method if it relies on a particular type of function (the kernel function)
to define similarities between pairs of objects. For these algorithms, a data set of N objects
can be sufficiently represented using an N-by-/N matrix of kernel values. The kernel matrix
thereby provides a mechanism for representing diverse data types using a common formalism.

In collaboration with a variety of research groups, we have demonstrated the broad applica-
bility of kernel methods to problems in genomics and proteomics, focusing on a particular
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Figure 1: Predicting yeast gene function from heterogeneous data. The height

of each bar is proportional to the cross-validated receiver operating characteristic score for
prediction of a given class of yeast genes. The figure compares the performance of a previously
published Markov random field method (in red) [20] and two variants of our SVM-based
method (yellow and green). In every case, the SVM significantly outperforms the MRF [49].

kernel method known as the support vector machine (SVM) [9].

The SVM is a kernel-

based classification algorithm that boasts strong theoretical underpinnings [85] as well as
state-of-the-art performance in a variety of bioinformatics applications [58]. We have shown

that

SVMs can successfully classify yeast genes into functional categories on the basis of
microarray expression profiles [11] or motif patterns within promoter sequences [65, 86].

SVMs can discriminate with high accuracy among subtypes of soft tissue sarcoma on
the basis of microarray expression profiles [80, 79]. Our SVM classifier provided strong
evidence for several previously described histological subtypes, and suggested that a
subset of one controversial subtype exhibits a consistent genomic signature.

A series of SVM-based methods can recognize protein folds and remote homologs [52,
50, 51, 88, 36, 55]. Our early work in this area set the baseline against which much
subsequent work was compared, including many SVM-based classifiers that derive from
our work [5, 46, 12, 23, 62, 63, 72, 77, 47].

SVMs can be applied to a variety of applications within the field of tandem mass
spectrometry, including re-ranking peptide-spectrum matches produced by a database
search algorithm [1, 37] and assigning charge states to spectra [45].

SVMs can draw inferences from heterogeneous genomic and proteomic data sets. We
first demonstrated how to infer gene function from a combination of microarray expres-
sion profiles and phylogenetic profiles [66], and we subsequently described a statistical



framework for learning relative weights for each data set with respect to a given in-
ference task [49, 48] (see Figure 1). We have also used this framework to predict
protein-protein interactions [6] and protein co-complex relationships [71] from hetero-
geneous data sets.

The SVM is now one of the most popular methods for the analysis of biological data sets:
Pubmed includes 387 papers published within the last 12 months whose abstracts contain
the phrase “support vector machine,” and 1488 such papers in the last five years. Nature
Biotechnology invited me to write a primer on SVMs [59]. My research bears considerable
responsibility for the SVM’s popularity, because I have repeatedly demonstrated the power
and flexibility of this algorithm in new bioinformatics domains.

The second class of methods that we use regularly is the Bayesian network. A Bayesian net-
work is a formal graphical representation of a joint probability distribution over a collection
of random variables. We have made particular use of dynamic Bayesian networks (DBNs) for
modeling time series data, and a specific type of DBN known as the hidden Markov model
(HMM). Starting with my PhD research, I have used HMMs for modeling motifs in DNA and
protein sequences [31, 3]. More recently, we have used DBNs to model peptide fragmentation
in a mass spectrometer [44], transmembrane protein topology [75], DNA-binding footprints
in DNasel sensitivity data [14] and nucleosome positioning signals in genomic DNA [73].
Compared with discriminative modeling methods such as the SVM, a Bayesian network
offers several important advantages, including allowing a principled method for handling
missing data, providing a complementary means of encoding prior knowledge, and providing
a model that gives explanations for its predictions.

My lab will continue to apply these two complementary modeling approaches, both sepa-
rately and jointly, to various applications. In particular, we are interested in coupling these
core learning strategies with new ideas from the field of machine learning. These include, for
example, using semisupervised learning [13] to leverage unlabeled data, metric space embed-
ding [2] and deep learning [7, 17] to automatically ascertain structure in a rich set of features,
and multitask learning [18] to exploit hidden dependencies among related learning tasks. For
example, we have recently developed a deep neural network architecture that is trained in
a multitask fashion to predict multiple local properties, including secondary structure, sol-
vent accesibility, transmembrane topology, signal peptides and DNA-binding residues. The
method provides state-of-the-art performance on all of these tasks, thus providing a unified
framework for characterizing local protein properties. We plan to adapt similar strategies
for characterizing chromatin structure and for analyzing mass spectrometry data.

The relationships among primary DNA sequence, chromatin and genome struc-
ture

DNA in the nucleus of the cell is bound in a complex and dynamic molecular structure known
as chromatin. Chromatin structure, from the local scale up to the global 3D structure of
chromosomes in the nucleus, has profound influences on gene regulation, DNA replication
and repair, mutation and breakpoints. Over the past several years, my research group has in-
vestigated the relationships among the primary DNA sequence, nucleosomes, cis-regulatory
factors, higher-order chromatin structure and the 3D structure of the genome. Initially, we
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Figure 2: Concordance of multiple data types for an illustrative ENCODE region
(ENMO005). The tracks labeled “Active” and “Repressed” are derived from a simultaneous
HMM segmentation of eight data types: replication time (TR50), bulk RNA transcription
(RNA), histone modifications H3K27me3 and H3ac, DHS density and regulatory factor bind-
ing region density (RFBR).

focused on local disruptions of chromatin structure known as DNasel hypersensitive sites
(DHSs), because these sites are a prerequisite for any type of cis-regulatory activity, includ-
ing enhancers, silencers, insulators, and boundary elements. We demonstrated that DHSs
exhibit a distinct sequence signature, which can be used to predict with high accuracy hy-
persensitive locations in the human genome [61]. We used these signatures to predict novel
hypersensitive sites, which were then validated via qPCR and Southern blot analysis. Subse-
quently, we demonstrated in a series of papers that the converse phenomenon, well-positioned
nucleosomes, can be predicted with high accuracy [67, 33, 74, 73]. At the same time, we
collaborated with several research groups in the development of high-throughput assays for
interrogating local chromatin structure in the human genome [76, 21]. And we designed com-
putational methods capable of identifying, from high-resolution DNasel sequencing data, all
of the DNA-binding footprints in a given genome [35, 14].

Our work on chromatin structure has been carried out within the context of the ENCODE
consortium [25]. During the first phase of the project, we developed tools to integrate data on
DNasel sensitivity, replication timing, histone modifications, bulk RNA transcription, and
regulatory factor binding region density. In particular, we combined wavelet analyses and
hidden Markov models [19] to simultaneously visualize and segment multiple genomic data



Figure 3: Three-dimensional model of the yeast genome. Two views representing two
different angles are provided. Chromosomes are coloured as indicated in the upper right. All
chromosomes cluster via centromeres at one pole of the nucleus (the area within the dashed
oval), while chromosome XII extends outward towards the nucleolus, which is occupied by
rDNA repeats (indicated by the white arrow). After exiting the nucleolus, the remainder of
chromosome XII interacts with the long arm of chromosome IV.

sets at a variety of scales. The results of these analyses were reported in the ENCODE paper
[26] (see Figure 2), as well as in a companion paper [84]. During the current, second phase
of ENCODE, my lab is funded as part of the ENCODE Data Analysis Center, and I lead
the “Large-scale behavior” analysis group, which focuses on developing methods to perform
joint unsupervised learning on multiple tracks of results from sequence census assays such as
chromatin immunoprecipitation-sequencing (ChIP-seq) or DNase-seq. Toward this end, we
have developed a DBN software system capable of jointly analyzing dozens of parallel tracks
of genomic data at base-pair resolution. The resulting model allows us to identify multiple
levels of chromatin organization and the functional elements therein [?].

Most recently, in collaboration with Tony Blau, Stan Fields and Jay Shendure, we developed
a novel method to globally capture intra- and inter-chromosomal interactions, and applied it
to generate a map at kilobase resolution of the haploid genome of Saccharomyces cerevisiae
[?7]. The map recapitulates known features of genome organization, thereby validating the
method, and identifies new features. Extensive regional and higher order folding of individual
chromosomes is observed. Chromosome XII exhibits a striking conformation that implicates
the nucleolus as a formidable barrier to interaction between DNA sequences at either end.
Inter-chromosomal contacts are anchored by centromeres and include interactions among
transfer RNA genes, among origins of early DNA replication and among sites where chro-
mosomal breakpoints occur. Finally, we constructed a three-dimensional model of the yeast
genome. Our findings provide a glimpse of the interface between the form and function of a
eukaryotic genome. For this paper, of which Tony Blau and I are co-corresponding authors,
the assay development was carried out by a postdoc in Tony’s lab, Stan Fields provided
expertise related to yeast, Jay Shendure provided the sequencing technology, and my lab de-



veloped methods for assigning statistical confidence measures to the observed interactions,
a variety of techniques for relating the observed interactions to known functional elements,
and an optimization framework for inferring the 3D model.

In the future, my research in this area will follow three complementary threads. First, we will
develop and apply algorithms for characterizing the motif composition of DHSs. My PhD
research focused on algorithms for identifying and searching with protein and DNA sequence
motifs [31, 29, 30, 4], and T have continued to work in this area, developing new statistical
methods for searching for cis-regulatory modules [3] and for quantifying similarity between
motifs [34]. We have used our methods to identify a yeast transcription factor (Hcml) that
fills the S phase gap in the transcriptional circuitry of the cell [69]. We expect DHSs to
be significantly enriched for transcription factor binding sites; therefore, we will search our
growing library of DHSs, using known motifs as well as de novo motif discovery algorithms
and taking into account the observed degree of evolutionary conservation, as well as the
accompanying patterns of histone modifications. In any single tissue, only a small portion of
observed DHSs are constitutively active. Hence, we are particularly interested in segregating
the DHSs according to their tissue specificity, and according to the mRNA expression profiles
of their proximal genes, thereby identifying motifs that are tissue- or condition-specific.

Second, we will develop methods that identify and classify functional elements. Our Segway
system allows us to identify functional elements using semi-supervised learning, in which a
small collection of known functional elements is provided to the system, along with a large
set of unlabeled data. The system looks for joint patterns across a range of given data sets
and can automatically identify novel patterns not associated with any known label, as well
as significant subcategories of known labels. Using this method, for example, we can “re-
discover” protein-coding genes purely on the basis of histone modification and TF binding
data. We plan to extend this approach to identify and decode the complex patterns of histone
modifications associated with various types of functional elements—insulators, silencers, en-
hancers, active and inactive promoters. Also, in an ongoing NSF-funded collaboration with
Zhiping Weng’s lab at UMass, we will characterize sequence patterns associated with well-
positioned nucleosomes, and we will investigate the evolution of these patterns among yeast,
fly, mouse and human.

Third, we will continue to investigate the large-scale properties of chromatin structure, specif-
ically in relation to the 3D model described above. With Tony Blau’s lab, we will apply the
3D modeling approach to the human genome. We will then compare the resulting model with
the large-scale chromatin structure inferred via Segway on various human cell lines. Ulti-
mately, we hope to more fully understand the relationship between chromatin structure and
the large-scale 3D structure of the genome, as well as the implications of these phenomena
with respect to gene expression, DNA repair and DNA mutation.

Analysis of mass spectrometry data

Mass spectrometry promises to enable scientists to identify and quantify the entire com-
plement of molecules that comprise a complex biological sample. In biomedicine, mass
spectrometry is commonly used in a high-throughput fashion to identify proteins in a mix-
ture. However, the primary bottleneck in this type of experiment is computational. Existing
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Figure 4: Comparison of mass spectrum peptide identification methods. The figure
plots the number of spectra identified, as a function of false discovery rate, for two data sets
and two analysis methods. For typical data, digested with the standard enzyme trypsin,
Percolator improves the identification rate by 27% at a 1% false discovery rate. When
we switch to a non-standard enzyme, elastase, Percolator yields more than twice as many
identifications.

algorithms for interpreting mass spectra are slow and fail to identify a large proportion of
the given spectra.

My lab has made at least four significant contributions to the field of mass spectrometry
analysis. The first contribution was to introduce, in 2001, the idea of applying machine
learning methods to this type of data [1]. This work was carried out in parallel with similar
work at the Institute for Systems Biology [42]. Subsequently, many other groups have applied
machine learning methods to mass spectrometry analysis [24, 53, 68, 87, 28].

One significant challenge in applying machine learning to mass spectra is the variability of
the data due to different types of samples (e.g., soluble versus membrane proteins), enzyme
specificity, modified versus unmodified peptides, mass spectrometer type, database size, in-
strument calibration, etc. Our second contribution to the field of mass spectometry has
been to solve this problem by applying a technique known as semi-supervised learning to
the classification of peptide-spectrum matches (PSMs) [37]. In semi-supervised learning, the
training set consists of two subsets of examples, one subset with labels and one without. In
this application, we search a given set of spectra against two databases, the real (“target”)
database and a shuffled (“decoy”) version of the same database. PSMs against the decoy
database can be confidently labeled as incorrect identifications, but PSMs against the target



database are comprised of a mixture of correct and incorrect identifications. We designed
an iterative, semi-supervised algorithm in which the inner loop is an SVM classifier. The
algorithm, called Percolator, can be applied to any given mass spectrometry data set, learn-
ing model parameters that are appropriate for those data. Relative to a state-of-the-art
fully supervised machine learning method, this semi-supervised approach more than doubles
the number of correctly identified peptides for some data sets (see Figure 4). A follow-up
paper written by a different research group described how to adapt Percolator to the Mascot
search engine [10]. Percolator is now being distributed free along with every copy of Mascot,
(http://www.matrixscience.com/pdf/2009WKSHP5.pdf) which is the most widely used
proteomics search engine. Also, Thermo’s Differential analysis software, called Sieve (http:
//www . thermo.com/com/cda/product/detail/1,1055,10123438,00.html) uses Percola-
tor to improve the ability of SEQUEST to identify the differences that it finds. The popular
PeptideProphet software [42] was subsequently updated to include a semi-supervised learning
mode [16].

In the field of mass spectrometry analysis, the proper definition and application of methods
for estimating statistical confidence measures is the subject of ongoing debate [40, 32, 15,
27, 56]. Our third contribution has been to describe how to compute rigorous statistical
confidence measures. For example, we have described empirical methods for calibrating an
existing score function—the SEQUEST XCorr [43]. And in collaboration with John Storey,
we have described how to apply existing methods from the statistical literature [8, 82, 83] to
mass spectrometry data [39, 40, 38, 41], emphasizing the need for multiple testing correction
via false discovery rate analysis [60].

Finally, our fourth contribution has been to make the field of mass spectrometry more open.
When [ first started publishing in this field, it was rare for research groups to make their
primary data publicly available. Indeed, it was possible to publish a paper simply reporting
on the availability of a new data set [70]. The source code for many widely used software
packages, such as SEQUEST and Mascot, was not available. And the SEQUEST patent,
held by the University of Washington, was demonstrably hindering development of new
techniques by discouraging researchers from working in this area. I have publicly criticized
the dearth of publicly available data [57], and T have consistently made freely available the
benchmark data sets used in our studies. Furthermore, I have successfully negotiated with the
university’s tech transfer office to make the license to the SEQUEST patent, held by Thermo
Scientific, non-exclusive, and I have then published a reimplementation of SEQUEST which
is freely available, with source code, for academic and non-profit users [64]. Finally, we
have dramatically expanded on this core SEQUEST functionality, providing a rich software
toolkit that provides database search functionality, powerful machine learning algorithms [37,
81], accurate statistical confidence measures [43], and the ability to find post-translational
modifications and cross-linked peptides [54]. This toolkit has a growing user community and
is under active development. Indeed, we have recently improved the speed of the core search
engine by three orders of magnitude [22].

In the future, we plan to employ a collection of cooperating dynamic Bayesian networks to
model jointly an entire mass spectrometry experiment. Relative to most existing methods
for analyzing mass spectrometry data, which tend to divide the analysis of an experiment



into a series of small independent subtasks, this unified model will jointly consider all of the
available data. This approach can thus exploit valuable dependencies among spectra and
along various dimensions of the data. Dynamic Bayesian networks also provide a rigorous
framework for performing inference from a combination of observed data and qualitative
expert knowledge.

I have recently laid out this plan, in an R01 competing renewal that was divided into five
aims, each of which concerns a particular type of mass spectrometry experiment. These
experiments involve (1) identifying all of the proteins in a given complex biological sam-
ple using a standard mass spectrometry protocol; (2) identifying proteins using a modified
protocol in which the mass spectrometer samples the data in a systematic, rather than
data-dependent, fashion, with the goal of identifying lower abundance proteins; (3) quanti-
fying the relative abundance of proteins within or between biological samples; (4) identifying
post-translationally modified proteins or proteins that contain sequence variation; and (5)
performing targeted quantification of a specified set of proteins, such as proteins in a pathway
of interest or protein biomarkers.

Such methods have the potential to dramatically improve our ability to draw conclusions from
and formulate hypotheses on the basis of high-throughput shotgun proteomics experiments.
Experiments like the ones described above can, for example, identify proteins involved in
fundamental disease processes, identify previously unknown protein isoforms, or quantify
the responses of proteins to environmental stressors or disease states.
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