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ABSTRACT

Figure 1 shows the consistency of upward and downward
measurements using LCEM.

Figures 2 and 3 show histograms of fold changes in
the three data sets used in our work. Examples from
the Affymetrix and GeneLogic spike-in data sets contain
examples of large fold changes, while the examples we
construct from the GeneLogic dilution study contain more
challenging examples.

Figure 4 shows ROC plots for the Affymetrix latin square
examples with and without the set of 56 outliers shown
in Table 1. Performance with outliers included shows that
LCEM is more robust to these outliers than MAS5 and
RMA.

Figures 5 and Figure 6 show comparative expression
measure plotted against average expression. Figure 5
shows unchanged examples in the Affymetrix latin square
data set, and Figure 6 shows changed examples from the
dilution data set. These figures show that the MAS5S log
ratio statistic has a strong bias towards false positives on
low expressors, whereas LCEM shows no such bias.

Figure 7 shows four data patterns on which RMA and
LCEM disagree. Two are from changed examples and two
are from unchanged examples.

Consistency of LCEM Up and Down Measurements
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Fig.1. Consistency of LCEM and L CEM Rever seShown isascat-
terplot of LCEM values for reversed data vectors versus unchanged
data vectors from an independent data set (O’Connell et al., 2003). It
is theoretically possible that separate measurement for upward and
downward expression changes could cause inconsistency. However,
this figure shows no inconsistencies, because positive measurements
of upward and downward change do not occur simultaneously. In
some cases, negative measurements occur for both upward and down-
ward expression change, but this does not lead to inconsistency
because those genes will be classified as unchanged.
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Histogram of Fold Changes in the dilution examples

Frequency
600 800 1000 1200
1 1 ]
|

400
1

0 200
L 1

10 15 2.0 25 3.0 35 4.0

Fold Change

Fig. 2. Fold changes below 4 in the dilution examples Fold changes shown in the figure are estimates based on average RMA expression
levels of the 100% liver and 100% CNS samples and adjusted to reflect mixture of the samples. Changes below 2-fold make up approximetly
71% of the examples and about half are below 1.5 fold. Most commonly represented are differences of about 20%.

Histogram of Fold Changes for Dilution, Latin Square and Spikein examples
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Fig. 3. Fold changesin all three example sets The first bar for the dilution examples has been truncated from height 0.61 to height 0.3 for
clarity. The histogram is shown on a log scale with dilution examples in blue, GeneLogic spike-in examples in green, and Affymetrix latin
square examples in red. The difference between the data sets is clear. The latin square design of the Affymetrix data set leads to a linearly
decreasing number of examples as fold changes double. The less structured GeneLogic data set contains fewer large fold changes and a few
below 2-fold, but the great majority of examples are still quite of quite large fold changes. The GeneLogic dilution examples are nearly all
below 16 fold with the majority of examples below 2-fold.




Learned comparative expression measure

Latin Square Test Examples ROC
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Fig. 4. Effect of outlier geneson latin square ROC curves Shown are ROC curves for the Affymetrix latin square examples with and without
the 56 outlier genes, listed in Table 1. The outliers have a lower impact on LCEM than on the other four expression measure, suggesting that

LCEM is robust to unusual data patterns.
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Table 1. Affymetrix IDs of 56 outlier Ids. The 56 Affymetrix IDs listed were removed from the Affymetrix latin square dataset. While not among the 42
spiked in transcripts of the study, these IDs showed considereable expression differences with al three expression measures, MAS5, LCEM, and RMA. The
effect of taking these I Ds as negative examples is shown in the ROC curves of Figure 4.
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Fig. 5. Comparative expression versus average expression of unchanged examples. This plot shows comparative expression measures
versus gene expression for unchanged genes in the Affymetrix latin square data set. Because the genes are unchanged, the LCEM, MAS5 LR
and RMA Difference should ideally be 0. MAS5 shows a large bias towards high expression change measurements for genes expressed at
low levels. RMA and LCEM do not show this bias.
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RMA Differential Expression vs. Average Absolute Expression LCEM Differential Expression vs. Average Absolute Expression
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Fig. 6. Compar ative expression versus average expression for RMA and LCEM on changed examples This figure shows that LCEM
has no bias against low expressors as compared to RMA.
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A. Changed Example, LCEM correct (0.00003307), RMA incorrect (0.0835)
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B. Changed Example, LCEM incorrect (0.0017), RMA correct (0.00000459)
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C. Unchanged Example, LCEM correct (0.3723162), RMA incorrect (0.0000147)
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D. Unchanged Example, LCEM incorrect (0.0000211), RMA correct (0.0651)
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Fig. 7. Examples Shown are examples of raw data for the dilution data set in four cases for which RMA.5 and LCEM disagree. The left
and middle boxes show order statistics of perfect match log values for the two chips involved in the comparison. The right boxes show
order statistics of log ratios between corresponding perfect match probes on the two chips. Quantities in parentheses are the fraction of
examples which the respective method ranks above the given example. (A) In this case, LCEM correctly identified the example as having
changed expression, while RMA places about 8% of all examples above it. (B) In this case, RMA correctly identifies the example as changed
expression, while LCEM places 0.17 % of examples above it. (C) In this case, LCEM correctly classifies the example as unchanged, while
RMA places the example above almost all the examples. (D) In this case, RMA correctly identifies the example as unchanged and LCEM

places the example above nearly all the examples.
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