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Abstract

Graph smoothness objectives have achieved great
success in semi-supervised learning but have not
yet been applied extensively to unsupervised gen-
erative models. We define a new class of entropic
graph-based posterior regularizers that augment
a probabilistic model by encouraging pairs of
nearby variables in a regularization graph to
have similar posterior distributions. We present a
three-way alternating optimization algorithm with
closed-form updates for performing inference on
this joint model and learning its parameters. This
method admits updates linear in the degree of the
regularization graph, exhibits monotone conver-
gence and is easily parallelizable. We are moti-
vated by applications in computational biology
in which temporal models such as hidden Markov
models are used to learn a human-interpretable
representation of genomic data. On a synthetic
problem, we show that our method outperforms
existing methods for graph-based regularization
and a comparable strategy for incorporating
long-range interactions using existing methods
for approximate inference. Using genome-scale
functional genomics data, we integrate genome
3D interaction data into existing models for
genome annotation and demonstrate significant
improvements in predicting genomic activity. 1

1Due to space constraints, this manuscript omits some proofs
and experiments, as noted below. Please refer to the extended

Proceedings of the 31 st International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

Graph-based methods have recently been successful in
solving many types of semi-supervised learning problems
(Chapelle et al., 2006; Das & Smith, 2011; Joachims, 1999;
Subramanya et al., 2010; Subramanya & Bilmes, 2011; Zhu
et al., 2004; Zhu & Ghahramani, 2002). These methods as-
sume that data instances lie in a low-dimensional manifold
that may be represented as a graph. They optimize a graph
smoothness criterion, which states that data instances nearby
in the graph should be more likely to receive the same la-
bel. In a semi-supervised learning setting, optimizing this
criterion has the effect of spreading labels from labeled to
unlabeled instances.

Despite the success of graph-based methods for semi-
supervised learning, there has not been as much study of
the use of graph smoothness objectives in an unsupervised
setting. In unsupervised problems, we do not have labels
but instead have a generative model that is assumed to ex-
plain the observed data given the latent labels. While some
types of relationships between instances (for example, the
relationship between neighboring words in a sentence or
neighboring bases in a genome) can easily be incorporated
into the generative model, it is often inappropriate to en-
code a graph smoothness assumption into the model this
way, for two reasons. First, in some cases, it is not clear
what probabilistic process generated the labels with respect
to the graph. Some objectives and distance measures that
are successful for semi-supervised learning do not have
probabilistic analogues. Second, large models must obey
factorization properties (e.g., a tree or chain as in hidden
Markov models) to facilitate the use of efficient dynamic
programming algorithms such as belief propagation. Graphs

version (Libbrecht et al., 2015) for these sections. The extended
version also includes an FAQ section with common questions we
have received when presenting this work.
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representing similarity between variables do not in general
satisfy these structure requirements because they tend to be
densely clustered, leading to very high-order factors.

In this paper, therefore, we propose a new regularization ap-
proach for expressing a graph smoothness objective over a
probabilistic model. We employ the posterior regularization
(PR) framework of Ganchev et al. (2010), in which a proba-
bilistic model is regularized through a term defined on an
auxiliary posterior distribution variable. We define a power-
ful posterior regularizer which encourages pairs of variables
to have similar posterior distributions by adding a penalty
based on their Kullback-Leibler (KL) divergence. The pairs
of penalized variables are encoded in a regularization graph
which may be entirely different from the graphical model on
which inference is performed. This regularizer graph need
not have low treewidth and admits efficient optimization
even when fully connected. We call our strategy of adding
KL regularization penalties entropic graph-based posterior
regularization (EGPR).

We show that inference and learning using this regularizer
can be performed efficiently using a three-way alternating
optimization algorithm with closed-form updates. This
algorithm alternates between (1) smoothing marginal
posteriors according to a regularization similarity graph,
(2) performing probabilistic inference in a graphical model
with the same dependence structure as the unregularized
model, and (3) updating model parameters. The updates
are linear in the degree of the regularization graph and
are easily parallelizable, in our experiments scaling to
tens of millions of variables. We show that this procedure
corresponds to a generalization of the EM algorithm.

We apply this approach to improve existing methods for
annotating the human genome (Day et al., 2007; Hoffman
et al., 2012a; Ernst & Kellis, 2010). Methods for genome
annotation distill genomic data into a human-interpretable
form by simultaneously partitioning the genome into non-
overlapping segments and assigning labels to each segment.
This type of analysis has recently had great success in inter-
preting the function of the human genome and formed an
integral part of the analysis of the NIH-sponsored ENCODE
project ((ENCODE Project Consortium, 2012; Hoffman
et al., 2012b), http://www.nature.com/encode).
However, exiting annotation methods use temporal models
such as hidden Markov models and therefore cannot effi-
ciently incorporate data on the genome’s 3D structure. This
3D structure has been shown to play a key role in gene reg-
ulation and other genomic processes. In our experiments on
synthetic data, a model using EGPR outperforms compara-
ble models using either other regularization strategies (e.g.,
squared error) or loopy belief propagation. On ENCODE
data, a model using EGPR predicts genome activity much
more accurately than the currently-used chain models as

well as other forms of regularizer. Thus EGPR provides a
method for jointly modeling genome activity and 3D struc-
ture.

1. Proposed Method
In an unsupervised learning problem, we are given a set
of vertices V that index a set of n = |V | random variables
XV = {X1, . . . , Xn} and a conditional dependence graph
G = (V,E). The graphical model describes a probability
distribution parameterized by θ that can be factorized as
pθ(xV ) = 1

Z

∏
C∈C φ

(C)
θ (xC) where each C ⊆ V is a fully

connected clique in G. We denote random variables with
capital letters (e.g., XH ) and instantiations of variables with
lower-case (e.g., xH ∈ domain(XH)). We also use capitals
to denote sets and lowercase to denote set elements (e.g.,
Xh for h ∈ H). Training graphical models involves a set
of observed data x̄O, where a subset of variables O ⊆ V
is observed and the remainder H = V \O are hidden.

When the probability distribution is governed by a set
of parameters θ, penalized maximum likelihood training
corresponds to the optimization

maximizeθ J(θ) , L(θ) +R(θ) (1)

where L(θ) , log pθ(x̄O) = log
∑
xH

pθ(xH , x̄O), (2)

and where R(θ) is a regularizer that expresses prior
knowledge about the parameters. Many regularizers
are used in practice, such as the `2 or `1 norms, which
encourage parameters to be small or sparse, respectively.

Instead of placing a regularizer on the parameters them-
selves, it is often more natural to place a regularizer on the
posterior distribution, a technique called posterior regular-
ization (Ganchev et al., 2010). This is done by introducing
an auxiliary joint distribution q(XH), placing a regularizer
on q(XH), and encouraging q to be similar to pθ via a KL
divergence penalty. The regularizer is

RPR(θ) , max
q
R′PR(θ, q) (3)

R′PR(θ, q) , −D(q(XH)‖pθ(XH |x̄O)) + PR(q), (4)

where D(·‖·) is the KL divergence D(p(XH)‖q(XH)) =∑
xH

p(xH) log(p(xH)/q(xH)) and PR(q) is a penalty
term that expresses some prior knowledge about the
posterior distribution. For notational convenience, we also
define J ′(θ, q) , L(θ) +R′(θ, q). Ganchev et al. (2010)
showed how to optimize this combined objective efficiently
when PR(q) is a sum of terms over individual cliques in
the model. Such regularizers can be used for constraining
the posterior of individual variables in expectation, among
other applications. However, graph smoothness objectives
cannot be expressed this way, because they involve arbitrary
pairs of variables.

http://www.nature.com/encode
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When we have a graph smoothness assumption, we are given
a weighted, undirected regularization graph over the hidden
variables GR = (H,ER), where ER ⊆ H ×H is a set of
edges with non-negative similarity weights w : ER → R+,
such that a large w(u, v) indicates that we have strong belief
that Xu and Xv should be similar. The regularization graph
GR is entirely separate from the conditional dependence
graphG and, in particular, need not obey any decomposition
or factorization properties to admit efficient inference.

He et al. (2013) introduced a regularizer of the following
form. Let λG be a hyperparameter controlling the strength
of regularization. The regularizer is

PRGPR(q) , −λG
∑

(u,v)∈ER

w(u, v)‖q(Xu)− q(Xv)‖22.

He et al. showed how to optimize this regularizer using an
exponentiated gradient descent method.

Although this regularizer shows good results for some prob-
lems, the use of squared error—or indeed any p-norm—to
represent dissimilarity between probability distributions can
be highly suboptimal, as we demonstrate empirically in
Sections 5 and 6. Squared error is based on a Gaussian
error model, which is not appropriate for probability values,
and it under-penalizes differences between small probability
values. p-norms are defined over all real numbers, while
posteriors must lie within the range [0, 1] (and live in a
simplex).

A more justified way to measure divergence between proba-
bility distributions is to employ the KL divergence. The KL
divergence measures the difference of exponents in the prob-
ability and so evaluates differences between small and large
probabilities more uniformly. Also, Pinsker’s inequality
(Csiszár & Tusnády, 1984) combined with the relationship
of `-norms implies that D(p‖q) ≥ 1

2‖p− q‖21 ≥ 1
2‖p− q‖2` ,

for all ` ≥ 1, where ‖ · ‖` is the `-norm. Hence, minimizing
KL divergence minimizes an upper bound on all `-norms.

As a concrete example, consider two pairs of probability
distributions over two events: p1 = [0.55, 0.45] vs. q1 =
[0.45, 0.55], and the second pair p2 = [0.1, 0.9] vs. q2 =
[10−10, 1 − 10−10]. The first pair of distributions (p1, q1)
are fairly similar, with both events being roughly equally
likely. The second pair (p2, q2) is quite dissimilar, with the
first event being reasonably likely in the first case p2 and
astronomically unlikely in the second q2. Squared error actu-
ally regards the first pair as more dissimilar than the second
pair, while KL divergence identifies the second pair as much
more dissimilar. Despite the advantages of KL divergence,
although all posterior regularization objectives include a KL
term binding q to be similar to pθ, to our knowledge, no
existing methods define the posterior regularizer itself using
KL. Results in Sections 5 and 6 will show, moreover, that KL
significantly improves over squared error across the board.

In this work, we propose such a posterior regularizer,
which we term entropic graph-based posterior regulariza-
tion (EGPR). The posterior regularizer is

PREGPR(q) ,

− λG
∑

(u,v)∈ER

w(u, v)D(q(Xu)‖q(Xv)),
(5)

and J ′EGPR(θ, q) and R′EGPR(θ, q) are defined according to
Equations (2) and (4) respectively using the corresponding
regularizers. That is,

maximizeθ,q J ′EGPR(θ, q) , L(θ) +R′EGPR(θ, q),

R′EGPR(θ, q) , −D(q(XH)‖pθ(XH |x̄O)) + PREGPR(q).

The KL divergence in Equation 5 is symmetrized be-
cause GR is undirected—that is w(u, v) = w(v, u)—so
D(qu‖qv) and D(qv‖qu) appear with the same weight in
the regularizer.

In the next section, we describe a novel alternating
optimization algorithm for solving Equation (1) with an
EGPR regularizer. Unlike other recent prominent examples
of alternating optimization in machine learning (Wang
et al., 2008), each update of this method has a closed-form
solution. EGPR can be employed either as a regularizer
for training the parameters or for inference directly. In the
training case, an EM-like algorithm described in Section 2.3
is used to compute and output θ, which can then be used
for inference either with or without EGPR. In the inference
case, q is computed and output as the posterior marginals,
as described in Section 3.

2. EGPR for Training
We first describe how to compute argmaxq J

′
EGPR(θ, q),

then describe how this algorithm can be used in combination
with an EM-like algorithm for learning θ.

2.1. Optimizing q

The EGPR regularizerR′EGPR(θ, q) is convex in q; therefore,
we could compute q using any convex optimization
algorithm. However, general-purpose convex optimization
algorithms do not scale to problems with millions or billions
of variables such as those present in genomics. Therefore,
we instead propose a novel alternating optimization strategy
for performing this optimization more efficiently.

To enable closed form updates for this objective, we refor-
mulate J ′EGPR(θ, q) by introducing a new variable rM (XH).
Like q, rM is a distribution over XH , but we require
that rM be factorizable as a product of marginals—that is
rM (xH) =

∏
h r

M
h (xh). (In this manuscript, we use the no-

tation pM (XH) to indicate that p is a product of marginals.)
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We define the graph regularizer over rM and add an addi-
tional term λR1D(q(XH)‖rM (XH)), which encourages q
and rM to be similar. As we show below, restricting rM in
this way means that the reformulated objective is a lower
bound on the original rather than being equivalent. We max-
imize this lower bound as an approximation to maximizing
the original. The reformulated regularizer is

PR′EGPR-R1(q, rM ) , −λR1D(q(XH)‖rM (XH))

+ fR1(rM )
(6)

and

fR1(rM ) ,

− λG
∑

(u,v)∈FEGPR

w(u, v)D(rM (Xu)‖rM (Xv)),
(7)

where J ′EGPR-R1(θ, q, rM ) and R′EGPR-R1(θ, q, rM ) are de-
fined according to Equations (2) and (4) respectively using
the corresponding regularizers. That is,

maximizeθ,q,rM J ′EGPR-R1(θ, q, rM ) ,

L(θ) +R′EGPR-R1(θ, q, rM ),
(8)

R′EGPR-R1(θ, q, rM ) ,

−D(q(XH)‖pθ(XH |x̄O)) + PREGPR-R1(q, rM ).
(9)

First, we show that rM ≈ q for large values of λR1, so
optimizing the reformulated regularizer is equivalent to op-
timizing a lower bound on the original.
Lemma 2.1. For distributions p ∈ P and q ∈ Q
where P ∩ Q 6= ∅ and a continuous function J(p, q),
let J̃(p, q;λ) = J(p, q) − λD(p‖q), and p∗λ, q

∗
λ ∈

argmaxp∈P,q∈Q J̃(p, q;λ). Then the following hold:

lim
λ→∞

D(p∗λ‖q∗λ) = 0, (10)

lim
λ→∞

‖p∗λ − q∗λ‖` = 0 (11)

for any `, where ‖ · ‖` is the `-norm, and

lim
λ→∞

max
p∈P,q∈Q

J̃(p, q;λ) ≤ max
p∈P

J(p, p). (12)

Proof: See extended version (Libbrecht et al., 2015).

Therefore, for sufficiently large λR1, optimizing Equation (7)
is equivalent to optimizing a lower bound on Equation (5).
This form allows us to compute q efficiently, which is shown
as follows.
Theorem 2.2. Define q∗(XH) ,
argmaxq J

′
EGPR-R1(θ, q, rM ). Then,

q∗(xH) =

pθ(xH , x̄O)1/(1+λR1)
∏
h∈H r

M
h (xh)λR1/(1+λR1)∑

x′
H
pθ(x′H , x̄O)1/(1+λR1)

∏
h∈H r

M
h (x′h)λR1/(1+λR1)

.

(13)

Proof: See extended version (Libbrecht et al., 2015).

This is identical to the original model pθ, but with one addi-
tional factor rMh (xh)λR1/(1+λR1) over each label. Critically,
because rM is factorizable such that each factor involves
just one variable Xh, q∗(XH) is factorizable in the same
way as the unregularized model pθ(XH , x̄O). For example,
if the original model was an HMM, q still factors as a chain.
Therefore, the normalization constant can be computed
using any algorithm for exact or approximate probabilistic
inference on factorized models, such as belief propagation,
with similar computational cost as the unregularized model.

2.2. Optimizing rM

While the last reformulation enabled closed form updates
for q, the objective still does not admit closed-form updates
for rM . This is due to the fact that an objective of the
form D(p‖q) +D(p‖r) admits closed form updates for p,
while D(p‖q) + D(r‖p) does not. Therefore, we again
reformulate PREGPR-R1(θ, q, rM ) by adding a new variable
sM , where sM is also a distribution over XH restricted to
be factorizable as a product of marginals. As before, we
add a term λR2D(sM (XH)‖rM (XH)), which encourages
sM ≈ rM . We define the graph regularizer KL divergence
terms to have sM on the left and rM on the right—that
is, in the form D(sMu (Xu)‖rMv (Xv))—which will enable
efficient optimization for both variables.

PR′EGPR-R2(q, rM , sM ) , −λR1D(q(XH)‖rM (XH))

+ max
sM

fR2(rM , sM )

(14)

fR2(rM , sM ) , −λR2D(sM (XH)‖rM (XH))

− λG
∑

(u,v)∈FEGPR

w(u, v)D(sMu (Xu)‖rMv (Xv)).

J ′EGPR-R2(θ, q, rM , sM ) andR′EGPR-R2(θ, q, rM , sM ) are de-
fined according to Equations (2) and (4) respectively using
the corresponding regularizers. That is,

maximizeθ,q,rM ,sM J ′EGPR-R2(θ, q, rM , sM ) ,

L(θ) +R′EGPR-R2(θ, q, rM , sM ),
(15)

R′EGPR-R1(θ, q, rM , sM ) ,

−D(q(XH)‖pθ(XH |x̄O)) + PREGPR-R2(q, rM , sM ).

(16)

By Lemma 2.1, optimizing REGPR-R2(q) is equivalent to
optimizing REGPR-R1(q) for large values of λR2. This reg-
ularizer can be optimized in rM and sM using closed-form
updates, shown as follows.

Theorem 2.3. For notational simplicity, define a new
regularization graph with self-edges of weight λR2/λG,
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E′EGPR , ER ∪ {(h, h) | h ∈ H}, and
w′(u, v) , w(u, v) + δ(u = v)λR2/λG. Let
rM
∗
(XH) ∈ argmaxrM J ′EGPR-R2(θ, q, rM , sM ) and

sM
∗
(XH) ∈ argmaxsM J ′EGPR-R2(θ, q, rM , sM ). Then,

rMv (xv) =

λR1q
M
v (xv) + λG

∑
(u,v)∈E′

EGPR
w′(u, v)sMu (xv)

λR1 + λG
∑

(u,v)∈E′
EGPR

w′(u, v)
,

(17)

sMu
∗
(xu) =

exp

∑
(u,v)∈E′

EGPR
w′(u,v) log rMv (xu)∑

(u,v)∈E′
EGPR

w′(u,v)∑
x′
u

exp

∑
(u,v)∈E′

EGPR
w′(u,v) log rMv (x′

u)∑
(u,v)∈E′

EGPR
w′(u,v)

.
(18)

Proof: See extended version (Libbrecht et al., 2015).

2.3. Updating θ

The preceding section described an algorithm for computing
argmaxqREGPR-R2. This algorithm can be combined with
an EM-like algorithm in order to learn a θ that (locally)
optimizes JEGPR-R2, as we describe in this section. We use
an alternating EM-like algorithm to compute θ.

E-step:
q(t+1) ∈ argmaxq,rM ,sM J ′EGPR-R2(θ(t), q, rM , sM )

M-step: θ(t+1) ∈ argmaxθ J
′
EGPR(θ, q(t+1))

The preceding section showed how to perform the E-step.
To compute the M-step,

argmaxθ J
′
EGPR(θ, q(t+1))

= argmaxθ Eq(t+1)(XH) [log pθ(XH , x̄O))]
(19)

The M-step takes the same form as the EM algorithm
presented in (Neal & Hinton, 1999). The update for θ
depends on the particular factorization and parameterization
properties of the model. Because the posterior distribution
q(XH) obeys the same factorization properties as the
unregularized model pθ(XH , XO), the same closed-form
updates for θ can be used.

Therefore, the upper bound on the EGPR objective,
JEGPR-R2, can be minimized using a three-way alternating
optimization algorithm, which proceeds by alternating
closed-form updates to rM and rM to convergence, alternat-
ing this whole update of rM/sM with closed-form updates
to q until convergence, then finally alternating updates to
q and θ until convergence. A schematic of the algorithm
is shown in Figure 1. The full algorithm in pseudocode is
shown in the extended version (Libbrecht et al., 2015).
Theorem 2.4. The modified EM algorithm monotonically
increases the relaxed EGPR objective:

JEGPR-R2(θ(t)) ≤ JEGPR-R2(θ(t+1)). (20)

Update ✓  ✓⇤(q)Update 

Update Update 

Update 

q  q⇤(✓, rM )

rM , sM  (rM , sM )⇤(q)q  q⇤(✓, rM )

Update rM , sM  (rM , sM )⇤(q)rM , sM  (rM , sM )⇤(q)

Figure 1. Illustration of optimization algorithm. Solid ovals de-
note closed-form update steps. Dashed ovals with dotted expansion
lines denote updates that are implemented by alternating optimiza-
tion. Pairs of opposing arrows indicate alternating optimization
implemented by iterating each update to convergence. See the
extended version (Libbrecht et al., 2015) for the full algorithm.

Proof: See extended version (Libbrecht et al., 2015).

3. EGPR for Inference
In addition to its use for regularized learning, EGPR can
be used directly as an inference algorithm. To do this,
we compute q∗ ← argmaxq J

′
EGPR-R2(θ, q) and use this

distribution as the posterior. As discussed above, q∗ obeys
the same factorization properties as pθ, so algorithms such
as Viterbi and belief propagation can be used to compute the
MAP solution and marginal distributions of q respectively.
Using EGPR as an inference algorithm results in posteriors
which are smooth with respect to the graph GR.

4. Related work
The most straightforward way to express similarity informa-
tion in an unsupervised model is to encode it in the graphical
model. For example, one might add a factor between Xu

and Xv as in φ(xu, xv) = λ1(xu = xv). This form of
interaction is quite different from EGPR, because adding
factors changes the “implementation” of the model, while
EGPR regularizes what the model does. Moreover, there are
two problems with this approach. First, it is not always clear
what form of interaction is most appropriate. In particular,
although KL-based penalties have been very successful in
graph-based semi-supervised learning, they cannot be con-
verted to an equivalent set of probability factors. Second,
adding similarity edges to the probabilistic model results
in a model that does not, in general, have low tree-width,
so efficient exact inference algorithms such as belief propa-
gation cannot be used, and one must resort to approximate
inference. As we show in Section 5.2, EGPR performs bet-
ter than the loopy belief propagation (LBP) approximate
inference algorithm on an augmented graph.

Three methods take a similar approach to ours, by augment-
ing a probabilistic model with a graph regularizer. First,
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Altun et al. (2005) describe a graph regularization for max-
margin models applied to pitch-accent prediction and optical
character recognition. However, this method involves a ma-
trix inversion step, and thus it cannot scale to large models.
Second, Subramanya et al. (2010) combine a temporal con-
ditional random field with a regularizer that expresses pair-
wise squared-error penalties derived from unlabeled data.
They apply this method to the part-of-speech tagging task
(Subramanya et al., 2010) and later to related problems in
natural language (Das & Petrov, 2011; Das & Smith, 2011).
That work, however, resorts to a purely heuristic update step
and lacks any optimality guarantees.

Third, He et al. (2013) present an approach based on an
exponentiated gradient descent algorithm. Like our ap-
proach, He’s approach exhibits monotone convergence. Al-
though He’s work has many similarities with our approach,
He’s work differs from ours in three important ways. First,
He’s method uses a squared-error penalty, which, as argued
above, is less appropriate for probability distributions than
Kullback-Leibler divergence (Bishop, 1995, p. 226). As
shown in Section 5.2, using squared error also results in
worse performance in practice. Second, the exponentiated
gradient descent method is applied to semi-supervised hand-
writing recognition and part-of-speech tagging, while we
apply EGPR to an unsupervised genome annotation prob-
lem. Third, He et al. (He et al., 2013) use an exponentiated
gradient descent strategy, while we use alternating optimiza-
tion.

Our alternating optimization approach has several benefits
over the exponentiated gradient descent method of He et al.
(He et al., 2013). First, the He et al. algorithm involves gra-
dient calculations over each clique in the conditional depen-
dence graph, with order O(k|C|) for a variable of dimension
k involved in cliques of size |C|. Our alternating mini-
mization algorithm, by contrast, has closed-form updates
of order O(k) for q, rM and sM . (Updates for θ can still
involve O(k|C|) calculations, but these are generally very
fast). Therefore, the alternating optimization algorithm is
more appropriate for extremely large models or models with
large cliques or high-order factors. Second, empirical stud-
ies of KL-based graph smoothness objectives have shown
that alternating optimization algorithms perform better than
gradient-based methods for these objectives (Subramanya
& Bilmes, 2011). Finally, the alternating optimization strat-
egy is parallelizable and extremely simple to implement
because the graph regularization step has simple, closed-
form updates with no learning rate hyperparameters, and the
posterior calculation can be performed using any probabilis-
tic inference method on a model with the same conditional
dependence graph as the unregularized model.
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Figure 2. Using EGPR to learn ambiguous clusters. Shape denotes
true class, color denotes predicted class, and colored arrows denote
cluster means as they evolve between iterations of EM.

5. Simulations
In addition to the results shown below, in the supplement
(Libbrecht et al., 2015), we show results for an application
of EGPR to genome physical interactions on real and
simulated data.

5.1. Learning a Gaussian Mixture on Poorly-Separated
Data

First, we consider a simple example that demonstrates the
utility of EGPR (Figure 2). Suppose we wish to learn a mix-
ture of four Gaussians on data lying in a circle in 2D, using
EM training to find cluster centers. Clearly, the training
problem is underspecified in this case, because any set of
centers at 90 degrees from one another relative to the circle’s
center represents an optimum of the model likelihood. How-
ever, suppose we additionally have pairwise information that
certain slices of the circle should form clusters. To represent
this additional information, we form a regularization graph
that connects all pairs of positions within the same cluster
and run EM with EGPR using this graph. EGPR finds the
true cluster centers and recovers the true labels with 100%
accuracy compared to 74% accuracy with EM alone. This
example demonstrates how pairwise information can be in-
tegrated in the training process to produce a trained model
that implicitly incorporates this information.

5.2. Comparison with Related Inference Methods

To evaluate the efficacy of EGPR, we compared EGPR to
two related methods: 1) approximate inference on a graphi-
cal model with the same dependence structure, and 2) GPR
using squared-error penalties. We compared to the approx-
imate inference method loopy belief propagation (LBP)
because it is one of the most widely used approximate infer-
ence methods. While we would have preferred to perform
this comparison using our genomics data sets (see Section
6), due to the large size of the models and dense connectivity
of the regularization graphs, it appeared that even our imple-
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Figure 3. Comparison of EGPR with related inference methods.
The X axis shows σ, a hyperparameter controlling the difficulty
of inference. The Y axis shows the average accuracy over 200
simulations of MAP inference on the model in question (95%
Wilcoxon test confidence intervals).

mentations of these methods would take months to converge.
Therefore, we instead performed this comparison using syn-
thetic data. We generated a chain of length n = 200, with
(XH , XO) = (Z1:200, Y1:200), where Z1:200 ∈ {0, 1}n and
Y1:200 ∈ Rn. We defined an HMM over this chain with
transition probabilities Pr(Zi = Zi+1) = 0.9 and emission
probabilities Yi ∼ N(Zi, σ), where we vary σ to control
the difficulty of the problem—higher σ results in more chal-
lenging inference. We generated a graph W ∈ Rn×n over
the vertices of the chain by setting wij = 1 with probability
0.4 if Zi = Zj , wij = 1 with probability 0.1 if Zi 6= Zj ,
and wij = 0 otherwise. This model is meant to simulate the
task of labeling a chain (such as a genomic sequence) where
we have noisy information about which pairs of positions
have the same label.

We compared five methods of inference: 1) inference on
each position independently, with no chain model; 2) infer-
ence on the chain alone, without using W ; 3) LBP on the
chain plus extra factors of Pr(Xi = Xj) = sigmoid(λwij),
where λ controls the strength of these factors; 4) GPR using
the regularization graph W and a squared-error penalties as
described in (He et al., 2013) (SQGPR); and 5) EGPR using
the regularization graph W . We chose hyperparameters for
each model (λG, λR1 and λR2 for GPR and λ for LBP) us-
ing a training set of 200 simulations. We evaluated results
according to the average accuracy over 200 simulations of
MAP inference on the model in question.

EGPR significantly outperforms all other models for all ex-
periments (Figure 3, providing nearly as much improvement
in accuracy as does the chain model itself. The pattern of
accuracy is instructive in understanding the properties of
each model. LBP performs very well when there is little
noise, but becomes easily stuck in local optima on harder
problems. GPR with squared error provides a modest im-
provement over the chain model, but has poor performance
relative to KL penalties, consistent with previous work on

semi-supervised methods (Subramanya & Bilmes, 2011).

6. Application: Genome Annotation Using
Physical Interaction Information

Recently, many methods have been described that partition
and label the human genome on the basis of a number of
genome-wide real-valued signal tracks, generally employing
temporal models such as HMMs (Day et al., 2007; Hoff-
man et al., 2012a; Ernst & Kellis, 2010; Filion et al., 2010;
Thurman et al., 2007; Lian et al., 2008). Formally, these
methods aim to learn a labeling XH1:n ∈ {1..L}n which
associates each position in the genome with one of L integer
labels, such that positions that receive the same label exhibit
similar patterns in the signal data. The input is comprised
of a feature vector XOi ∈ RF at each position that repre-
sents the output of biological experiments that measure local
properties of the DNA, including its interaction with binding
proteins, its local structure, and various types of chemical
modifications. The process is “semi-automated” because a
human assigns a semantic interpretation of the integer labels
subsequent to the unsupervised learning phase.

However, existing genome annotation methods cannot incor-
porate the genome’s 3D conformation. The 3D arrangement
of the genome in the nucleus plays a central role in gene
regulation, chromatin state and replication timing (Misteli,
2007; Dekker et al., 2002; Ryba et al., 2010; Dixon et al.,
2012). Genome conformation can be investigated using
chromatin conformation capture experiments such as Hi-
C (Lieberman-Aiden et al., 2009). A Hi-C experiment
outputs a matrix of contact counts, where the number of
contact counts of a pair of genomic positions is inversely
proportional to the positions’ 3D distance in the nucleus
(Lieberman-Aiden et al., 2009; Ay et al., 2014b). Existing
genome annotation methods can incorporate any data set
that can be represented as a vector defined linearly across
the genome, but they cannot incorporate inherently pairwise
Hi-C data without resorting to simplifying transformations
such as principle component analysis.

We therefore present a novel strategy for integrating 3D con-
formation information using EGPR in which we encourage
pairs of positions which interact in 3D to receive the same
label in the annotation by connecting these positions with
edges in an EGPR graph (Figure 5(a)). While the assump-
tion that positions close in 3D space have similar regulatory
state is not necessarily true at a small scale (∼1 thousand
base pair elements), it does generally hold at a large scale
(∼1 million base pair elements) (Lieberman-Aiden et al.,
2009).
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(a) Without EGPR (b) With EGPR

Figure 4. Synthetic model of genome spatial interactions. Color
and labeled division lines indicate learned labels along the hy-
pothesized 501 bp genome. Large filled circles indicate observed
positions. Dotted lines indicate EGPR edges.

6.1. Synthetic Example

To motivate this approach, we first consider a simple syn-
thetic model with 501 nodes and six EGPR edges. Let Yi ∈
{0, 1} for i = 0 . . . 500. We assign Y1 = 0 and Y500 = 1.
Let P (Y0:500) =

∏499
i=0 0.91(Yi=Yi+1)0.11(Yi 6=Yi+1). In

other words, the model places higher probability on neigh-
boring positions taking the same label but provides no other
information. We construct an EGPR graph with w0,200 =
w0,400 = w200,400 = w100,300 = w100,500 = w300,500 = 1,
corresponding to a hypothetical 2D arrangement of the
chain. Without EGPR, the model learns a trivial labeling of
the chain, whereas with EGPR, the model learns a labeling
corresponding to the 2D arrangement (Figure 4).

6.2. Real data

Next, to evaluate the efficacy of our approach, we performed
genome annotation of the human fibroblast cell line IMR90.
We compared three models: (1) the chain model described
in (Hoffman et al., 2012a), without 3D structure data, (2) the
chain model augmented with 3D structure data expressed
with squared-error GPR (SQGPR), and (3) the chain model
augmented with 3D structure data expressed with EGPR.
We would have liked to compare against loopy belief prop-
agation as well, but as mentioned previously, it appeared
that our fastest implementation of this method would take
months to converge on this large data set. In order to evalu-
ate our performance in a variety of conditions, we ran each
model separately once for each of the 29 available data sets
in IMR90.

For SQGPR and EGPR, we used a GBR graph based on 3D
structure data. To generate the GBR graph representation of
3D structure used by EGPR and SQGPR, we used the Hi-C
data set of (Dixon et al., 2012) and processed the Hi-C data
into a matrix of pairwise p-values using the Fit-Hi-C method
(Ay et al., 2014a). To remove noise and decrease the degree
of the graph, we removed all contacts with uncorrected p-
value p > 10−6 and multiplied the remaining p-values by
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Figure 5. (a) Strategy for utilizing physical interaction informa-
tion. (b) Improvement in RMSE over chain model for EGPR and
SQGPR for 29 experiments. (c) Relative improvement in RMSE
between EGPR and SQGPR for each of 29 experiments.

106, similar to a Bonferroni correction. We generated the
GPR graph by setting the weight between positions i and j,
w(i, j), to w(i, j) , max(0,− loge(p(i, j)/106)), where
p(i, j) is the p-value of interaction between positions i and
j. All annotations used four labels and binned the genome
at 10,000 base pair resolution, comparable to the resolution
of 40,000 bp used in (Dixon et al., 2012). We chose the best-
performing hyperparameters for each GPR model using a
validation set.

To evaluate these annotations, we used the time during the
cell cycle at which the DNA is replicated as a gold standard
(Woodfine et al., 2004). Replication time is highly correlated
with gene expression and chromatin state and therefore is a
good proxy for domain type (Lieberman-Aiden et al., 2009).
To evaluate the accuracy with which an annotation predicts
replication time, we compute a prediction as follows. Let
ai ∈ {1 . . . 4} and xi be the annotation label and replication
time at position i, respectively. We compute the replication
time mean over the positions assigned a given label ` as

µ` ,

∑n
i=1 1(ai = `)xi∑n
i=1 1(ai = `)

for ` ∈ {1 . . . 4}. (21)

We define a predicted replication time vector xpi = µai
and compute the root mean squared error (RMSE) of this
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prediction as RMSE =
√∑

i(xi − x
p
i )

2. EGPR consis-
tently outperforms both the chain model alone and SQGPR
(Figure 5).

7. Discussion
We have defined entropic graph-based posterior regulariza-
tion (EGPR), a method to encourage a model’s posteriors to
be smooth according to a regularization graph. This method
is motivated by graph-based methods for semi-supervised
learning, which have had great success in that setting but
have not been studied thoroughly in an unsupervised set-
ting. We showed that EGPR greatly outperforms both the
approximate inference method loopy belief propagation and
previous methods for graph-based regularization. We used
EGPR to incorporate 3D structure data for semi-automated
genome annotation and showed that EGPR greatly improved
the quality of the resulting annotations. This method will
thereby enable these methods to distill complicated pairwise
contact matrices into human-interpretable genome anno-
tations. Moreover, because EGPR can use any graphical
model and similarity graph, it will likely have diverse ap-
plications in other fields such as natural language and time-
series analysis.
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