

Multi-scale Deep Tensor Factorization Learns a Latent Representation of the Human Epigenome

Jacob Schreiber Paul G. Allen School of Computer Science University of Washington

The sequence of the human genome cannot explain the diversity of human cell types

Many measurements can be gathered in addition to nucleotide sequence

The signal of epigenomic assays vary across cell types

Many experiments have been performed, but still only a fraction of possible experiments

1,014 experiments performed out of a possible 3,048

Have we characterized the human epigenome yet?

127 Human Cell Types

- Previous work sought to fully characterize the epigenome through imputing all potential experiments (ChromImpute¹, PREDICTD²)
- Can we characterize the epigenome through distilling the available measurements into an informative latent representation?

Data Present

2. Durham, et al. *Nature Communications, 2018*

^{1.} Ernst, et al. *Nature Methods, 2015*

Avocado is a deep tensor factorization approach

Our goal is to use the genomic latent factors for other tasks

Initial inspection of the imputations suggest that Avocado performs well

MSE-	global	10bs	1imp	Prom	Gene	\mathbf{Enh}			
ChromImpute	0.113	0.941	1.09	0.3246	0.1494	0.3164			
PREDICTD	0.1	1.76	0.897	0.2576	0.1295	0.267			
Avocado	0.1	1.66	0.845	0.249	0.1295	0.26			

MSE-global: Mean squared error (MSE) across the full length of the genome
MSE-1obs: MSE at the top 1% of genomic positions ranked by experimental signal
MSE-1imp: MSE at the top 1% of genomic positions ranked by imputed signal
MSE-Prom: MSE at promoter regions defined by GENCODE
MSE-Gene: MSE at gene bodies defined by GENCODE
MSE-Enh: MSE at enhancer regions defined by FANTOM5

How well can these approaches recover cell type specific peaks?

Evaluate by calculating:

- (1) MSE
- (2) Recall (thresholding the imputed signal at 1.44)
- (3) Precision (thresholding the imputed signal at 1.44)

How well can these approaches recover cell type specific peaks?

Ability to Recover Cell Type Specific Peaks

- Experimental Data
- Number of Cell Types These Regions Are a Peak In
- ChromImpute
- PREDICTD
- Avocado

STEP 1:

Choose a Prediction Task

- Gene Expression
- Promoter-Enhancer Interactions
- Frequently Interacting REgions (FIREs)
- Topologically Associating Domain (TAD) boundaries

STEP 2:

Choose a Cell Type

- Task dependant

STEP 3:

- Available epigenomic tracks from the chosen cell type
- Full set of ChromImpute imputed marks for that cell type
- Full set of PREDICTD imputed marks for that cell type
- Full set of Avocado imputed marks for that cell type
- Avocado latent factors
- Full Roadmap compendium

STEP 3:

- Available epigenomic tracks from the chosen cell type
- Full set of ChromImpute imputed marks for that cell type
- Full set of PREDICTD imputed marks for that cell type
- Full set of Avocado imputed marks for that cell type
- Avocado latent factors
- Full Roadmap compendium

STEP 3:

- Available epigenomic tracks from the chosen cell type
- Full set of ChromImpute imputed marks for that cell type
- Full set of PREDICTD imputed marks for that cell type
- Full set of Avocado imputed marks for that cell type
- Avocado latent factors
- Full Roadmap compendium

STEP 3:

- Available epigenomic tracks from the chosen cell type
- Full set of ChromImpute imputed marks for that cell type
- Full set of PREDICTD imputed marks for that cell type
- Full set of Avocado imputed marks for that cell type
- Avocado latent factors
- Full Roadmap compendium

STEP 3:

- Available epigenomic tracks from the chosen cell type
- Full set of ChromImpute imputed marks for that cell type
- Full set of PREDICTD imputed marks for that cell type
- Full set of Avocado imputed marks for that cell type
- Avocado latent factors
- Full Roadmap compendium

STEP 1:

Choose a Prediction Task

- Gene Expression
- Promoter-Enhancer Interactions
- Frequently Interacting REgions (FIREs)
- Topologically Associating Domain (TAD) boundaries

STEP 4:

Run 5 fold CV on data set using a gradient boosting machine classifier and calculate the mean average precision (MAP) over all five folds

STEP 2:

Choose a Cell Type

Task dependant

STEP 3:

- Available epigenomic tracks from the chosen cell type
- Full set of ChromImpute imputed marks for that cell type
- Full set of PREDICTD imputed marks for that cell type
- Full set of Avocado imputed marks for that cell type
- Avocado latent factors
- Full Roadmap compendium

Avocado latent factors can predict gene expression

Avocado > Epigenomic Measurements

- All cell types
- By an average of 0.144 MAP
- By an average of 0.167 MAP on the 7 most difficult cell types

Avocado > Full Roadmap Compendium

- 36 / 47 cell types
- By an average of 0.006 MAP
- By an average of 0.03 MAP on the 7 most difficult cell types

Avocado latent factors can predict promoter-enhancer interactions

Avocado latent factors can predict FIREs

Schmitt et al, 2016 21

Avocado latent factors can predict FIREs

Feature attribution methods reveal two important marks

FIRE Prediction Attributions

- Avocado is a deep tensor factorization approach for modeling the human epigenome
- After being trained to impute epigenomic marks, it yields more accurate imputations than previous work
- Avocado's genome latent factors serve as a useful input for machine learning models on downstream genomics tasks, outperforming using epigenomic measurements themselves
- Using the entirety of the Roadmap compendium appears to be a stronger baseline than expected suggesting that measurements in many cell types can aid the prediction for a single cell type

Preprint and model are online now!

..... UNIVERSITY OF WASHINGTON

Avocado: Multi-scale Deep Tensor Factorization Learns a Latent Representation of the Human Epigenome

Jacob Schreiber¹, Timothy Durham², Jeffrey Bilmes^{1, 3}, and William Noble^{1, 2}

1. Paul G. Allen School of Computer Science and Engineering, University of Washington 2. Department of Genome Science, University of Washington 3. Department of Electrical Engineering, University of Washington

HOME | AB CHANNEL

Search

New Results

Multi-scale deep tensor factorization learns a latent representation of the human epigenome

Jacob Schreiber, Timothy J Durham, Jeffrev Bilmes, William Stafford Noble doi: https://doi.org/10.1101/364976

This article is a preprint and has not been peer-reviewed [what does this mean?].

Abstract	Info/History	Metrics	Supplementary material	Preview PDF
----------	--------------	---------	------------------------	-------------

Abstract

The human epigenome has been experimentally characterized by measurements of protein binding, chromatin acessibility, methylation, and histone modification in hundreds of cell types. The result is a huge compendium of data, consisting of thousands of measurements for every basepair in the human genome. These data are difficult to make sense of, not only for humans,

https://noble.gs.washington.edu/proj/avocado

Acknowledgements

National Science Foundation WHERE DISCOVERIES BEGIN