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Abstract
Human gut microbiome dysbiosis has been associated with the onset of metabolic 
diseases and disorders. However, the critical factors leading to dysbiosis are poorly 
understood. In this study, we provide increasing evidence of the association of diet 
type and body mass index (BMI) and how they relatively influence the taxonomic 
structure of the gut microbiota with respect to the causation of gut microbiome dys-
biosis. The study included randomly selected Alabama residents (n = 81), including fe-
males (n = 45) and males (n = 36). The demographics data included age (33 ± 13.3 years), 
height (1.7 ± 0.11 meters), and weight (82.3 ± 20.6 kg). The mean BMI was 28.3 ± 7.01, 
equating to an overweight BMI category. A cross-sectional case–control design en-
compassing the newly recognized effect size approach to bioinformatics analysis was 
used to analyze data from donated stool samples and accompanying nutrition surveys. 
We investigated the microbiome variations in the Bacteroidetes-Firmicutes ratio rela-
tive to BMI, food categories, and dietary groups at stratified abundance percentages 
of <20%, 20%, 30%, 40%, 50%, 60%, and ≥70%. We further investigated variation in 
the Firmicutes and Bacteroidetes phyla composition (at the genus and species level) in 
relation to BMI, food categories, and dietary groups (Westernized or healthy). The 
Pearson Correlation coefficient as an indication of effect size across Alpha diversity 
indices was used to test the hypothesis (H0): increased BMI has greater effect on taxo-
nomic diversity than Westernized diet type, (Ha): increased BMI does not have a 
greater effect on taxonomic diversity than Westernized diet type. In conclusion, we 
rejected the (H0) as our results demonstrated that Westernized diet type had an effect 
size of 0.22 posing a greater impact upon the gut microbiota diversity than an in-
creased BMI with an effect size of 0.16. This implied Westernized diet as a critical 
factor in causing dysbiosis as compared to an overweight or obese body mass index.
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1  | INTRODUCTION

Scientific investigations have demonstrated that the development of 
many metabolically based human diseases such as obesity, is associ-
ated with taxonomic changes occurring among the particular species 
of bacteria constituting the gut microbiota. This residential population 
permanently resides within the distal large intestines of all humans and 
other animals. Their primary role, among an array of other life sustain-
ing biological functions, is that of a dietary energy extractor assisting 
the human host in gaining nutrients from the otherwise indigestible 
components of fresh, plant-based foods (Diamant, Blaak, & de Vos, 
2011; Kau, Ahern, Griffin, Goodman, & Gordon, 2011). The gut mi-
crobiota are highly susceptible to both biological and environmental 
influences. To varying degrees, several factors including the method 
of fetal delivery, neonate feeding, human genetics and disease, cer-
tain medical interventions and environmental exposures, such as hav-
ing an abundant access to and the regular consumption of processed 
foods, are all known contributors to the taxonomic shifts within the 
microbiota populations. This occurrence is a disorder referred to as 
gut microbiome dysbiosis, and one that has been associated with the 
onset of many human diseases and disorders (Backhed, 2005; Cordain 
et al., 2005; Dalal & Chang, 2014; Davis, Barrow, Javan, & Robertson, 
2015; Davis, Ogunbi, Ogunbi, & Robertson, 2015; De Filippo et al., 
2010; Flint, Duncan, Scott, & Louis, 2014; Moreno-Indias, Cardona, 
Tinahones, & Queipo-Ortuño, 2014; Ramezani & Raj, 2013; Truswell, 
2013; Xu & Knight, 2014).

Within the past decade, investigators have reported that the tax-
onomic diversity among the species constituting the gut microbiota 
as well as the ratio of two major bacterial phyla commonly abundant 
within the community, the Bacteroidetes and Firmicutes, is closely 
associated with both gut microbiota and human health. However, 
much information is still widely unknown in terms of gut microbiota 
health, including how a ‘healthy’ gut microbiome (e.g., the specific 
species as well as their expressed byproducts and genes) is charac-
terized and alternately, how gut microbiome dysbiosis is related to 
human disease causation and vice versa. Human studies including 
overweight and obese participants have shown an association with a 
decrease in the abundance of Bacteroidetes, an increase in the abun-
dance of Firmicutes, and with an overall decrease in the diversity of the 
gut microbiota population (Bäckhed et al., 2012; Clarke et al., 2012). 
Other investigations have provided no proof of these occurrences or 
have shown conflicting results (Duncan, Sadanand, Davachi, 2012). 
Therefore, there is a fundamental need for more taxonomic-based 
studies investigating the structural characteristics of the gut microbi-
ota in association with healthy and diseased (e.g., overweight, obese) 
participants as well as the incorporation of a systemic approach for 
evaluating various biological and environmental factors that impact 
the taxonomic profile and ultimately, the functionality of the gut mi-
crobiome (DiBaise, Frank, & Mathur, 2012; Walker et al., 2015).

While the p-value is statistically informative, it does not measure 
the size or the magnitude of the effect between the factors being 
investigated and or compared to a disease state. The effect size 
(ES) calculation (SDpooled = √((SD1

2 + SD2
2) ⁄ 2), does provide such 

statistically valuable information. Specifically within gut microbiome 
taxonomic-based studies, ES is a measure of the distance in the vec-
tor of taxa frequencies (e.g., how far apart π1 and π2 are from each 
other). Understanding that the ES value allows for the universal com-
parisons across experiments, gut microbiome-based studies are now 
rapidly shifting to include the statistic to measure the associations 
between participant demographics and health status, with the func-
tionality of the gut microbiota and disease causation (Chen et al., 
2016; Ravel et al., 2014; Song et al., 2016). It has been reported that 
future gut microbiome research will also include localized strategic 
collaborations among microbiologists, clinicians, bioinformaticians 
and the community as more human inclusive studies are needed to 
better understand the gut microbiota within their natural habitat; a 
concept referred to as citizen science (Dave, Higgins, Middha, & Rioux, 
2012; Borel, 2014).

In the present study, we specifically aimed to investigate variation 
in the abundance of the Firmicutes and Bacteroidetes phyla composi-
tion at the genus and species level in relation to BMI, food categories, 
and dietary groups (Westernized or healthy). We also investigated mi-
crobiome variations in the Firmicutes:Bacteroidetes ratio relative to 
BMI, food categories, and dietary groups at stratified abundance per-
centages of <20%, 20%, 30%, 40%, 50%, 60%, and ≥70%. The Pearson 
Correlation coefficient as an indication of effect size across Alpha di-
versity indices was used to test the hypothesis (H0): increased BMI has 
greater effect on taxonomic diversity than Westernized diet type, (Ha): 
increased BMI does not have a greater effect on taxonomic diversity 
than Westernized diet type.

2  | MATERIALS & METHODS

2.1 | Study ethics statement

This study was implemented within the state of Alabama and ap-
proved by the Alabama State University Institutional Review Board, 
approval number 2014CSMT002A. The study materials including 
dietary surveys and accompanying stool sample collection kits were 
randomly distributed among and collected from only Alabama resi-
dents, May 2015 through December 2015.

2.2 | Study design

A cross-sectional case–control study design was used to investigate 
study aims. Through this model, we were able to directly investigate 
known factors of gut microbiome dysbiosis causation to determine 
if a Westernized dietary regime had a greater association with lower 
gut microbiota diversity more so than the obese BMI group com-
pared to nonobese and the healthy diet group (Yardley & Bishop, 
2015).

2.3 | Study population and sample size

Without regard to weight status, race, sex, or geographic location 
within the state, noninstitutionalized, otherwise healthy Alabama 
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residents, ≥19 years of age, capable of understanding ‘informed con-
sent’ on their own accord were randomly selected for study inclusion. 
The target sample size was determined based upon a fully parametric, 
bio-statistical methodology derived from the Dirichlet-multinomial 
distribution model recently presented by human microbiome re-
searchers using a case–control study model similar to present study 
where researchers also incorporated the use of the effect size equa-
tion. As reported, to obtain a standard 5.0% significance level and a 
99.99% power in accurately detecting a small effect size across our 
study groups, present study required a target sample size of at least 
fifty (n = 50) participants and at least ≥20,000 DNA sequencing reads 
per sample (La Rosa et al., 2012). Present study included a total study 
population of 81 participants and the taxonomic data were analyzed 
at ≥22,000 reads/sample.

2.4 | Dietary surveys

Using a blended survey format allowed for the direct investigation 
into the specific foods (e.g., processed and fresh) being consumed 
by participants and the frequency of consumption as well as their 
BMI status (Yardley & Bishop, 2015). The specific questions that 
were used in the survey were formatted based upon nationally 
known food and health surveys including, (i) the Harvard University 
Health Professionals Follow-up Study Questionnaire, (ii) the 2013–
2014 Centers for Disease Control and Prevention National Health 
and Nutrition Examination Survey and (iii) the Dish-based Semi-
quantitative Food Frequency Questionnaire for Assessment of 
Dietary Intakes (Centers for Disease Control and Prevention, 2015; 
Keshteli et al., 2014; Willett, 2014). Broad survey categories included 
questions relating to participant demographics, physical symptoms, 
eating behaviors, health status, and food consumption frequency. 
Descriptions of these categories are summarized in Table 1. To spe-
cifically assess the participant’s overall diet type as well as the ac-
tual foods they consumed, the survey included a section for 24-hr 
dietary recall (e.g., all foods eaten the day before stool collection), a 
participant generated list of their favorite foods (e.g., consumed over 
a month), and an assessment of the frequency of consumption of pre-
determined processed and fresh foods that were consumed by the 
participant on a weekly basis.

2.5 | Metadata collection and transformation

The responses provided by the participants were numerically coded 
and transformed using a standard qualitative–quantitative approach 
(Bower, 2013; Nollet, 2004; Srnka & Koeszegi, 2014). The responses 
related to the questions of consumption frequency including (never, 
monthly, 1–2 Week, 3–4 Week, 5–6 Week, 7–8 Week, 9–10 Week, 
>11 Week) were coded as (0.05, 1.05, 20.00, 30.00, 50.00, 80.00, 
90.00, 100.00), respectively.

A degree of difference line scale was utilized to numerically differen-
tiate the food items reported by the participants within the 24-hr diet 
and favorite foods survey sections (Davis, Barrow, et al., 2015; Davis, , 
Ogunbi, et al., 2015). As shown in Figure 1, a 100-point scale was used 
to first categorize the individual food item as either processed (−100 
scale) or fresh (+100 scale). Using the 10-point increments within each 
side of the scale, the food was further categorized based upon the 
degree of processing or freshness by using known food markers at the 
−100 and +100-point scale ends, (e.g., fast food bacon double cheese-
burger = −100; raw fruit or water = +100). Overall, the degree of dif-
ference line scale allowed for a truer representation of the participants’ 
diet type compared to what they initially reported. This scale also al-
lowed for assessing of the food quality with the negative and posi-
tive values representing the degree of food processing or freshness. 
Lastly, we also derived a total food score for each participant equating 
to the summation of the values for all food-related survey categories. 
The highest positive total food score a participant could receive was 
2650.00. This score implied that the participant only consumed a nat-
ural, fresh diet and that they did not consume any processed foods or 
sugared beverages. The total food scores for study population ranged 
from +1656.45 to −1116.50.

2.6 | Stool samples collection and transport

Study participants were provided with an at-home stool collection kit. 
Each kit contained a copy of our research brochure, an instruction 
sheet, informed consent, the dietary survey as well as the necessary 
accessories for the participant to carry out an aseptic stool sample col-
lection. Fresh stool was collected using the Fisher Scientific Commode 
Specimen Collection System (Cat# 02-544-208). The collected sample 

TABLE  1 Summary of nutrition and health categories included in study survey

Question category (n  =  number of questions) Description

Participant demographics (n = 10): Age, race, sex, zip code, medical history, diet type

Food cravings (n = 5): Frequency of experiencing fat, salty and sweet food cravings, overall frequency of 
cravings and experiencing moods that lead to cravings

Eating behaviors (n = 6): Frequency of excessive eating, food addiction, craving and mood induced eating, visually 
induced eating.

Physical symptoms (n = 13): Frequent abdominal cramping, bloat, constipation, diarrhea, hunger after eating, midday 
fatigue, regular bowel movement, high energy

Food consumption (n = 20): 24 hr dietary recall, listed favorite foods, frequency of consumption of selected fresh and 
processed foods

Participant opinions (n = 6): Food access, food cost, preference in types of foods consumed, feeling of wellbeing
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was then placed into a Fisher Scientific C & S ParaPak (Culture & 
Sensitivity) Transport Vial (Cat# 23-290-147) (Fisher Scientific, 2015). 
Upon completion of sample collection, participants were instructed to 
place the vial into the liner bag contained within the Fisher Science 
Therapak™ Biological Substance Category B Ambient Shipping System 
(Cat# 22-130-025), and to then follow the instructions printed on the 
box for proper marking and sealing.

In accordance with the United States Postal Service, Mailing 
Standards-Division 6.2 Infectious Substances, the Therapak contain-
ing the ParaPak C&S specimen vial along with the signed consent form 
and completed survey, were mailed in a premetered U.S. Priority Mail 
(2–3 day) enforced envelope directly from the participant’s home to 
our laboratory (United States Postal Service, 2015). To further protect 
the identity of the participant, the outer U.S. Priority Mail envelope 
was preaddressed from our laboratory, as well as to our laboratory. 
After an initial quality assurance inspection, the signed consent forms 
were removed and stored separately from the dietary assessments and 
stool samples. Each sample and associated survey were assigned a cor-
responding laboratory ID code consisting of the consecutive number 
in line of intake at the laboratory, the day-month of signing the con-
sent form and the reported dietary group as either Westernized diet 
group, healthy diet group or obese group (e.g., ID: 113-07/22-WD).

3  | MICROBIAL DNA EXTRACTION AND 
ILLUMINA NEXTGEN SEQUENCING

3.1 | Fecal microbial DNA extraction

Following the manufacturer’s protocol, an aliquot (200 μl) of homog-
enized stool sample was used for microbial DNA extraction using a 
Zymo ZR Fecal DNA MiniPrep™ Isolation Kit (Cat# D6010). The DNA 

extract was immediately stored at −20°C (Zymo Inc, 2016). In this 
bead-beating based protocol, an example of a lysed stool sample from 
a high fat diet showing thick lipid layer along the top (left sample), and 
another from a high fat diet with smaller lipid film, but containing a 
more mucoid consistency (right sample) are depicted within the sup-
plemental material (see Attachment 1).

3.2 | 16S rRNA gene polymerase chain reaction (16S 
PCR)

The NEB LongAmp Taq PCR kit (Cat# E5200S) was used to carry 
out the PCR reactions. The unique degenerate barcoded prim-
ers used in the PCR reaction to amplify the V4 region of the 16S 
rRNA gene, are shown in Figure 2. The original primer stocks 
(50 nmol scale with a desalting purification) were sequentially di-
luted with 10 mmol/L Tris.Cl pH 8 first to 100 μmol/L and then to 
10 μmol/L (working stock) for use in the PCR reactions. The 3′ de-
generate primer also contained a (6-bp) “barcoded” index sequence 
(NNNNNN) to distinguish the individual samples and study groups 
postsequencing. The PCR products were examined for specificity 
using 1.0% agarose/Tris-borate-EDTA gel electrophoresis and vis-
ualized by UV illumination and photography at (300-380 bp). The 
Qiagen QIAquick Gel Extraction Kit was then used to purify the am-
plicons (Kumar et al., 2014).

3.3 | DNA sequencing and bioinformatic analysis

The Illumina MiSeq 2000 nextgen sequencing platform was used for 
sequencing of the amplicons generated from the stool microbial DNA 
(Illumina, Inc., 2016). Quantitative Insights Into Microbial Ecology 
(QIIME), an open source bioinformatics pipeline, was used for the 

F IGURE  1 Degree of difference scale used for coding reported food items. Individual food items reported by the participant were first 
categorized as either processed (−) or fresh (+). Using 10-point increments, the food was further categorized based upon the degree of 
processing or freshness by using known foods as comparative markers at −100 and +100 ends of the scale as shown on the schematic. Overall, 
using such scale provided a truer representation of the participants’ diet type compared to what they initially reported and it also allowed for 
assessing of the quality of foods as the negative and positive values representing the degree of food processing or freshness
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analysis of the sequenced DNA sequencing data. QIIME generated 
operational taxonomic units (OTUs) were deduced at standard 97.0% 
accuracy from the microbial DNA sequencing data and included both 
alpha and beta diversities.

4  | INTEGRATED 
ANALYSIS OF METADATA AND MICROBIAL 
TAXONOMIC INFORMATION

4.1 | Metadata scores

We analyzed the participant scores associated with categories of 
Fresh Food Consumption Frequency, Processed Food Consumption 
Frequency, 24-hr Dietary Recall, Favorite Foods Report, and Total 
Food Score. Multiple sources of information such as these allowed for 
a deeper investigation into the relationships between the gut micro-
biota, diet, and disease including overweight, obesity, and gut micro-
biome dysbiosis.

4.2 | Beta taxonomic indices

The abundance percentages for the Bacteroidetes-Firmicutes (B-F) 
phyla were determined for each participant at abundances of 
≤19.99%, 20%, 30%, 40%, 50%, and >70%; the high and low cut-offs 
were derived based upon the natural cut-offs across the study popula-
tion that allowed for meeting statistical analysis requirements. At each 
stratified percentage, we compared the B-F ratio with factors of BMI 
and diet type along with the various food scores.

4.3 | Alpha taxonomic indices

The second study aim included the incorporation of the effect size 
value determined based upon the results of the Pearson coefficient 
and traditional (p-values). While we did not expect to find large ef-
fect sizes, the specific parameters for determination of the hypoth-
esis were defined as, large effect values ranged from 0.4 to ≥0.8, 
and a small effect size values ranged from ≤0.2 to 0.3 (La Rosa et al., 
2012).

4.4 | Statistical analysis

Descriptive statistical analyses were conducted using IBM® SPSS® 
Statistics software package version 22, supplied through Information 
Technology, Department of Alabama State University.

5  | RESULTS

5.1 | Study population demographics

Values for different demographic parameters (expressed as means 
and standard deviations) were as follows: age (33 ±13.3 years), height  
(1.7 ±0.11 meters), weight (82.3 ±20.6 kg), and BMI (28.3 ± 7.01), 
which equated to an overall overweight BMI. Sixty percent of the 
participants were of Caucasian race followed by African Americans 
with 28.0%, Hispanics 6.0%, mixed races 6.0%, and Korean with 
3.0%. Assigned dietary categories included 53.0% participants in the 
Westernized Diet (normal) group, 16% in Westernized diet (obese) 
group, and 31.0% in the healthy diet group. A total of 49.1% were resi-
dents of Montgomery County. Other counties represented in present 
study included Autauga, Bullock, Chilton, Coffee, Cullman, Elmore, 
Geneva, Jefferson, Russell, St. Claire, Shelby, Tuscaloosa, Marion and 
Mobile. The study participants’ detailed demographic data are sum-
marized in Table 2.

5.2 | Bacteroidetes:Firmicutes ratio

Initial investigations into the abundance of the B-F phyla across the 
total study population revealed a greater abundance of Firmicutes with 
a mean of 53.0 ± 0.18, compared to the Bacteroidetes (38.0 ± 0.18). 
This finding was expected as 53.0% of the study population consumed 
a Westernized Diet and overall, the study population had an average 
overweight BMI. Both factors of increased BMI and Westernized diet 
consumption have previously been associated with an increase in the 
Firmicutes (Kim, Gu, Lee, Joh, & Kim, 2012; Sonnenburg & Bäckhed, 
2016). However, as shown in Figure 3 the abundance distribution 
plots of the B and F phyla provided evidence that both were overall 
normally distributed across the population.

F IGURE  2 16S rRNA gene V4 region 
5′ and 3′ primers used in PCR reactions. 
Highlighted in black and gray are the 
unique degenerate primer sequences used 
in the PCR reactions. As shown, 5′ and 3′ 
sequences contain an adaptor sequence, a 
link and pad sequence, and the degenerate 
sequences. The 3′ degenerate primer also 
contains a 6-bp “barcoded” index sequence 
(NNNNNN) to distinguish the separate 
samples and study groups postsequencing 
reactions. Adapted from Kumar et al., 2014 
with permission from author and publisher. 
All Rights Reserved.

16S rRNA gene V4 region 5′ and 3′ primers used in PCR reactions
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An ANOVA analysis was used to compare the means of B-F phyla 
at each of the abundance percentages ranging from ≤19.99% to 70.0%, 
in relationship to the normal-underweight group and overweight-obese 
group. Only two ANOVA tests were statistically significant as shown 
in Table 3. The first test showing significance was that of Firmicutes at 
the ≥40% midrange which was found among the normal-underweight 
group (F = 8.73 df(1); p = .02). The second test showing statistically 
significant difference was also the Firmicutes at the lowest range 
(≤19.99%) among the overweight-obese group (F = 6.26; df(1); p = .05).

ANOVA tests were used to further investigate the B-F abundance 
at the various abundance percentages in relation to the survey cate-
gories including those of fresh food and processed food consumption 
scores, 24-hr diet, and favorite food scores. At each abundance per-
centage (e.g., 70.0% range), an ANOVA was calculated for the B or F 
using all of the food scores for each category (e.g., processed, fresh 
foods). These results are summarized in Tables 5 and 6, showing the 

phylum with the higher mean within the table. Overall, each of the 
ANOVA tests was statistically significant (p = .001). In Table 4, the B-F 
phyla are compared to fresh and processed foods. As shown, at the 
abundance percentage of ≥70.0%, the Bacteroidetes phylum had the 
higher total food score mean (−244.2 ± 127.4) in association with pro-
cessed foods, and the Firmicutes were associated with the higher fresh 
food mean (382.7 ± 148.0). At the 60.0% range, the opposite occurred 
with the Firmicutes having the greater processed food score mean and 
Bacteroidetes having the greater fresh food score mean. Additionally, 
at the 40.0% and 50.0% abundance percentages the Firmicutes were 
found in association with higher fresh food means as well as within 
the lower abundance ranges of 20.0% to ≤19.99%. Alternately, the 
Bacteroidetes had the highest processed food means at abundance 
percentages of 50.0%, 40.0%, and 30.0%. While our initial findings 
showed that the Firmicutes were more prevalent across the study 
population, these results provided evidence that both Firmicutes and 
Bacteroidetes are associated with the consumption of processed and 
fresh foods and that the ratio of the phyla varies at different abun-
dance percentages.

The continued ANOVA results showing the means of the B-F 
phyla in relation to the 24-hr diet and favorite food scores are sum-
marized in Table 5. Each test was statistically significant at p = .001. 
The highest available food score available across the related survey 
categories was 2650.00. The value implies that all foods consumed 
by the individual were fresh and that they did not consume any pro-
cessed foods or sugared beverages. By using this parameter, one can 
determine the degree of food processing or freshness of the foods 
reported in the 24-hr diet and favorite foods categories by evaluation 
of the means associated with each food category. Overall, the means 
at each of abundance percentages were low, which implied the con-
sumption of processed foods. As shown in Table 5, at the 50.0% to 
70.0% range the Bacteroidetes were associated with the highest nega-
tive means in the 24-hr diet category and despite the Firmicutes being 
associated with higher positive means at the same abundance range 
within the favorite foods category, the means are very low in terms of 
the total available food score (2650.00). At the midrange and lowest 
abundances ranging from 30.0% to <19.99%, the Firmicutes were as-
sociated with lower (negative) means, which again implies processed 
food consumption.

5.3 | Gut microbiome genus/species level diversity

Investigations into the B and F at the genus and species level in relation 
to food type (e.g., fresh or processed) and BMI categories (e.g., normal, 
overweight, obese) are summarized in Table 6 Using QIIME-generated 
abundance data, the most prevalent gut microbiome species in associa-
tion with each BMI group and food type along with the related total 
food scores were determined for each of the categories. As shown 
within the table, there were four phyla including the Bacteroidetes, 
Firmicutes, Proteobacteria, and Actinobacteria found among the most 
abundant microbial groups in relation to food type and BMI group. The 
specific genera and species per phyla were as follows: Actinobacteria 
(Collinsella aerofaciens), Bacteroidetes (Bacteroides plebeius, Odoribacter 

TABLE  2 Summarization of study participant demographics

Demographic (n)%

Gender

Male (36) 44

Female (45) 56

Age groups

19–22 (18) 22

23–29 (28) 35

30–39 (9) 11

40–59 (18) 22

60–70 (8) 10

Dietary categories

West diet group-normal (43) 53

West diet group-obese (13) 16

Healthy diet group (25) 31

Race

African American (23) 28

Caucasian (49) 60

Hispanic (4) 6

Other (Mixed Race, Korean) (5) 6

BMI categories

Obese (27) 33

Overweight (27) 33

Normal-underweight (27) 33

Medical History

Medical condition causing obesity (YES) (6) 7

Mom obese (YES) (54) 67

Fiber supplement (NO) (69) 85

Overall, the study population was characterized by the following mean de-
mographic parameters: mean height 1.7 ± 0.11 meters, mean weight 
82.3 ± 20.62 kg, mean age 33 ± 13.3 years, and mean BMI 28.3 ± 7.01. 
Average BMI across the study population equated to overweight. Two par-
ticipants were excluded due to recent antibiotic usage. No participant re-
ported the use of probiotic; 85% participants used no fiber supplements.
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sp.), Firmicutes (Blautia obeum, Acidaminococcus sp., Catenibacterium sp., 
Dialister sp.), and the Proteobacteria (Succinivibrio sp., Proteus sp.). Closer 
investigations revealed that the abundance was tied between the obese 
BMI and processed food groups. For example, the Collinsella aerofaciens 
were abundant among the obese BMI and within processed food cat-
egory equating in both groups to a total of 6.5% of the gut microbiota 
population of the individuals in the group. However, as indicated by 
the high negative total food scores within the BMI weight groups, it 
is apparent the species has a greater relationship with processed food 
consumption than with an increased BMI. Considering each species in 
the same manner, collectively the evidence further suggests that the 
Westernized diet type drives gut microbiota species selection more so 
than an obese BMI. These findings suggest that the previously known 
associations between increased Firmicutes and an increased BMI, may 
be occurring because the overweight or obese person is consuming 
a processed to highly processed diet type as found among this study 
population.

Figure 4 provides an overview of the most abundant gut microbi-
ome species (identifiable at species-, genus-, family-, or order-  level) 

found across the study population. As shown, the majority of the spe-
cies are from the Bacteroidetes and Firmicutes phyla. However, at that 
genus/species level, the most abundant gut microbe type found was 
the Bacteroidetes genus Bacteroides at 18%, followed by the Firmicutes 
species Faecalibacterium prausnitzii at 9.0%. The other species are 
shown within Figure 4.

Albeit, deeper participant level investigations into the top five spe-
cies provided further evidence that diet type is a major factor contrib-
uting to defining the taxonomic characteristics of the gut microbiota. 
The findings are summarized within Table 7 with each of the organ-
isms cross referenced to the top three participants they are found in, 
along with the participants’ BMI category and their total food score. As 
shown, the Bacteroides constituted a total of 50.9% of the gut micro-
biota of an overweight (OW) individual who had a total food score of 
−70.0. The genus also constituted 40.3% of an obese OB participants’ 
microbiota who had a total food score of −70.0 and 38.3% of the gut 
microbiota of an OW person with a food score of 262.85. The other 
four species are represented in the same manner within the table. 
While the obese (OB) and OW BMIs predominated the weight groups 
within the top genus/species, the OW and OB participants also had 
low total food scores implying that they consumed processed to highly 
processed foods on a daily basis.

Figure 5 provides a graphic representation of the distribution of 
the most abundant species of the phyla Actinobacteria, Bacteroidetes, 
Firmicutes, Proteobacteria, and Verrucomicrobia in relationship to food 
types and BMI categories. The fresh food group is represented by 
blue bars (10–20 range on X-axis), processed food group by red bars 
(20–30 range), normal weight BMI by green bars (30–40 range), over-
weight group by purple bars (40–50 range), and the obese group by 
teal blue bars (50–70 range). The top abundance percentages ranged 
from 1.0% to 58.6%. While the majority of the identified genera/
species were from the Bacteroidetes and Firmicutes phyla, some were 
also from the other three major phyla Actinobacteria, Proteobacteria, 
and Verrucomicrobia. The most abundant genera (with unidentifi-
able species) were Actinobacteria (Bifidobacterium sp.), Bacteroidetes 
(Bacteroides sp., Odoribacter sp., Parabacteroides sp., Prevotella sp.), 
Firmicutes (Phascolarctobacterium sp., Oscillospira sp., Megasphaera sp., 
Lachnospira sp., Dorea sp., Dialister sp., Coprococcus sp., Catenibacterium 
sp., Ruminococcus sp., Blautia sp., Acidaminococcus sp.), and 
Proteobacteria (RF32, Sutterella sp., Succinivibrio sp., Proteus sp.). The 

F IGURE  3 Distribution plots of the Bacteroidetes and Firmicutes phyla across the study population. Distribution plots of abundance 
percentages for B-F phyla show both data sets are normally distributed with little variance total abundance across the study population. These 
findings suggest both B&F phyla are equally distributed across the population without regard to specific BMI category

TABLE  3 Variation in abundance percentages of Bacteroidetes 
and Firmicutes in relationship to BMI categories

Normal-underweight 
Group (p-value)

Overweight-obese 
group (p-value)

≥70% [p = .926] [p = .735]

≥60% [p = .490] [p = .741]

≥50% [p = .405] [p = .759]

≥40% [p = .016]a [p = .753]

≥30% [p = .617] [p = .654]

≥20% [p = .200] [p = .567]

≤19.99% [p = .311] [p = .046]a

Individual ANOVA tests comparing the total percentages of B-F abun-
dance were used to determine variation in prevalence between the two 
phyla at stratified percentages in relation to BMI categories of normal-
underweight and overweight-obese.
aOnly two tests were of significance. The first among the normal-
underweight group [f(1)=8.73; p = .02], with a greater percentage of 
Firmicutes at the ≥40% range. The second test [f(1)=6.26; p = .05], show-
ing greater percentage of Firmicutes at the ≤19.99% range among the 
overweight-obese group.
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most abundant identifiable species were as follows Actinobacteria 
(Collinsella aerofaciens), Bacteroidetes (Bacteroides caccae, Prevotella 
copri, Bacteroides plebeius, Prevotella stercorea, Bacteroides ovatus, 
Bacteroides uniformis), Firmicutes (Faecalibacterium prausnitzii, Blautia 
obeum, Ruminococcus gnavus, Roseburia faecis), and Verrucomicrobia 
(Akkermansia muciniphila).

Viewing Figure 5, overall there were more genera/species found 
among the processed food group (represented by red bars), com-
pared to the obese BMI (in teal blue bars) and the majority of the 
genera/species found specifically among the obese BMI were also 
found among the processed food group. The processed food cate-
gory had a greater association with species of the phylum Firmicutes 
including Blautia sp., Coprococcus sp., Dialister sp., Blautia obeum, 
Megasphaera sp., Lachnospira sp., Oscillospira sp., Roseburia sp., and 
Faecalibacterium prausnitzii. Within the obese BMI, there was an as-
sociation with the species of the Firmicutes phylum namely, Dialister 
sp., Ruminococcus gnavus, Blautia obeum Megasphaera sp., Oscillospira 

sp., and the phylum Verrucomicrobia species namely Akkermansia mu-
ciniphila. However, as there were more red bars (processed foods) 
and blue bars (fresh foods) compared to purple bars (overweight BMI) 
and teal blue bars (obese BMI) found in relation to certain gut micro-
biota species, we surmised again that dietary regime more so than 
BMI is driving the gut microbiota species selection within this study 
population.

5.4 | Alpha & beta diversity indices

Bray–Curtis Test results associated with gut microbiota beta diver-
sity are visualized within the principal coordinates analysis plot shown 
in Figure 6. These revealed there was statistically significant (p = .05) 
taxonomic dissimilarity across the dietary groups (healthy diet group, 
Westernized diet-normal, and Westernized diet-obese). Considering 
the cluster pattern however, it is indicated that the samples are group-
ing in relation to diet type as they are aligning along with the healthy 

TABLE  5 Bacteroidetes and Firmicutes abundance in relationship to 24-hr diet and favorite foods categories

Bacteroidetes Firmicutes

24-hr diet Favorite foods 24-hr diet Favorite foods

≥70% [−139.1 ± 311.3]a [72.6 ± 345.0]

≥60% [−133.2 ± 202.0] [42.0 ± 159.6]

≥50% [−164.0 ± 282.3] [21.0 ± 250.0]

≥40% [−35.5 ± 153.0] [−135.0 ± 307.8]

≥30% [104.5 ± 270.4] [−229.8 ± 238.2]

≥20% [−42.2 ± 317.3] [92.5 ± 151.2]

≤19.99% [−186.2 ± 381.8] [15.8 ± 379.9]

ANOVA tests of the B-F abundance percentages across the 24-hr Diet and Favorite Foods categories were significant [p = .001].
aValues represent the mean and SD of the total food scores within the category. At the 50.0% to 70.0% range, the Bacteroidetes were associated with the 
higher negative means and despite the Firmicutes being associated with higher positive means at the same abundance range, the means are very low (rep-
resenting consumption of processed foods) in terms of the total available food score (2650.00). At the midrange and lowest abundances ranging from 
30.0% to 19%, the Firmicutes were associated with lower (negative) means, which again implies processed food consumption. Overall, the Bacteroidetes 
were associated with the highest negative means at greater abundances.

TABLE  4 Bacteroidetes and Firmicutes abundance in relationship to process and fresh food categories

Bacteroidetes Firmicutes

Fresh foods Processed foods Fresh foods Processed foods

≥70% [−244.2 ± 127.4]a [382.7 ± 148.0]

≥60% [421.9 ± 250.3] [−277.7 ± 215.2]

≥50% [−354.9 ± 218.0] [383.3 ± 154.9]

≥40% [−286.4 ± 223.4] [309.8 ± 142.7]

≥30% [402.1 ± 160.8] [−333.5 ± 250.8]

≥20% [419.9 ± 148.8] [−335.5 ± 184.3]

≤19.99% [299.0 ± 71.8] [−263.6 ± 159.8]

aValues represent the mean and SD of the total food score at the stratified abundance percentage of the Bacteroidetes or Firmicutes. ANOVA test for both 
the B-F groups was significant (p = .001). Overall, results suggest that despite the initial finding of an overall greater prevalence of Firmicutes across the 
study population, there is also evidence of association between the presence of Bacteroidetes and the consumption of both processed and fresh foods more 
so than the Firmicutes.
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diet group (red dots) and there is no distinct cluttering by BMI. This 
finding provided further indication that diet type may be driving the 
diversity of gut microbiota populations more so than an increased 
BMI.

An ANOVA test using the means of the Alpha diversity Shannon 
Index ENS (effective number of species) associated with processed 
food, fresh food, and BMI categories did not reveal any statistical dif-
ference between the groups (p = .53). The highest ENS mean value 

TABLE  6 Most abundant species in relation to BMI and food type

↑ (%) Top 25 category BMI, Abundance % & total food score

Actinobacteria

Collinsella aerofaciens 6.5% [OB-PF]a OB [6.5; -1116.50], OW [5.10; −477.35], NW [2.1; −289.80]

Bacteroidetes

Odoribacter sp. 9.3% [OB-PF]a OB [9.3; 22.15], OW [NA], NW [1.2; -289.80]

Bacteroides plebeius 17.2% [OB-PF]a OB [17.2; −289.23], OW [3.6; 1142.75], NW [1.9; −63.96]

Firmicutes

Acidaminococcus sp 8.5% [NW-PF]a OB [4.5; 399.56], OW [5.3; 249.40], NW [8.5; −900.72]

Catenibacterium sp. 4.8% [OW]a OB [2.3; −731.82], OW [4.8; 409.39], NW [2.1; −63.96]

Dialister sp. 24.3% [OB-PF]a OB [24.3; −1116.50], OW [5.1; −477.35], NW [4.8; −124.17]

Blautia obeum 8.4% [OB-PF]a OB [8.4; −620.95], OW [2.8; 1025.65], NW [2.2; 924.53]

Proteobacteria

Succinivibrio sp. 15.0% [OW-FF]a OB [NA], OW [15.0; 601.10], NW [10.9; 169.70]

Proteus sp. 13.90% [NW-FF]a OB [2.3; −731.82], OW [4.8; 409.39], NW [13.9; 767.85]

aDenotes equal abundance percentages between the two survey categories. Overall, there is indication of Westernized diet type driving selection more so 
than obese BMI. As indicated by the high negative total food scores within the BMI weight groups, it is apparent the species has a greater relationship with 
processed food consumption than with an increased BMI.

F IGURE  4 Top 20 gut microbiome 
species across total study population. The 
most abundant gut microbiome species 
(identifiable at species-, genus-, family-, 
or order- level) found across the study 
population with the majority from the 
Bacteroidetes and Firmicutes phyla. As 
shown, the most abundant gut microbe 
found was the Bacteroides spp. at 18%, 
followed by Faecalibacterium prausnitzii at 
9.0%
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was found in association with the obese BMI (228.2 ± 134.1). ENS val-
ues for the other categories included the normal BMI (179.9 ± 103.1), 
overweight BMI (218.1 ± 134.), fresh food group (220.0 ± 134.2), and 
processed food group (90.2 ± 109.7). As shown in Figure 7 the ENS 
increases with an obese BMI and decreases with the consumption of 
processed foods.

5.5 | Effect size-based hypothesis testing

Here, effect size (ES) was used to test the proposed hypothesis. To ac-
complish this, Pearson’s Correlation statistics was performed for each 
alpha diversity matrix including those of the Shannon Index, Simpson’s 
Index of Diversity, Chao1, and the whole tree diversity (Meehan & 
Beiko, 2014). These results are summarized in Table 8. As shown, no 
test resulted in a p-value of any statistical significance with the val-
ues ranging from 0.06 to 0.74. However, there was variation found 
between correlations in terms of ES, ranging from 0.04 to 0.23. The 
effect size of the total food score, fresh foods, processed foods, 24-hr 

diet, and favorite foods survey categories ranged from 0.16 to 0.31 
with a total average of 0.22. The average effect size of obese and 
overweight BMI equated to 0.16. Considering the study hypothesis, 
we failed to accept the (H0), and concluded that the processed food 
type with an ES of 0.22 had a greater effect upon the overall diver-
sity of the gut microbiota than an increased BMI with an average ES 
of 0.16. Through alpha and beta taxonomic investigations, we also 
demonstrated that the total abundance percentage chosen by an in-
vestigator could potentially influence the interpretation of their find-
ings. We also demonstrated that using just one abundance percentage 
value without incorporation of metadata might not truly represent 
the nature of the B-F ratio within the population or individuals being 
investigated.

The Pearson correlation results of the association between 
Shannon Index ENS (X-axis) and BMI (Y-axis) are shown in Figure 8. 
While the highest diversity (>500 ENS) is found at lower weights, 
there are also obese and normal weight individuals with high ENS. 
Highlighted within the box outline, the lowest diversity (≤250 ENS) is 
also associated with a range of weights from the highest and lowest 
among the study population.

The Pearson correlation between a decreased total food score and 
Shannon Index ENS was not statistically significant (p = .10), as shown 
in Figure 9. As highlighted within the box, there is more clustering 
around the lowest negative food scores and lower ENS. While there 
are positive food scores associated with lower ENS (≤350), the fresh 
food scores are primarily low indicating the consumption of minimally 
processed foods.

As highlighted within Figure 10, the fresh foods score is shown 
along the Y-axis. As highlighted within the boxed area, the lower ENS 
(≤250) is again associated with less frequent fresh foods consump-
tion. As shown within the boxed area of Figure 11, there is greater 
clustering around lower ENS and increased consumption of highly 
processed foods. As demonstrated between both of these tests, the 
higher ENS or microbial diversity is associated with less consumption 
of processed foods and an increased consumption of fresh, whole 
foods.

Pearson’s correlations between the 24-hr diet, favorite food cat-
egories, and Shannon Index ENS are shown in Figures 12 & 13. The 
negative and positive values along the Y-axis in both figures are indic-
ative of the degree of food processing. To gain a perspective of how 
fresh the foods were in positive range, the highest obtainable fresh 
food score within present study (e.g., implying only fresh, whole foods, 
and no processed foods are consumed) was 2650.00. The highest 
fresh food score here was ≈950. As shown in Figure 12, the majority 
of participants consumed a minimally processed to highly processed 
meal 24 hr prior to the stool sample collection. Again, the lowest ENS 
is associated with the consumption of processed foods indicated by 
the area highlighted by the outline.

The same was found when investigating the association be-
tween ENS and favorites foods (e.g., consumed over a month) as 
depicted within Figure 13. As before, the lowest ENS was also 
found associated with processed food types. Collectively, we con-
cluded that diet type has a greater effect upon the diversity of 

TABLE  7 Percentage of the most abundant microbial species 
shown in relation to the top three participants and their BMI and 
total food scores

% of the microbe 
constituting the 
gut microbiota of 
participant

BMI 
group

Total food 
score

Bacteroides sp.a 50.9 OW −70.0

40.3 OB −70.0

38.3 OW 262.85

Faecalibacterium 
prausnitzii

22.0 OW −284.85

21.1 OW 485.0

21.0 OW −407.8

Blautia sp. 20.2 OW −199.8

19.2 OW −1425.0

17.1 NW −38.20

Lachnospiraceae species 15.0 OB −550.0

11.5 OW −1424.95

11.0 OB −58.75

Prevotella copri 56.2 NW −50.0

43.0 NW −829.35

42.0 NW 649.0

aThe Bacteroidetes genus Bacteroides represented the most abundant gut 
microbiota group with a total abundance of 18.0% across the study popu-
lation. The second most abundant gut microbe species F. prausnitzii consti-
tuted 9.0%, followed by the genus Blautia at 6.4%, the family 
Lachnospiraceae at 5.1%, and the species P. copri at 4.6% abundance. As 
shown, the Bacteroides was the most abundant genus within the gut micro-
biota population of an overweight (OW) individual constituting a total of 
50.9% of the individuals’ gut microbiota with a total food score of −70.0. 
The genus also constituted 40.3% of an obese (OB) participant microbiota 
who had a total food score of −70.0 and 38.3% of the gut microbiota of an 
OW with food score of 262.85. Despite the Firmicutes phylum being the 
most predominate across the study population, at the genus level the 
Bacteroides prevailed.
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the gut microbiota than an increased BMI. Despite the Person’s 
Correlation p-values not being statistically significant, the effect 
size of processed food consumption upon the overall diversity of 

F IGURE  5 Distribution of the most 
abundant species associated with food 
types & BMI categories. The top species 
are represented along Y-axis and the 
survey category code along X-axis; [fresh 
food = (blue), processed food = (red), 
normal weight = (green), overweight = 
(purple) and obese = (teal blue)]. As there 
were more species found (among the Top 
25) for the food types as indicated by 
red bars (processed foods) and blue bars 
(fresh foods) compared to increased BMI 
as indicated by purple bars (overweight 
BMI) and teal blue bars (obese BMI), we 
surmised again that diet type more so than 
BMI is driving the gut microbiota species 
selection within this study population

F IGURE  7 Variation in Shannon Index ENS values across BMI 
categories and food types. Shannon Index ENS means and SD 
per category were normal BMI (179.9 ± 103.1), overweight BMI 
(218.1 ± 134.2), obese BMI (228.2 ± 134.1), Total Food Scores- Fresh 
(220.0 ± 134.2), and Total Food Scores-Processed (190.2 ± 109.7). No 
statistical variation across groups was found with a p = .53. However, 
as shown the obese BMI was associated with an increase in ENS and 
processed foods with a decrease

F IGURE  6 Bray–Curtis test results for the dietary groups. 
Bray–Curtis Test result revealed statistically significant [p < .05] 
dissimilarity across the dietary groups. The healthy diet group is 
shown in red, the West diet-obese group shown in blue and the West 
diet-normal weight group shown in orange. Considering the cluster 
pattern, it is initially indicated that diet type, more so than BMI, may 
possibly be driving the diversity of gut microbiota populations as the 
Westernized diet groups are aligning along with the healthy group 
(red) and there is no distinct cluttering by BMI
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gut microbiota was greater than that of an obese BMI (See Table 9 
for reference).

6  | DISCUSSION

It is increasingly being recognized that diet may be an important 
modulator of gut microbiota (Sonnenburg & Bäckhed, 2016). While 
perturbations associated with small dietary changes on a day-to-day 
basis may be reversible, long-term dietary habits may cause more 
long-lasting microbiota changes. For instance, long-term intake of 
traditional fiber-rich diets versus Westernized fat-rich diet may have 
more irreversible changes, which may be transferred over generations 
(Sonnenburg et al., 2016). In this context, researchers are still eluci-
dating the taxonomic characteristics of a ‘healthy’ gut microbiota as 
well as seeking to determine the primary factor, such as the regular 
consumption of processed food or having an obese BMI that contrib-
utes to gut microbiome dysbiosis and ultimately human disease causa-
tion (Sonnenburg et al., 2016).). Understanding that processed foods 
contain an excess amount of energy and that such foods have the 
propensity to cause inflammatory responses, the gut microbiota genus 
and species that were once thought to be ‘healthy’, may in fact be uti-
lizing alternative metabolic pathways and or inducing negative host or 
gut microbiota inflammatory responses as the host diet evolves from a 
fresh, whole food diet to a Westernized diet type. Because gut micro-
biome dysbiosis is initially asymptomatic, these subtle changes within 
the gut microbiome go unnoticed by the human host and or their pri-
mary care physicians until metabolic disorders such as overweight and 
eventually obesity occur. While many future studies are necessary to 
make any definitive conclusions, our overall findings suggested that 
the specific dietary regime imparts a greater impact upon the B-F ratio 
and ultimately the collective diversity of the gut microbiota population 
compared to an obese BMI (see Figure 5). Additionally, several find-
ings gleaned from present study are of significance to the scientific 
community in fulfilling research gaps as our data have illustrated in 
some instances contradictory results from those previously published, 
and in other cases have helped move forward in understanding gut 
microbiome dysbiosis causation.

6.1 | Species-level investigations

As commonly found among individuals who consume a diet type 
rich in processed foods as well as in those with an increased BMI, 
our initial investigations revealed that the Firmicutes phylum predomi-
nated the study population at 52.4% compared to the Bacteroidetes at 
39.0% (Sun & Chang, 2014). Contrary to published findings however, 
we found that the B and F phyla were evenly distributed across the 
study population. Additionally, we found the Firmicutes phylum was 
only statistically significant at the 40.0% abundance range among the 
normal weight BMI, and at the ≤19.99% abundance range within the 
obese BMI group (see Table 3) (Conlon & Bird, 2014). However at the 
genus/species level, the Bacteroides spp. prevailed with a total abun-
dance of 18.0%. While a gut microbiota population consisting of pre-
dominately the Bacteroidetes phylum is considered to be healthy, here 
we found this phylum was most prevalent among OW or OB persons 
who consumed a Westernized diet type (see Table 7).

Fundamentally, all gut microbiota possess the ability to utilize vari-
ous dietary-derived substrates in the production of energy. Therefore, 
it was realized that the abundance of a species and or genus that is 
generally associated with a healthy gut microbiota population, could 
in fact be representative of an early symptom of gut microbiome dys-
biosis instead of gut microbiome health. Processed foods contain high 
amounts of refined sugars, fats, and carbohydrates, chemical additives, 
and are low in natural plant fiber. These foods are also disproportionally 
balanced providing excess energy and little nutrition or no nutrition to 
both the gut microbiota and human host (Moss, 2013). Consumption 
of such diet type is directly associated with the onset of gut micro-
biome endotoxemia (Parekh, Arusi, Vinik, & Johnson, 2014). With the 
consumption of processed foods, gut microbiome endotoxemia is an 
in vivo inflammatory response occurring as the endotoxin lipopolysac-
charide (LPS), releases from the cell walls of gram-negative bacteria 
within the gut microbiota population (Darzi, Frost, & Robertson, 2011; 
Puertollano, Kolida, & Yaqoob, 2014; Rahat-Rozenbloom, Fernandes, 
Gloor, & Wolever, 2014). With these understandings, the abundance 
of the genera/species shown in Figure 5 and Table 7 may in part be 
due to the increased dietary energy associated with the regular or over 
consumption of processed food products.

TABLE  8 Effect sizes of correlations between BMI, Westernized diet, and Alpha diversity indices

Shannon ENS Simpson diversity Chao1 Whole tree

Effect Size p -Value Effect Size p -Value Effect Size p -Value Effect Size p -Value
Average Effect 
Size

BMI −0.10 .21 0.15 .22 0.06 .53 −0.09 .44 0.16

Total food 0.20 .10 −0.14 .23 0.10 .43 0.14 .24 0.16

Fresh food 0.22 .06 −0.20 .1 0.08 .51 0.09 .50 0.17

Processed 0.21 .08 −0.18 .14 0.12 .33 0.07 .60 0.17

24 hr 0.08 .51 0.04 .73 0.05 .70 0.14 .25 0.30

Fav foods 0.22 .06 0.04 .74 0.04 .74 0.07 .56 0.31

Pearson’s Correlation statistics was performed for each alpha diversity matrix to determine the correlation between increased BMI, food scores, and de-
creased ENS. As indicated, no test resulted in a p -value of any statistical significance with the values ranging from 0.06 to 0.74. However, there was vari-
ation found between correlations in terms of effect size, ranging from 0.04 to 0.23.
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Specifically, the Bacteroidetes are exceptional dietary energy ex-
tractors with the capability to degrade both plant and refined carbohy-
drates by using carbohydrate-processing enzymes (CAZymes) (Thomas 
et al., 2011). The higher abundance of the Bacteroides spp. found here, 
may be occurring because despite of the increased BMI the majority of 
study participants are consuming a diet of energy dense, carbohydrate 
rich processed foods, as indicated by their low total food scores. The 
F. prausnitzii is also thought to be a beneficial probiotic species as it 
stimulates the expression of the anti-inflammatory cytokine interleukin 

10 (Walker et al., 2010). The F. prausnitzii prevalence here could poten-
tially be contributing to human health through its anti-inflammatory 
capabilities as the consumption of a Westernized diet type induces 
the onset of gut microbiome endotoxemia which involves the activation 
of many host and or gut microbiota inflammatory responses (Bäckhed 
et al., 2012; Heinken et al., 2014; Tremaroli & Bäckhed, 2012). The 
genus Blautia is an acetogen bacterium that can utilize a variety of 
substrates including sugars or other organic substrates (Muller, 2003). 
Again, the individuals harboring this group all have negative food 
scores, with one participant having a total food score of −1425.0; this 
score indicating that the participant consumed highly processed foods 
and sugared beverages >11/week as their primary diet. The presence 

F IGURE  8 Pearson correlation between increased BMI and 
increased Shannon Index ENS. Pearson Correlation [p = .213]. Even 
though the test p-value was not statistically significant, the cluster 
pattern of the results provided valuable evidence of the relationship 
between BMI and ENS. As highlighted within the box outline, the 
lowest ENS diversity (≈40 to 250 ENS) is associated with the lowest 
and highest weights. These findings suggest that a factor other than 
weight (BMI) could be driving total population diversity of the gut 
microbiota

F IGURE  9 Pearson correlation between total food scores and 
Shannon Index ENS. Pearson Correlation [p = .10]. As highlighted, 
there is more clustering around a negative food score and lower 
ENS. While there are positive food scores associated with lower ENS 
(≤350), the fresh food scores are primarily low which indicated the 
consumption of minimally processed foods and within this particular 
study population, the higher fresh food scores (>1000) are not 
indicative of a completely fresh diet type

F IGURE  10 Pearson correlation between frequency of fresh 
food consumption and Shannon Index ENSPearson Correlation 
[p = .06]. The fresh food consumption scores shown along Y-axis are 
low indicating low frequency of consumption of fresh, whole foods. 
As highlighted, the lower ENS of ≤250 is associated with lower 
consumption of fresh food. Alternately, the higher ENS is associated 
with an increased consumption of fresh, whole foods

F IGURE  11 Pearson Correlation between frequency of processed 
food consumption and Shannon Index ENS. Pearson Correlation 
[p = .077]. As shown within the boxed area, frequent processed food 
consumption indicated by the low negative values ranging from -350 
to -875 along the Y-axis, is associated with lower ENS (≤250).
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of Blautia could be an indication of increased consumption of refined 
sugars and or refined carbohydrates. In terms of human health, could 
also be an indication of gut microbiome dysbiosis.

The Lachnospiraceae family and Prevotella copri species have both 
been associated with human disease including overweight, obe-
sity, and intestinal disorders (Meehan & Beiko, 2014). Nevertheless, 

species of the Lachnospiraceae family are also thought to be beneficial 
to the human host through the production of the short-chain fatty 
acid butyric acid (as butyrate), reported to reduce chronic inflamma-
tory conditions and the risk of colon cancer. While the Lachnospiraceae 
family has been associated with an obese BMI, here we found that 
the OW and OB participants in this group consumed highly processed 
foods as indicated by the total food scores of −1424.95, −550.0, and 
−58.75. The presence of Lachnospiraceae among these individuals may 
be indicative of the response to the increased consumption of highly 
processed foods resulting in a need by human and or gut microbiota to 
reduce the inflammatory conditions within the host (Butyrates, 2016). 
Lastly, it has been reported that the presence of the species P. copri 
is associated with a reduction in the prevalence of the Bacteroides 
and other beneficial gut microbiota as well as with the pathogenesis 
of human disease (Scher et al., 2013). Individuals in this group were 
normal weight (NW), all with low total food scores. The presence of 
species such as P. copri, could be indicative of early gut microbiome 
dysbiosis occurring as the individuals’ diet evolves to a Westernized 
diet type, but before systemic adiposity manifests as overweight and 
eventually obesity.

6.2 | Hypothesis testing

Through the use of an effect size-based hypothesis test investigation, 
we found concluding evidence suggesting that a Westernized dietary 
regime had a greater influence upon the taxonomic characteristics of 
the gut microbiota more so than an overweight or obese BMI (Chan, 
Estaki, & Gibson, 2013; Davenport et al., 2015; Festi et al., 2014). 
Initial Pearson’s Correlation test p-values did not provide any statis-
tically significant results when comparing the association of a lower 
Shannon Index effective number of species with an increased (obese) 
BMI and processed food consumption. However, testing the study 
hypothesis we concluded that Westernized diet type with an effect 
size of 0.22 had a greater effect upon gut microbiota diversity than 
increased BMI with effect size of 0.16. Collectively, study findings 
suggested that using such parameter provides a more accurate rep-
resentation in investigating bioinformatics and participant metadata 
as well as how some of these factors in turn, contribute to the causa-
tion of gut microbiome dysbiosis (Debelius, 2015; Greenhalgh, Meyer, 
Aagaard, & Wilmes, 2016; Morgan & Huttenhower, 2012; Shetty, 
Marathe, & Shouche, 2013).

6.3 | Study limitations

As the Westernized dietary regime has become a common staple 
within the United States, there is increasing interest in understanding 
the role of diet in gut microbiome in human disease causation as well 
as a factor that can potentially impact future gut microbiome studies 
(Debelius, 2015). However, it is a challenge to identify appropriate 
comparison groups to investigate the effects of a Westernized die-
tary regime. The Amish population who reside within the small town 
of Faunsdale, Alabama (total town population of 95) is one promis-
ing group that has a unique lifestyle compared to the general U.S. 

F IGURE  12 Pearson correlation between 24-hr diet and 
Shannon Index effective number of species. Pearson Correlation 
[0.079; p = .507]. As indicated by the area highlighted by the outline, 
the lowest effective number of species is associated with the 
consumption of processed foods. To gain a perspective of how fresh 
the foods were in positive range, the highest obtainable fresh food 
score within present study (e.g., implying only fresh, whole foods and 
no processed foods are consumed) was 2650.00

F IGURE  13 Pearson correlation between favorite foods and 
Shannon Index effective number of species. Pearson Correlation 
[p = .06]. As other results have shown, the lowest ENS has a greater 
association with the consumption of processed foods than with 
fresher foods. This is further evident considering that the highest 
food score here of 990 indicates the consumption of more minimally 
processed foods than fresh, whole foods as the highest obtainable 
fresh food score across the food categories (>2000). The highest 
obtainable fresh food score within present study was 2650.00 
implying only fresh, whole foods and no processed foods are 
consumed
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population. While Amish group was reluctant to participate in this 
study, as shown in supplemental material Attachment 2, a family from 
that group was willing to discuss with us their traditions and lifestyle. 
As we spoke over lunch however, it was apparent that consumption of 
processed foods is inevitable even among groups who have tradition-
ally refrained from consuming such foods (Cuyun Carter et al., 2011). 
In general, the larger the sample size, the better will be the interpreta-
tion of the reported effects. Importantly, to realize the power of both 
the effect size and p-value in interpretation of reported effects, future 
extension of this initial study to a larger cohort, which may help im-
prove the p-values, may be pursued.

Another major challenge within present study was the fact that 
gut microbiome-based studies have historically been technologically 
driven with stool sample data being gathered and analyzed without re-
gard for inclusion of participant metadata and a standardized approach, 
making cross-comparison and investigations into disease causation 
difficult. Therefore, it has been suggested that future gut microbiome 
studies capture more metadata that can be used to better understand 
the overall functionally of the gut microbiota and to assist scientists 
in gaining applicable bioinformatics data in terms of human health 
and or gut microbiome dysbiosis causation (Gevers, Pop, Schloss, & 
Huttenhower, 2012; Marchesi, 2014; Morgan & Huttenhower, 2012; 
Nguyen, Vieira-Silva, Liston, & Raes, 2015). In this context, we tried 
to collect as much metadata as was feasible. However, the greatest 
limiting factor of gut microbiome studies still lies within overcoming 
the quantum physics observer effect theory, suggesting that the very 
act of observation affects the reality of that which is being observed. 
This theory applies to present study, as it is difficult to obtain a sample 
of the gut microbiome of an individual without the use of an invasive 
method that potentially disturbs the biofilms encasing gut microbiota 
that are attached to the intestinal walls. While obtaining a stool sam-
ple is noninvasive and easily carried out by the participant, researchers 
are ultimately getting only limited insight into the true dynamics of the 
core gut microbiota (Staley, 1997).

7  | CONCLUSIONS

The study demonstrates that the Bacteroidetes-Firmicutes abundance 
percentage chosen by an investigator could influence the overall in-
terpretation of the findings, considering that both Bacteroidetes and 
Firmicutes phyla were associated with processed and fresh food con-
sumption as well as with an increased BMI. To better understand which 
of these factors (e.g., processed food or obese BMI) is influencing the 
taxonomic structure of the gut microbiota, the use of the effect size sta-
tistic proved necessary. Overall, we also demonstrated that without the 
incorporation of participant metadata and universal effect size values, 
it is difficult to hone in upon what biological or environmental factors 
are actually impacting the gut microbiota. The use of these methodolo-
gies within this study led to the final conclusion that processed food 
consumption has a greater influence upon the gut microbiota structure 
and was associated with lower ENS diversity of the population, more so 
than an increased BMI (Ravel et al., 2014; Faloney et al., 2016; Forum 1, 

2013). Additionally, present study has provided a deeper understand-
ing of gut microbiome dysbiosis and human obesity causation and our 
findings along with subsequent future studies may set the stage for 
streamlining gut microbiome investigations through use of standard-
ized approaches and methodologies; such developments would be 
serving as a springboard to reaching the next level of understanding of 
role of gut microbiome in causation of human disease.
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