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ABSTRACT

Motivation: Identifying protein orthologs is an important task that is
receiving growing attention in the bioinformatics literature. Orthology
detection provides a fundamental tool towards understanding protein
evolution, predicting protein functions and interactions, aligning
protein–protein interaction (PPI) networks of different species and
detecting conserved modules within these networks.
Results: Here, we present a novel diffusion-based framework that
builds on the Rankprop algorithm for protein orthology detection
and enhances it in several important ways. Specifically, we enhance
the Rankprop algorithm to account for the presence of multiple
paralogs, utilize PPI, and consider multiple (>2) species in parallel.
We comprehensively benchmarked our framework using a variety of
training datasets and experimental settings. The results, based on the
yeast, fly and human proteomes, show that the novel enhancements
of Rankprop provide substantial improvements over its original
formulation as well as over a number of state of the art methods
for network-based orthology detection.
Availability: datasets and source code are available upon request.
Contact: niryosef@post.tau.ac.il

1 INTRODUCTION
The notion that similar protein sequences imply similar protein
functions has been traditionally employed to guide the identification
of orthologous protein pairs (Brenner, 1999), i.e. proteins in different
species that evolved from a common ancestor. However, one
problem with identifying orthologs by sequence similarity arises
when the protein in question has similarity to not one but many
paralogous proteins (Sjolander, 2004). In these cases, every cross-
species protein pair is technically orthologous, but it is still necessary
to distinguish which protein pairs play functionally equivalent roles
(Remm et al., 2001).

To date, one of the most successful paradigms for orthology
identification uses a combination of local and global network
properties. In this approach, the similarity of two proteins is
determined by two factors: the similarity of their sequences (the local
property) and the similarities among their neighbors in some network
structure (the global property). One example is the Rankprop
algorithm (Weston et al., 2004) which identifies protein homologies
by performing a diffusion operation in a protein sequence similarity
network. Rankprop was shown to outperform iterative protein
database search methods such as PSI-BLAST (Altschul et al., 1997),
which considers only a limited proportion of protein similarities at
a time (i.e. focusing on the local property).

Subsequent studies based on these principles have extended
the network structure used to quantify the global property

∗
To whom correspondence should be addressed.

by incorporating protein–protein interaction (PPI) information.
Bandyopadhyay et al. (2006) used a Markov random field (MRF)
formulation to derive probabilities for orthologies based on
conserved PPI patterns. The ISORank algorithm (Singh et al.,
2007) assigns similarity scores to pairs of proteins according to
a random walk in the product graph of the two networks. These
scores (or probabilities) then serve as a basis for orthology detection;
in MRF, the derived probabilities were used to resolve ambiguous
orthology predictions made by the inparanoid algorithm (Remm
et al., 2001). In ISORank the scores were used to create a global
alignment of the yeast and fly networks.

In this article, we extend the Rankprop algorithm in three
important ways and test the impact of these extensions on the
accuracy of the obtained similarity scores in comparison to the
original Rankprop formulation as well as to the two PPI-based
approaches (MRF and ISORank). First, we modify Rankprop to
include PPI information in addition to sequence similarity data. This
variant, which we call hybrid Rankprop, combines the two types of
information into a unified hybrid network and learns the weight
of each of the factors in a supervised manner. Second, we present
an improved version of Rankprop, termed mutual Rankprop, which
explicitly accounts for the problem of multiple paralogs. Finally, we
examine the utility of applying the algorithm to a network derived
from more than two species.

Using the yeast and fly proteomes, we show that mutual Rankprop
outperforms Rankprop, MRF and ISORank on the orthology
detection task, and that incorporating the human network also
improves the accuracy of the algorithm. The added value of
including PPI information, however, remains unclear as we do not
observe a significant improvement for hybrid Rankprop relative to
the original Rankprop algorithm.

In addition to accurately identifying orthology relationships, the
different Rankprop variants provide two other advantages compared
with ISORank and MRF. First, the Rankprop methods can produce
orthology predictions for any given protein. This is similar to
ISORank but contrasts with the MRF, which is limited to proteins
that participate in at least one conserved interaction, as defined in
Section 3.4. For this reason, the MRF fails to make predictions for
a substantial portion of the proteins in a given network.

Second, the Rankprop variants are efficient. The MRF method
uses Gibbs sampling, the running time of which is difficult to
characterize. ISORank’s running time is O(Ek) where E is the
number of edges in a network and k is the number of networks.
Thus, this algorithm scales exponentially with the number of tested
networks. In contrast, the running time of the Rankprop variants
scales polynomially: O(k3V2+k2VE) with PPI information and
O(k3V2) without using PPI information, where V is the number
of nodes in the network. Furthermore, in many applications we
are only interested in a subset of the proteins, e.g. when looking
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for orthologs of a specific pathway or complex. The different
Rankprop methods can infer orthologies for a specified subset of m
proteins in a substantially shorter time (O(mk2V+mkE) or O(mk2V )
with or without using PPI information, respectively). In practice,
ISORank’s exponential running time prevents the algorithm from
considering more than two species at a time. Instead, it uses a
pairwise incremental procedure in order to account for multiple
networks (Singh et al., 2008). The Rankprop variants, on the
other hand, can be applied to multiple networks simultaneously. As
our results show, this capability provides an important advantage,
because the confidence of an inferred homology between a pair of
proteins can be enhanced by the existence of common orthologs in
other species.

2 ALGORITHMS
We start by reviewing the Rankprop algorithm and then describe the
three novel enhancements of the basic algorithm.

2.1 Rankprop
The input to the Rankprop algorithm is a weighted network and
a designated query node within that network. The nodes in the
network correspond to proteins from two or more species. Edges
connect pairs of proteins that share sequence similarity. The initial
weights of the edges are set using a pairwise sequence comparison
algorithm. In this work, we use BLAST E-values (Altschul et al.,
1990), transformed so as to represent transition probabilities (setting
the sum of weights of incoming edges to 1 for all nodes). Rankprop
assigns scores to all of the nodes in the network by using a diffusion
procedure across the weighted network. During diffusion, the query
node is assigned a score of 1.0, and this score is continually pumped
to the remaining nodes by means of the transition matrix. Upon
termination, every protein is assigned a score, determined by the
steady state of the diffusion process. A higher score implies a higher
level of similarity.

In the next section we present a generalization of Rankprop
to integrate PPI data. We defer the formal description of the
normalization procedures and the diffusion algorithm to that section.

2.2 Hybrid Rankprop
In the hybrid version of Rankprop, the edges of the weighted network
encode two types of relations between proteins: PPI and pairwise
protein similarities. Specifically, edges between proteins of the same
species correspond to PPI, and edges connecting proteins from
different species represent sequence similarity relations. The weights
on the edges reflect the level of confidence in the PPI, or the degree
of sequence similarity.

In a preprocessing stage, we convert the weights in the graph
to transition probabilities. First, we represent the input graph as
two separate matrices, Wsim and Wppi. As a measure of sequence
similarity we use the BLAST E-value, where Wsim[i,j] is the BLAST
E-value assigned to protein i when querying with protein j (i.e. the
score is normalized by the length of sequence j and the number of
proteins in the network). For PPI based similarity, we set Wppi[i,j]
to the complement 1−c of the confidence score c assigned to the
interaction between proteins i and j (see Section 3.1). We use the
complement in order to conform with the sequence similarity scores,
where a lower score indicates a stronger signal.

Next we construct a weight matrix W , which encodes the hybrid
network, by transforming the weights in the input matrix. The
transformation is applied separately for PPI edges and for protein
similarity edges in the following manner. For the PPI edges we
define:

Wij=−log

(
Wppi[i, j]

MAXppi · σppi

)
, (1)

where MAXppi is the highest weight (or the lowest confidence)
assigned to protein pairs in the hybrid network.Asimilar formulation
is used for sequence similarities:

Wij=−log

(
Wsim[i, j]

MAXsim · σsim

)
, (2)

where MAXsim is the highest E-value assigned to protein pairs in the
hybrid network. The logarithmic transfer functions in Equations (1)
and (2) introduce two parameters, σppi and σsim, for PPI and
protein similarity edges, respectively. These parameters control the
importance of highly scoring protein pairs compared to pairs with
weaker links.

Finally, the matrix W is normalized such that for each node,
the sum of weights of incoming edges is 1 (i.e. ∀j :∑i Wij=1).
The normalization procedure introduces an additional parameter ρ,
which determines the relative weight of sequence- and interaction-
similarity edges. For each node, the sum of incoming sequence
similarity edges is ρ/(1+ρ), and the sum of incoming PPI edges is
1/(1+ρ). Note that although PPI edges are not originally directed,
we treat the PPI edges as directed because the normalized weights
depend only on one end-point—see discussion in Section 2.3. The
parameter ρ allows us to reformulate the original Rankprop as a
special case of the hybrid Rankprop by setting ρ=∞.

In the diffusion process, the query node continually pumps its
score to the remaining nodes, this time by means of the weighted
hybrid network. During the diffusion, a protein P pumps to its
neighbors (either by homology or by PPI) at time t the linear
combination of scores that P received from its neighbors at time
t−1, weighted by the strengths of the edges between them. The
strength of the diffusion or the relative weighting between the local
and global properties is controlled by an additional parameter α

(see Algorithm 1). For efficiency, the diffusion process is terminated
after a fixed number of iterations, and the resulting diffusion values
are used as an approximation to the ones we would obtain upon
convergence. The output is a ranked list of putative homologs. Note
that hybrid Rankprop can readily produce a second ranked list of
putative interaction partners; however, in this study we concentrate
only on homology detection. The algorithm is summarized as
Algorithm 1.

2.3 Mutual Rankprop
The ranking scheme applied by Rankprop is directional; the natural
thing to ask then is whether it is also (at least to some extent)
empirically symmetric. Note that the intrinsic lack of symmetry does
not stem merely from the directionality of the BLAST scores but,
more importantly, from the topology of the networks. Because the
normalization of edge weights depends on the in-degree of the target
node, two very different weights might be assigned to the same
relation. The obvious example, presented in Figure 1, is in the
case of duplication followed by divergence. In this case, a protein
(denoted a) in one network has multiple homology matches in the
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Algorithm 1 Pseudocode of the hybrid Rankprop algorithm. Given a set of
proteins from two species, let Wsim and Wppi denote the input weight matrices
(encoding sequence similarity and protein interaction data, respectively),
V denote the set of proteins in the hybrid network and q∈V denote the
query protein. For each v∈V denote s(v) as the species to which the protein
v belongs, and N(v) as the set of proteins adjacent to v in the hybrid
network. In a preprocessing stage, the algorithm converts the input matrices
into a single hybrid network using the procedure makeTransitionMat. The
balancing parameter ρ determines the relative weight of sequence similarity
and PPI edges, and the parameter α controls the rate of the diffusion. The
number of iterations is fixed to a constant L. Hybrid Rankprop produces a
ranked list, rankhom of candidate homologs of q.

1: procedure hybridRankprop(Wsim,Wppi,q,s,α,ρ)
2: W←makeTransitionMat(Wsim,Wppi,ρ)
3: γq(0)=1; ∀i �=q :γi(0)=0
4: for t←1...L do
5: for i∈V do
6: Wi(t+1)=α

∑
j∈N(i)\q

Wjiγj(t)+wqi

7: end for
8: end for
9: ranksim←sort({γi(t)}S(i)�=S(q))

10: return ranksim
11: end procedure

Fig. 1. An example for the utility of mutual scoring. The two sets of nodes
represent families of paralogs from two species. Thickness of edges reflects
the magnitude of the respective Rankprop scores.

other network, representing a family of paralogs. Now assume that
all the paralogs but one (denoted b) have other clear homology
matches (to paralogs of a). Querying only from a will not be able to
distinguish b from the rest, while querying from b and its paralogs
will clarify that b is the most probable ortholog of a.

To exploit this asymmetry, we define the mutual Rankprop variant.
This algorithm considers the top ranked candidates, applies a
query from each of them, and then reranks them according to the
corresponding scores assigned to the original query node. Formally,
for a given query node q let a1 ...aµ be the top µ proteins on the
ranked list produced by Rankprop and s1 ...sµ be their scores (where
µ is a small constant, set here to 5). Mutual Rankprop calls Rankprop
separately for every ai as the query node. Let sq,i be the score of q
when querying from ai. We rerank each of the ais based on a mutual
score, which is defined as (si+sq,i)/2. Finally, the top µ proteins are
resorted according to this new score. In the following, we experiment
with the mutual extension of both the original Rankprop and the
hybrid Rankprop variants.

2.4 Using more than two networks
The extension of Rankprop or hybrid Rankprop to more than two
networks is straightforward. For example, in the latter variant, for
three species we have a total of six networks (three PPI and three
sequence similarity networks). The edge weights are transformed
using Equations (1) and (2) and then normalized according to the
parameter ρ.

In this case, the output with respect to a given query will be two
orthology lists, one for each of the remaining species. It is easy to
see that in a given hybrid network, every edge is visited a constant
number of times (equal to the fixed number of iterations), so the
running time of a single query on a hybrid graph encompassing k
PPI networks, each with E edges and V nodes is O(kE+k2Vh),
where h is the maximum number of sequence similarity links per
protein. In our application h is limited to a constant value (h<100).
Querying from all the nodes in the hybrid network therefore costs
O(kV (k2V+kE))=O(k3V2+k2VE) time. The original version of
Rankprop does not use PPI edges and, in our experiments, does
not use sequence similarity edges within a single species; therefore,
Rankprop’s running time reduces to O(k3V2).

2.5 Tuning the parameters
The parameters σppi, σsim, ρ and α enable us to control the operation
of the Rankprop variants either by selective tuning of the weights
of the two types of edges (σppi, σsim), by determining the overall
balance between their influences (ρ) or by determining the rate of
the diffusion (α).

We learn the values of these parameters from a labeled training
set via cross-validation and grid search. In our implementation, we
use 5-fold cross-validation, and we consider all combinations of
the different parameter values. We based our search on a series of
three exponents: �={0,2,5}. For the two tuning parameters σppi,
and σsim, we consider the values 10i, i∈�. For the balance
parameter ρ we consider the values 5±i, i∈�. Finally, for the
diffusion rate parameter, α, we consider a low value of 0.3 and
a higher value of 0.95. For the original Rankprop implementation,
we set ρ to∞ and examine the different values only for σsim and α.

3 EXPERIMENTAL SETUP

3.1 The analyzed networks
Initially, we apply our orthology detection scheme to the networks
of Saccharomyces cerevisiae and Drosophila melanogaster. The
dataset is identical to the one used by two previous orthology
detection studies (Bandyopadhyay et al., 2006; Singh et al., 2007),
and downloaded from the online supplement of (Bandyopadhyay
et al., 2006). It contains protein sequences of 5878 yeast and 18 746
fly proteins from FlyBase and SGD (Christie et al., 2004; Crosby
et al., 2007). PPI information in the dataset is from the Database of
Interacting Proteins (Xenarios et al., 2000) and includes 14 319 and
20 720 interactions for yeast and fly, respectively. The downloaded
dataset also provides confidence values to each PPI edge based
on a logistic regression model (Bader et al., 2004). Importantly,
homology-based data were not used when determining these values.
This is a crucial point because in the following experiments we
will use the confidence values, in cross-validation, to train and test
orthology predictors.
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In a second experiment, we also add a human network. This
network contains 7915 protein sequences and 28 972 interactions
collected from recently published papers (Rual et al., 2005; Stelzl
et al., 2005) and from the HPRD database (Peri et al., 2003). PPI
confidence values for the human network were assigned using a
logistic regression model similar to the one used for the yeast and
fly networks.

Protein similarities (E-values) were computed using BLASTP
(Altschul et al., 1997), using a threshold of E− value <10.

3.2 Training data
We consider two distinct gold standard sets of positive and negative
orthology relations. The first set is based on the Inparanoid program
(Remm et al., 2001). These labels were used for validation in two
previous studies (Bandyopadhyay et al., 2006; Singh et al., 2007).
Specifically, the positive cases are drawn from Inparanoid homology
clusters that contain only one representative from each species
(unambiguous orthology). We consider two methods for defining
the negative set. The more stringent, which we term the specific
negative set is composed of pairs of proteins that are best BLAST
matches not assigned to the same Inparanoid cluster. The second
definition for the negative set is the complement of the positive set.
The positive and negative orthology datasets were provided by the
authors of (Bandyopadhyay et al., 2006).

The second training set of positive and negative orthology
relations is taken from the HomoloGene database (Wheeler
et al., 2003). Importantly, the homology detection procedure of
HomoloGene uses both proteins and their matching DNA sequences
and relies on a global optimization rather than local. In addition,
HomoloGene considers synteny when applicable. The positive
training set is composed of the HomoloGene orthologous pairs.
As negatives we take the top five non-orthologous BLAST matches.
As before, we also use a second definition for the negative set as the
complement of the positive set.

3.3 Performance evaluation
We measure the quality of a given orthology predictor by comparing
it with the gold standard and computing a receiver operating
characteristic (ROC) curve (Hanley and McNeil, 1982). Our quality
metric is the area under this curve (the ROC score). In orthology
prediction applications, we are primarily interested in the top-ranked
predictions. To account for that, we measure the area under the curve
up to the first 50 false positives (ROC50) (Gribskov and Robinson,
1996). The ROC50 scores are computed separately for each query,
taking the complement of the positive set as the negative set.

The previous procedure is relative, in the sense that targets
for a particular query are only ranked relative to one another.
A more stringent quality metric requires that the scores produced
for different queries lie on the same scale. We measure absolute
quality by sorting together the outputs from multiple queries and
computing a single ROC curve. The computation of the absolute
quality is based on the specific negative sets.

3.4 Alignment graph for MRF
The MRF method is based on an alignment between the two given
PPI networks. The nodes in the alignment graph represent pairs
of proteins, one of each species. An edge between two alignment
nodes (u,v) and (u′,v′) exists if u interacts with u′ and the distance

between v and v′ is not more than two (or vice versa). We first
use the original alignment graph used by Bandyopadhyay et al.
(2006), whose nodes are defined according to the orthology clusters
of Inparanoid. However, a problem with this graph is that the vast
majority of the proteins appear in only one alignment node and
thus have only one candidate for orthology (in fact, this holds, by
definition, for all positive pairs in the Inparanoid gold standard).
Consequently, the relative performance of the algorithm could
not be assessed. To circumvent this problem, we used a second
alignment graph defining the alignment nodes according to the five
top mutual BLAST matches of each protein. For a fair comparison,
in this experiment we also limit the sequence similarity information
available to Rankprop and ISORank to the five top mutual BLAST
matches of each protein.

4 RESULTS
In the following we use the yeast and fly data to compare
four Rankprop variants—the original Rankprop algorithm, mutual
Rankprop, hybrid Rankprop and mutual hybrid Rankprop. The
variants are compared to each other and to the MRF method
(Bandyopadhyay et al., 2006), ISORank (Singh et al., 2007) and
BLAST (Altschul et al., 1997). In addition, we apply the original
Rankprop and hybrid Rankprop to a three-species network (adding
the human network), and we compare the quality of the resulting
predictions to the two-species results. Because the ISORank, MRF
and hybrid Rankprop are limited only to proteins that participate in
the PPI network, we focus the computation on these cases only.

4.1 Performance evaluation on the Inparanoid
training data

The evaluation of the Rankprop variants is done by cross-validation.
For each Rankprop variant and each cross-validation iteration, we
apply the algorithm with all possible parameter combinations (see
Section 2.5). We then choose the best parameter set, using as our
performance criterion either the relative or absolute ROC score on
the training set. Finally, we apply the algorithm to the test set with
the selected parameters. The MRF is also evaluated using cross-
validation as in Bandyopadhyay et al. (2006). For ISORank we do
not use training and simply set the single parameter (the propagation
rate α) to 0.6, its preferred value for this specific dataset, according
to Singh et al. (2007). Importantly, the MRF algorithm is applicable
only to proteins with conserved interactions. Therefore, for a fair
comparison, we consider only cases for which this algorithm is
applicable.

Figure 2A compares the relative performance of the different
rankings using the Inparanoid positive and negative sets, where MRF
is applied with the Inparanoid-based alignment graph. Evidently, the
relative performance of the BLAST scores is extremely high. This
stems from the fact that most of the positive pairs in the Inparanoid
set are mutually best BLAST matches, and all the positive pairs are
best BLAST matches in at least one direction. Because the ISORank
scores are very similar to those of BLAST, ISORank performs almost
as well as BLAST. For the Rankprop variants, the advantage of
mutual approach is evident both for Rankprop and hybrid Rankprop.
However, when considering only non-trivial test cases (inset), where
true orthologs are not mutual best BLAST matches, we do not see
any clear advantage for either of the variants.
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Fig. 2. Homology detection benchmark using the Inparanoid gold standard. (A) Relative performance: the figure plots the percentage of queries (y-axis) for
which the associated ROC50 score is greater than a given threshold (x-axis). (B) Absolute performance: an ROC curve is displayed for each of the predictors.
Seven methods are shown, including the four Rankprop variants, BLAST, ISORank and MRF. The insets present only non-trivial cases where true orthologs
are not mutual best BLAST matches.
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Fig. 3. Homology detection benchmark using the HomoloGene gold standard. Methods, labels and insets are as in Figure 2.

Figure 2B depicts the absolute performance of the different
rankings. Evidently, all four Rankprop variants outperform both
MRF and ISORank. In addition, we see that the ability of the scores
obtained from ISORank to separate true orthologies from false ones
is very similar to that of the raw BLAST E-values. The MRF method
performs worse than both. Focusing on the non-trivial test cases
(inset), we see that MRF outperforms BLAST and ISORank and
that all three are outperformed by the Rankprop variants.

We also tested the different methods using the Inparanoid gold
standard where MRF is applied with the BLAST-based alignment
graph. The results are qualitatively similar to the ones in Figure 3
(data not shown).

4.2 Performance comparison on the HomoloGene
training data

In this experiment we use the HomoloGene positive and negative
sets, and we use our alternative definition for the alignment
graph of MRF. The results are displayed in Figure 3. Here we
see that the mutual variants of Rankprop (with and without

using PPI information) outperform their one sided counterparts
both in the relative and absolute tests. In addition, the relative
performance of mutual hybrid Rankprop is better than that of the
mutual Rankprop, better than that of ISORank in the general case,
and slightly worse than ISORank in the non-trivial case.

We also tested the different methods using the HomoloGene
positive and negative sets where MRF is applied with the Inparanoid-
based alignment graph. The results are qualitatively similar to the
previous experiment in Figure 2 (data not shown).

4.3 Disambiguating Inparanoid orthology predictions
Inference based on sequence similarity alone, using the Inparanoid
program, is often insufficient to determine orthology relations.
In such cases, we obtain orthology clusters containing a number of
paralogs from each species, where the actual mapping of functional
orthologs is unknown. Bandyopadhyay et al. (2006) used the scores
obtained by the MRF method to determine the most probable
orthologs and resolve these ambiguities based on PPI information.
In a similar manner, we used the different variants of our method
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to disambiguate the same clusters, assigning the top ranked protein
as the putative ortholog of the query protein. We then compared our
results with each other, with the results of Bandyopadhyay et al.
(2006) and with annotations from HomoloGene.

Overall, the Rankprop variants can resolve a much larger
percentage of the ambiguous Inparanoid predictions than MRF can.
Out of 1238 yeast proteins in the ambiguous clusters, the MRF
method was applicable only to 146, whereas the Rankprop variants
are applicable to 703, excluding proteins with no PPI information.

As a gold standard for this disambiguation task, we used orthology
annotations from the HomoloGene database. We identified an
ortholog in the HomoloGene database for 189 of the 1238 ambiguous
Inparanoid predictions. Comparing the various Rankprop variants
to one another shows that the mutual Rankprop variants strongly
outperform the single-sided variants. On these 189 examples, the
mutual Rankprop variants agrees with HomoloGene in 137 (72%)
and 139 (73%) of the cases, with and without PPI data, respec-
tively. By comparison, the one-sided Rankprop variants match
HomoloGene in 104 (55%) and 106 (56%) of the cases.

Among the same set of 189 proteins with HomoloGene
annotations, MRF is only applicable to 51. For these proteins MRF
agrees with HomoloGene in 36 (70%) of the cases, whereas mutual
Rankprop agrees with HomoloGene in 35 (68%) or 37 (72%) cases,
depending upon whether PPI information is used or not. The overlaps
among the results from MRF and from the different Rankprop
variants are summarized in Table 1.

An example for an ambiguous orthology prediction by Inparanoid
is yeast Ubiquitin UBI4 which marks various proteins for selective
degradation via the ubiquitin-26S proteasome system (Ozsolak et al.,
1987). Along with UBI4 the respective Inparanoid cluster contains
two fly paralogs—Ubiquitin-63E and Ubiquitin-5E, where the latter
has a slightly better sequence similarity with UBI4. The true ortholog
according to all the Rankprop variants as well as MRF, however,
is the former. This result is further supported by the HomoloGene
database.

Another example is the kinetochore protein Skp1, which
participates in multiple protein complexes, including the SCF
ubiquitin ligase complex, the centromeric DNA binding CBF3
complex and the RAVE complex that regulates assembly of
the V-ATPase (Seol et al., 2001). The Inparanoid cluster of Skp1
contains a number of paralogous fly proteins. Among those,
the ortholog predicted by MRF is the Skpa centromeric DNA

Table 1. Overlap in resolving ambiguous Inparanoid orthology predictions

HRP MHRP RP MRP MRF

BLAST 0.45 0.61 0.48 0.63 0.64
HRP – 0.72 0.95 0.70 0.40
MHRP – – 0.71 0.92 0.53
RP – – – 0.72 0.41
MRP – – – – 0.53

Given two methods a and b, the table presents the overlap index Oab/Tab where Oab
is the number of yeast proteins that belong to an ambiguous Inparanoid cluster (i.e.
a cluster with more than one yeast protein or more than one fly protein) and were
assigned the same ortholog by a and b. Tab is the total number of such proteins that
were applicable by both a and b. Analyzed methods include BLAST, hybrid Rankprop
(HRP), mutual hybrid Rankprop (MHRP), Rankprop (RP), mutual Rankprop (MRP)
and the MRF method.

binding protein. However, the correct ortholog according to
HomoloGene and the mutual Rankprop variants is Skpb, a paralog
of Skpa (which has a slightly lower sequence similarity with the
yeast’s Skp1). The reason for this discrepancy is that Skpb does not
have any known conserved interactions, and is excluded from the
MRF analysis.

These two examples demonstrate that network-based methods can
produce accurate orthology predictions, which are not necessarily
in line with the best BLAST matches. Additionally, we see that the
limited applicability of MRF may harm its accuracy by excluding
prominent candidates from the analysis, a limitation which does not
hold for the Rankprop variants.

4.4 Orthology detection based on three networks
To examine the utility of employing more than two networks in
orthology detection, we repeated the above experiments using the
human network in addition to those of yeast and fly. We applied
the Rankprop and hybrid Rankprop variants as described earlier
and tested the accuracy of the scores assigned to the yeast–fly
protein pairs. The basic assumption is that the scores of true
orthologous pairs from yeast and fly will increase when also
accounting for their common orthologs in human. The resulting
absolute performance with the Inparanoid gold standard (Fig. 4)
shows a clear improvement in accuracy when adding the human
network. We also examined the effect on the relative performance
and observed a smaller yet evident improvement when using the
additional network (data not shown). Similar results were also
obtained with the HomoloGene dataset (data not shown).

5 DISCUSSION
We have presented three novel extensions for the Rankprop
algorithm—the hybrid Rankprop which includes PPI information,
the mutual Rankprop which was designed to account for multiple
paralogous candidates and an application of Rankprop (and hybrid
Rankprop) to three species concomitantly. We have demonstrated
that the Rankprop algorithm and its novel variants provide improved
scoring methodologies compared to several state-of-the-art methods.
We also showed that, in the majority of cases, both the mutual
variant and the addition of a third network improve upon the original
Rankprop algorithm in both relative and absolute performance.
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Fig. 4. Homology detection benchmark using three species. Absolute
performance scores are shown for the Inparanoid gold standard. The inset
presents only non-trivial cases as in Figure 2.
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With regards to the utility of PPI data, the picture is not as clear.
Evidently, diffusion based only on sequence similarity performs
just as well as the diffusion with PPI information, and is often
better than the PPI-based approaches MRF and ISORank. A possible
explanation for this observation might be that the majority of pairs
in both positive sets are mutually best matches with very significant
E-values, which makes them easy for detection by sequence
similarity. This phenomenon is illustrated by the exceptionally
high BLAST scores in the relative performance estimations.
An alternative explanation might be that yeast and fly are just too
distant to apply methods that are based on interaction conservation.

The probabilities obtained by the MRF algorithm were used by
Bandyopadhyay et al. (2006) to resolve Inparanoid clusters that had
a few paralogs from each species. In Section 4.3 we compared the
utility of the Rankprop variants in this task to that of MRF. We
showed that the mutual variants of Rankprop compare favorably to
MRF as they were applicable to roughly five times more proteins
and achieved a similar accuracy.

The ISORank algorithm uses the obtained similarity scores to
construct a global alignment of the investigated PPI networks by
seeking the best one-to-one orthology assignment. Naturally, such an
assignment should not necessarily fit the best matches on the ranked
lists. Hence, a prerequisite for a successful construction of a global
alignment is for the scores assigned to target proteins to be well
calibrated from one query to the next. This property is reflected by
our absolute performance measure, which points to a clear advantage
of the Rankprop variants over ISORank. In this regard, a natural next
step for our work would be to use the ranking scores to construct an
alignment graph.

Conflict of Interest: none declared.
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