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ABSTRACT

A growing body of experimental evidence supports
the hypothesis that the 3D structure of chromatin
in the nucleus is closely linked to important func-
tional processes, including DNA replication and
gene regulation. In support of this hypothesis,
several research groups have examined sets of
functionally associated genomic loci, with the aim
of determining whether those loci are statistically
significantly colocalized. This work presents a
critical assessment of two previously reported
analyses, both of which used genome-wide
DNA–DNA interaction data from the yeast Saccha-
romyces cerevisiae, and both of which rely upon a
simple notion of the statistical significance of
colocalization. We show that these previous
analyses rely upon a faulty assumption, and we
propose a correct non-parametric resampling
approach to the same problem. Applying this
approach to the same data set does not support
the hypothesis that transcriptionally coregulated
genes tend to colocalize, but strongly supports the
colocalization of centromeres, and provides some
evidence of colocalization of origins of early DNA
replication, chromosomal breakpoints and transfer
RNAs.

INTRODUCTION

Recently, three published studies have used generaliza-
tions of chromosome conformation capture (3C) (1) to
obtain genome-wide DNA–DNA interaction data for
the genomes of human (2), budding yeast (3) and fission
yeast (4). Such methods, coupled with complementary
experimental assays such as fluorescence in situ

hybridization (FISH) (5), DNA adenine methyltransferase
identification (DamID) (6) and chromatin interaction
analysis by paired end tag sequencing (ChIA-PET) (7),
promise to provide an increasingly detailed picture of
the 3D structure of chromatin in vivo.
Ultimately, the widespread and growing interest in the

experimental characterization of chromatin structure is
driven by the underlying hypothesis that the structure of
DNA in the nucleus is tightly related to DNA function.
Experimental evidence supports the existence of a variety
of well-defined nuclear substructures, including the
nuclear lamina, nucleoli, PML and Cajal bodies and
nuclear speckles (8). Furthermore, in some genomes, ex-
tensive evidence suggests the existence of relatively
well-defined chromosome territories, as well as the system-
atic orientation of gene-poor, heterochromatic regions
near the nuclear periphery and gene-dense, euchromatic
regions in the nuclear interior (9). Strikingly, the overall
pattern of nuclear architecture varies systematically
among cell types yet shows evidence of evolutionary con-
servation (10). Finally, increasing evidence couples the
dynamic repositioning of genomic regions with the regu-
lation of gene expression [reviewed in (8)].
In this article, we do not argue against the hypothesis

that chromatin structure is coupled with genome function.
However, we do present a cautionary tale illustrating a
potential statistical pitfall in the search for connections
between gene function and genome structure. In particu-
lar, we investigate two recent claims about nuclear
colocalization of functional elements in the budding
yeast Saccharomyces cerevisiae. The first article, published
in Nature and coauthored by one of us (Noble), claims
that there are extensive interchromosomal interactions
between transfer RNA genes, centromeres, chromosomal
breakpoints, origins of early DNA replication and sites
where chromosomal breakpoints occur (3). The second,
published in Nucleic Acids Research, claims that many
transcription factors regulate genes that are colocalized
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in the nucleus (11). We show here that the statistical test
employed by both sets of authors rests upon a faulty as-
sumption, and we illustrate the effect of this faulty as-
sumption via simulations and via reanalysis of the yeast
data. Finally, we propose a correct resampling approach
to the same problem, and we apply this non-parametric
procedure to the same data. Our reanalysis moderately
impacts the conclusions from Duan et al. (3): contrary
to the initial analysis, we do not observe evidence of
telomere colocalization; however, we do observe strong
evidence for the colocalization of centromeres, as well as
statistical support for the colocalization of chromosomal
breakpoints, transfer RNAs and origins of early DNA
replication. In contrast, the resampling analysis does not
provide support for the central claim in the Dai and Dai
(11) paper, namely, that transcriptionally coregulated
genes tend to colocalize. The statistical analysis of
three-dimensional genome structure data sets must be per-
formed with care in order to avoid being misled by the
inherent structure of such data.

MATERIALS AND METHODS

Yeast interaction data and functional elements

We obtained from a recent study (3) a list of yeast
interchromosomal interactions observed at a false discov-
ery rate below 0.01, obtained by measuring interactions
among 3991 segments (chromosomal loci flanked by
pre-defined restriction enzyme sites) distributed through-
out the yeast genome. We also obtained the genomic co-
ordinates of centromeres, telomeres, transfer RNAs,
chromosomal breakpoints and origins of early DNA rep-
lication, all of which were studied in Duan et al. (3). In
addition, we obtained 174 gene sets, each of which
contains at least 20 yeast genes coregulated by a single
transcription factor, that were recently tested for
colocalization using the yeast interaction data (11).

The hypergeometric approach for assessing gene set
colocalization

Duan et al. (3) and Dai and Dai (11) take the following
approach for assessing the extent to which various
genomic functional groups (e.g. centromeres, telomeres,
genes coregulated by a single transcription factor)
colocalize in the nucleus. For simplicity, we will refer to
the elements of a genomic functional group as ‘genes’,
though this need not be the case. Suppose that there are
a total of N genes, of which n belong to the gene set of
interest. Let M denote the number of all possible
interchromosomal interactions between the N genes, and
let K denote the actual number of experimentally observed
interchromosomal interactions between the N genes. Let
m denote the number of all possible interchromosomal
interactions between the n genes in the gene set of
interest, and let k denote the actual number of experimen-
tally observed interchromosomal interactions between the
n genes in the gene set of interest. Then, the authors claim
that the probability of observing k interchromosomal
interactions among the genes in the gene set is derived

from a hypergeometric distribution; that is, the probabil-
ity is

m
k

� �
M�m
K�k

� �
M
K

� � : ð1Þ

Hence, they conclude that the probability associated with
observing at least k interchromosomal interactions among
the genes in the gene set is

1�
Xk�1
x¼0

m
x

� �
M�m
K�x

� �
M
K

� � : ð2Þ

Applying Equation 2 to a candidate set of n genes yields a
P-value indicating whether the n genes colocalize in the
nucleus.

Though both Duan et al. (3) and Dai and Dai (11) used
a hypergeometric test to assess colocalization of genomic
elements and gene sets, there is a slight discrepancy in the
way that the two sets of authors defined the concept of an
‘interchromosomal interaction’. In order to illustrate the
difference we discuss the definition of K, the actual
number of observed interchromosomal interactions.
Duan et al. (3) computed K by summing, for each pair
of genomic elements that lie on different chromosomes,
the number of segments in the first genomic element that
interacted with a segment in the second genomic element
at a false discovery threshold below 0.01. On the other
hand, Dai and Dai (11) computed K by counting the
number of pairs of genes on different chromosomes for
which at least one segment in the first gene interacted with
at least one segment in the second gene at a false discovery
threshold below 0.01. In reassessing the evidence for
colocalization of the genomic elements and gene sets
studied by the two sets of authors, we defined the
concept of interchromosomal interactions as did each set
of authors.

A resampling method for assessing gene set colocalization

Let n1,. . ., nI denote the number of genes in the gene set
of interest that belong to each of the I chromosomes.
Note that

PI
i¼1 ni ¼ n. We propose the following non-

parametric resampling approach for assessing gene set
colocalization:

(1) Compute k, the number of experimentally observed
interchromosomal interactions among the genes in
the gene set of interest.

(2) Compute m, the number of possible inter-
chromosomal interactions among the genes in the
gene set of interest.

(3) For b=1,. . ., B, where B is a large integer, such as
1000:
(a) For the i-th chromosome, draw ni genes uniform-

ly at random, without replacement, from the
genes on this chromosome. Repeat for each
chromosome, so that

PI
i¼1 ni ¼ n genes have

been drawn. This is a ‘random gene set’.
(b) Compute k*b, the number of experimentally

observed interchromosomal interactions among
the genes in the random gene set.
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(c) Compute m*b, the number of possible inter-
chromosomal interactions among the genes in
the random gene set.

(4) The P-value for the gene set of interest is given by

1

B

XB

b¼1

1
k�b

m�b
�k

m

� �; ð3Þ

where 1 k�b=m�b�k=mð Þ is an indicator variable that

equals 1 if k�b=m�b � k=m, and 0 otherwise.

Note that in Step 3(a), we ensure that the number of
genes on each chromosome in our random gene set is the
same as the number of genes on each chromosome in the
gene set of interest. Essentially, our resampling approach
computes a P-value by comparing the k/m ratio observed
for the gene set of interest to the ratios obtained on arbi-
trary sets of genes. This is a P-value for the null hypothesis
that the given gene set of interest shows no more
colocalization than a randomly-chosen set of genes. We
note that this approach for P-value calculation is not in-
herently novel, and indeed a similar approach was taken in
a recent paper (4). The use of resampling approaches for
hypothesis testing is discussed in more general terms in
Efron and Tibshirani (12).

Generation of random gene sets in yeast interaction data

To assess the characteristics of the hypergeometric and
resampling-based P-values on data generated under the
null hypothesis of no gene set colocalization, we generated
1000 random gene sets. Each random gene set was
obtained by selecting one of the 174 gene sets from the
Dai and Dai paper and drawing that number of genes,
without replacement, from the full set of genes. That is,
each random gene set contained the same number of genes
as one of the real gene sets known to be coregulated by a
single transcription factor.

Generation of random interaction data

We repeated the following experiment 100 times, in order
to generate 100 random interaction data sets. We
generated the 3D positions of 1000 ‘genes’ independently
from the uniform distribution in the unit cube. We
computed a 1000� 1000 interaction matrix between
these genes, where interactions were declared between
each pair of genes whose Euclidean distance was among
the smallest 10% of observed Euclidean distances. We
then created 250 random gene sets, each of which was
obtained by drawing 100 genes without replacement
from the full set of 1000 genes.

RESULTS

Hypergeometric P-values are inappropriate for assessing
gene set colocalization

If the hypergeometric P-values derived from Equation 2
are valid, then the P-value associated with an arbitrary
selection of n genes should be drawn from a uniform

distribution. We used the interaction data described in
Duan et al. (3) to assess whether P-values obtained in
this way are indeed uniform. We generated 1000 arbitrary
gene sets (details in ‘Materials and Methods’ section) and
computed hypergeometric P-values using Equation 2. A
histogram of these P-values is displayed in Figure 1(a).
These P-values are decidedly non-uniform—there are far
too many extreme P-values.
To further investigate the properties of the

hypergeometric P-values, we generated a simple simulated
data set consisting of 1000 randomly generated observa-
tions in the 3D unit cube, which we used to generate an
interaction matrix, as described in ‘Materials and
Methods’ section. Gene sets were selected at random,
and the histogram of hypergeometric P-values computed
according to Equation 2 is given in Figure 1(b). Once
again, the P-values are far from uniform.
What is wrong with using a hypergeometric P-value to

assess colocalization of a given gene set? Such a P-value is
based upon a 2� 2 contingency table, shown in Table 1.
The units that contribute to the contingency table are gene
pairs; in Table 1, there are a total ofM= a+b+c+d gene
pairs. A fundamental assumption that underlies the use of
the hypergeometric distribution is that each gene pair in
the contingency table is independent from all other gene
pairs. That is, we can think of each gene pair as having
two associated pieces of information: whether or not an
interaction was observed for that gene pair (a binary
variable, xi for the i-th gene pair), and whether or not it
is in the gene set of interest (a binary variable, zi for the
i-th gene pair). For the hypergeometric distribution to be
valid, we need (x1, z1), (x2, z2),. . .,(xM, zM) to be independ-
ent and identically distributed (13).
But it is not hard to see that the assumption of inde-

pendence is grossly violated in at least two ways. First, to
see that x1,. . ., xM are not independent, note that if there is
an interaction between the gene pair (i, j), and also
between the gene pair (i, k), then the likelihood that
there also is an interaction between the gene pair (j, k) is
higher than the likelihood of interaction for a randomly
selected pair of genes. This is because if the i-th gene is
located near the j-th gene in 3D space, and the i-th gene is
located near the k-th gene in 3D space, then the j-th and
k-th genes must also be located near each other in 3D
space. Second, to see that z1,. . .,zM are not independent,
note that if the gene pair (i, j) is in the gene set, and also
the gene pair (i, k) is in the gene set, then it must be the
case that (j, k) is in the gene set. Given that the independ-
ence assumption underlying the hypergeometric distribu-
tion is violated in the context of assessing gene set
colocalization, it should come as no surprise that the
hypergeometric P-values are invalid. It is for this reason
that the P-values observed in Figures 1a and 1b are
non-uniform.

A valid, resampling approach for calculating P-values for
gene set colocalization

In order to obtain a valid P-value for the extent of
colocalization of a set of n genes, we can compare the
number of experimentally observed interchromosomal
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interactions among genes in this gene set to the distri-
bution of the number of experimentally observed
interchromosomal interactions that results from a set
of n genes drawn at random from the full set of N
genes. We cannot, unfortunately, compute the corres-
ponding P-value analytically, as was the case for the
hypergeometric P-value; however, it is straightforward
to calculate the P-value using a resampling approach.
Details of our proposed procedure are given in
‘Materials and Methods’ section.
To assess the validity of our approach, we first

computed resampling-based P-values (Equation 3) on
randomly selected gene sets of the yeast interaction
dat of Duan et al. (3), as described in ‘Materials and

Methods’ section. The resulting P-values are shown in
Figure 1d. As expected, because the gene sets were
chosen at random, the resulting P-values have a uniform
distribution. We repeatedly generated such random gene
sets and found that the quantiles of the P-values obtained
very closely matched the quantiles of a uniform
distribution.

We next computed resampling-based P-values for
the simulated data set consisting of 1000 ‘genes’ uniformly
distributed in the unit cube (details given in Materials
and Methods). The P-values that result almost per-
fectly match the quantiles of a uniform distribution,
as expected (Figure 1e; the apparent excess of P-values
in the left-most bin is due to the discreteness of the
P-values).

Of course, the fact that the resampling-based P-values
are uniformly distributed under the null hypothesis does
not provide sufficient evidence of their adequacy: it must
also be shown that they are small in the presence of
colocalization, i.e. under the alternative. To assess this,
we generated gene sets under the alternative by choosing
a gene at random, and then selecting the 100 genes nearest
to it in terms of Euclidean distance. Each of the resulting
gene sets had an extremely small P-value, indicating that
the resampling-based P-values have power to reject the
null hypothesis when there is indeed evidence of
colocalization.
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Figure 1. (a)–(c) show histograms of hypergeometric P-values. In panel (a), the P-values are computed for 1000 random gene sets with respect to the
yeast interaction data set of Duan et al. (3). In panel (b) the P-values are computed with respect to a simulated data set for 250 random sets of 100
genes. In (c), the P-values correspond to 174 gene sets regulated by a single transcription factor and studied in (11), computed with respect to the
yeast interaction data set of (3). Panels (d)–(f) are analogous to panels (a)–(c), but the P-values are computed using the resampling approach. In each
case, the resampling-based P-values provide no evidence of colocalization of gene sets.

Table 1. The hypergeometric test is based upon a 2� 2 contingency

table of gene pairs

Interaction No interaction

In gene set a b
Not in gene set c d

Each element in the contingency table indicates the number of gene
pairs corresponding to the associated row and column. For instance,
there are a gene pairs in the gene set for which an interaction was
observed, and d gene pairs not in the gene set for which no interaction
was observed.
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Reanalysis of the colocalization of transcriptionally
regulated yeast genes

Dai and Dai (11) recently examined the yeast interaction
data of Duan et al. (3) in order to determine the extent to
which sets of genes coregulated by a single transcription
factor tend to colocalize. They identified 174 transcription
factors, each of which regulated at least 20 genes. They
applied the hypergeometric P-values (Equation 2) in order
to assess the colocalization of each set of coregulated
genes, and found that 34 sets of coregulated genes had
P-values below 0.01. We repeated the analysis of Dai
and Dai, and confirmed their finding that a substantial
number of the coregulated gene sets had very small
hypergeometric P-values (Figure 1c). However, on the
basis of resampling-based P-values, there is essentially
no evidence of colocalization of sets of coregulated
genes (Figure 1f). None of the 174 gene sets had a
resampling-based P-value below 0.01 after Bonferroni cor-
rection. The hypergeometric and resampling-based
P-values displayed in Figures 1(c) and 1(f), as well as the
transcription factors regulating each of the 174 gene sets,
can be found in Supplementary Table S1.

Not surprisingly, because both the hypergeometric and
resampling-based P-values are based upon the number of
experimentally observed interchromosomal interactions in
a given gene set of interest, these two types of P-values are
highly correlated with each other: their Spearman correl-
ation is 0.969. Therefore, the choice of P-value does not
affect the relative ranking of evidence for gene set
colocalization as much as it does the absolute amount of
evidence for gene set colocalization.

Reanalysis of the colocalization of functional elements in
the yeast genome

Duan et al. (3) assessed the extent to which certain
genomic functional groups—centromeres, telomeres,
transfer RNAs, chromosomal breakpoints and origins
of early DNA replication—tend to colocalize in the
nucleus. Of 14 such functional groups, they found that
10 colocalize in the nucleus, as evidenced by a
hypergeometric P< 0.01 after Bonferroni correction. (In
a related analysis, no evidence was found for
colocalization of genes that share various Gene
Ontology terms.) We computed the resampling-based
P-values for each of these 14 functional groups, as
described in the ‘Materials and Methods’ section, with
the following approach for drawing random functional
elements: for each of the n functional elements of
interest (e.g. n=32 telomeres) we repeatedly drew a
‘random’ functional element from the corresponding
chromosome, of the same length as the true functional
element of interest, uniformly at random along the
length of the chromosome. (In contrast, in our reanalysis
of the Dai and Dai data (11) we generated ‘random’ genes
by drawing genes, without replacement, from the full set
of genes on a given chromosome. Unfortunately, it is not
possible to take that approach in our reanalysis of the
Duan et al. (3) paper, due to the nature of the functional
elements considered. The approach that we took instead is
a natural alternative.)

In the Duan et al. (3) study, 10 groups of functional
elements showed significant evidence of colocalization ac-
cording to the Bonferroni adjusted hypergeometric test. In
our reanalysis (Figure 2), three of these groups are no
longer significant after Bonferonni adjustment: the
complete set of telomeres, one of the two sets of
early-firing origins, and one of the two sets of chromosom-
al breakpoints. Thus, our results suggest that (i) Duan
et al. (3) incorrectly concluded that telomeres exhibit
colocalization, and (ii) the evidence for colocalization of
early-firing origins and for chromosomal breakpoints is
weaker than initially reported.

DISCUSSION

In two recent papers, Duan et al. (3) and Dai and Dai (11)
assessed the extent to which certain functional genomic
elements colocalize, using P-values derived from a
hypergeometric distribution. We have shown here that
such hypergeometric P-values are flawed. The assump-
tions of the hypergeometric distribution are inappropriate
in this setting, and consequently hypergeometric P-values
computed on random gene sets are far from uniform. We
then presented an alternative, resampling-based P-value
calculation approach that is suitable for this setting.
These resampling-based P-values indicate a complete
lack of evidence that the 174 coregulated gene sets
studied in Dai and Dai (11) colocalize in the nucleus.
However, they do support the hypothesis that centromeres
colocalize, and provide some evidence in support of
colocalization of other functional genomic elements.
In the current study, we reassessed the extent to which

target genes of 174 TFs, considered by Dai and Dai (11),
exhibit colocalization. We did not investigate several other
results in that study that were also based on a
hypergeometric test: that only one TF shows significant
colocalization based on intrachromosomal interactions,
that 5 of 158 TFs measured via ChIP-chip show
evidence of colocalization of their targets, and that
various classes of chromatin regulatory genes—histone
modification regulated genes, genes whose promoters
exhibit high chromatin remodeler occupancy, genes that
show expression changes in response to chromatin re-
modeler perturbation, genes whose promoters are
occupied by nucleosomes, genes containing histone
variant H2A.Z, and genes with high trans effects on
gene expression divergence—are colocalized. We are not
claiming that coregulated gene sets do not colocalize in the
nucleus; we are simply stating that there does not appear
to be evidence in the Duan et al. (3) data set of
colocalization of the 174 gene sets studied by Dai and
Dai (11).
The implications of our reanalysis for the claims made

in the Duan et al. paper are relatively minor. The primary
colocalization claims in that paper—regarding centro-
meres, telomeres, tRNAs, breakpoints and origins of rep-
lication—were based primarily upon the qualitative
assessment of a set of receiver operating characteristic
curves (Figure 4d of that paper). This analysis was aug-
mented by a set of hypergeometric tests, reported in their
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Supplementary Figure 11. Our analysis suggests that three
of the asterisks in that figure (indicating Bonferroni
adjusted significance of 0.01) were erroneous. These
three changes imply weaker statistical support for the
colocalization of early-firing origins of replication and
chromosomal breakpoints, and no support for the
colocalization of telomeres.
We have shown that using a hypergeometric test to

assess colocalization of a gene set is invalid, since the
gene pairs underlying the hypergeometric test calculation
are not independent. Goeman and Buhlmann (13) showed
that for a similar reason, it is incorrect to use a
hypergeometric test to assess the extent to which genes
associated with a particular Gene Ontology term are dif-
ferentially expressed. The problem of assessing
colocalization of gene sets is inherently a difficult one,
since it is unclear what one would expect 3D interaction
data to look like under the null hypothesis, i.e. in the
absence of colocalization. To overcome this difficulty,
we have proposed a resampling-based approach for as-
sessing colocalization. This approach suffers from some
drawbacks that are shared with the hypergeometric test.
Using the terminology of Goeman and Buhlmann (13),
both the resampling-based and hypergeometric P-values

test a competitive null hypothesis, which posits that genes
in a given gene set colocalize no more than the genes not in
the gene set. Both are gene sampling methods, and hence
do not provide any information about whether a given
gene set will colocalize on a new interaction matrix
derived from a future experiment. (Indeed, on the basis
of a single interaction matrix, one cannot make claims
about future experiments.) Instead, these P-values tell us
whether or not, if one were to obtain more genes corres-
ponding to a given gene set, one would expect those new
genes to colocalize. Though both the hypergeometric and
resampling-based P-values are gene sampling methods for
testing the competitive null, the resampling-based
P-values do not rely on the untenable assumption of in-
dependence of gene pairs. Consequently, unlike the
hypergeometric P-values, our proposed P-values follow
a uniform distribution under the null hypothesis of no
colocalization.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table S1.
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Figure 2. Based on the yeast interaction data of Duan et al., hypergeometric and resampling-based P-values were computed to assess the extent to
which certain functional groups colocalize. The height of each bar indicates enrichment or depletion of observed interchromosomal interactions
relative to the percent (black line) of all possible interactions that were observed at a false discovery rate below 0.01. Above each bar, the
resampling-based P-value is reported (without correction for multiple testing), and an asterisk indicates that the hypergeometric P-value was
below 0.01 after Bonferroni correction. Additional information about the fourteen sets of functional elements can be found in Duan et al. (3).
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