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ABSTRACT
Motivation: The diffusion kernel is a general method for com-
puting pairwise distances among all nodes in a graph, based
on the sum of weighted paths between each pair of nodes.
This technique has been used successfully, in conjunction
with kernel-based learning methods, to draw inferences from
several types of biological networks.
Results: We show that computing the diffusion kernel is equi-
valent to maximizing the von Neumann entropy, subject to
a global constraint on the sum of the Euclidean distances
between nodes. This global constraint allows for high variance
in the pairwise distances. Accordingly, we propose an altern-
ative, locally constrained diffusion kernel, and we demonstrate
that the resulting kernel allows for more accurate support vec-
tor machine prediction of protein functional classifications from
metabolic and protein–protein interaction networks.
Availability: Supplementary results and data are available at
noble.gs.washington.edu/proj/maxent
Contact: koji.tsuda@tuebingen.mpg.de

1 INTRODUCTION
Many types of genomic data can be usefully represented using
networks. In such a network, nodes represent genes or pro-
teins, and edges may represent physical interaction of the
proteins (Schwikowski et al., 2000; Uetz et al., 2000; von
Mering et al., 2002), gene regulatory relationships (Lee et al.,
2002; Ihmels et al., 2002; Segal et al., 2003), edges in a meta-
bolic pathway, similarities between protein sequences (Yona
et al., 1999), etc. These networks provide tools for visual-
izing and understanding biological phenomena, as well as
a framework for predicting new network edges or predicting
protein function, localization, etc. This paper describes a gen-
eral method for deriving a Euclidean embedding of genes or
proteins from any type of biological network. The embedding
may be used to perform various types of visualization and
inference tasks.
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Fig. 1. A schematic illustration of the function prediction problem
on a protein network. According to the existence or non-existence of
a specific function, annotated proteins are labeled by either ‘+1’ or
‘−1’. The task is to predict labels of unannotated proteins marked as
‘?’. This particular network is undirected, but some networks (e.g.
metabolic or regulatory networks) would have directed edges.

For concreteness, we focus here on the problem of
predicting protein function using a protein network as input.
This problem has previously been addressed using majority
vote (Schwikowski et al., 2000; Hishigaki et al., 2001), graph-
based (Vazquez et al., 2003), Bayesian (Deng et al., 2003) and
discriminative learning methods (Vert and Kanehisa, 2003;
Lanckriet et al., 2004). The problem can be described as a two-
class classification problem on an undirected graph (Fig. 1).
According to the existence of a specific function, annotated
proteins are labeled either+1 or−1. When predicting the label
of an unannotated protein, one relies on some notion of ‘close-
ness’ or ‘distance’ between nodes. For example, majority vote
methods simply use the shortest path distance, and count the
number of positive samples in the neighborhood. However,
we need a robust distance measure in order to achieve high
prediction performance, because the shortest path distance is
sensitive to the insertion or deletion of individual edges.

Inferring closeness among the nodes of a network is an
extremely ill-posed problem. When there are n samples, our
task is to find an n × n symmetric similarity matrix from an
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undirected graph. A biological network represents local prox-
imity relationships between samples (proteins or genes); i.e.
two samples are likely to share some property when connec-
ted by an edge. Hence, with respect to each edge, we have
prior knowledge that connected samples should be close to
each other. However, the number of free parameters in the
similarity matrix is n(n+ 1)/2, which is much larger than the
number of edges.

Moreover, it is preferable that the resulting similarity matrix
be a valid kernel matrix so that function prediction can be
performed by the support vector machines (SVMs) or other
high-performance kernel classifiers (Noble, 2004; Schölkopf
and Smola, 2002). Technically, a kernel matrix is required
to be positive definite. The positive definiteness ensures that
these samples can implicitly be embedded into a Euclidean
space (called the feature space). Another important feature of
the kernel representation is that multiple matrices representing
heterogeneous data can be combined easily, e.g. by summing
the kernel matrices (Pavlidis et al., 2001; Lanckriet et al.,
2004; Vert and Kanehisa, 2003; Tsuda et al., 2003).

Maximum entropy methods have been proved to be effective
for solving general ill-posed problems (Wu, 1997). However,
maximum entropy methods are mostly concerned with the
estimation of a probability distribution, not a kernel matrix.
In this paper, we generalize the maximum entropy framework
to estimate a positive definite kernel matrix. A kernel matrix
is identified by maximizing the von Neumann entropy sub-
jected to a set of constraints derived from a network. The
von Neumann entropy is a natural extension of the Shannon
entropy to positive definite matrices, which is commonly used
in quantum physics (Nielsen and Chuang, 2000).

Based on this general theory, kernel matrices are constructed
from biological networks. In the process, constraints on the
kernel matrix must be imposed, which amount to specifying
the geometry of the embedded samples in the feature space.
We propose the following two types of constraints derived
from the biological network: (i) global constraint: the sum
of Euclidean distances between connected samples is upper-
bounded by a constant and (ii) local constraints: the Euclidean
distance between each pair of connected samples is upper-
bounded by a smaller constant.

The maximum entropy kernel from the global constraint
exactly corresponds to the diffusion kernel (Kondor and
Lafferty, 2002), which has been used successfully for making
predictions from biological networks (Lanckriet et al., 2004;
Vert and Kanehisa, 2003). When combined with SVMs, the
diffusion kernel has already been shown to work quite well on
yeast function prediction (Lanckriet et al., 2004); i.e. the pre-
diction accuracy was better than the accuracy of a Bayesian
network (Deng et al., 2003).

However, one drawback inherent in the diffusion kernel is
that, in the feature space, the distances between connected
samples have high variance. This means that some pairs of
connected samples are particularly close to one another, and

others are not. In practice, this high variance leads to scaling
problems in the feature space: some distances are so large
that many of the others are effectively zero. This outcome
is obviously inappropriate, because all the edges have been
determined by the same experimental procedure.

We show that the maximum entropy kernel based on local
constraints resolves this scaling problem and thereby shows
better accuracy in yeast function prediction. We call this a
‘locally constrained diffusion kernel’. In experiments based
on metabolic pathways (Goto et al., 2002) and protein–protein
interaction networks (von Mering et al., 2002), our new kernel
outperforms the diffusion kernel significantly.

2 MAXIMUM ENTROPY LEARNING OF
KERNELS

Maximum entropy learning (or estimation) is a common
approach for solving ill-posed problems that involves estim-
ating a probability distribution on a continuous or discrete
domain (Wu, 1997). Given a set of constraints, one is required
to pick one distribution from the set of distributions sat-
isfying all the constraints. A natural choice is to pick the
distribution with maximum entropy, which corresponds to the
most ‘smooth’ distribution. With linear constraints, it is well
known that the optimal solution is described as a Gibbs dis-
tribution (Wu, 1997). The maximum entropy method aims
to take the most ‘neutral’ distribution, which contains no
unwanted structure. This section describes how this approach
is extended for learning a kernel matrix.

2.1 Kernels and distances on a graph
SVMs work by embedding samples into a vector space called
a feature space, and searching for a linear discriminant func-
tion in such a space (Schölkopf and Smola, 2002). In our case,
the n nodes in a graph are mapped to n points in the feature
space x1, . . . , xn ∈ F . The embedding is defined implicitly by
specifying an inner product via a positive definite kernel mat-
rix Kij = x�

i xj , i, j = 1, . . . , n. Because the discriminant
function is solely represented by inner products, we do not
need to have an explicit representation of x1, . . . , xn. Once
a kernel matrix is determined, the (squared) Euclidean dis-
tance between two points can also be computed as Dij :=
‖xi − xj‖2 = Kii + Kjj − 2Kij .

Assume that a set of linear constraints tr(KUj ) ≤ 0, j =
1, . . . , m are given as prior knowledge, where Uj is an n × n

symmetric matrix. In our case, such constraints are derived
from biological networks (Section 3). Because the scale of
K does not affect the performance of the SVM, let us con-
strain tr(K) = 1. Now the problem is formulated as choosing
one kernel matrix that satisfies all these constraints. How-
ever, because the number of edges is usually small, there are
infinitely many choices. Such a problem is called an ill-posed
problem (Wu, 1997), where the solution cannot be determined
uniquely from the information at hand.

i327



K.Tsuda and W.S.Noble

2.2 von Neumann entropy
In quantum physics, the notion of entropy has been general-
ized to positive definite matrices with trace one (Nielsen and
Chuang, 2000). The entropy of a positive definite matrix K is
defined as

E(K) = −tr(K log K), K � 0, tr(K) = 1, (1)

where log is the matrix logarithm operation and K � 0
denotes that K is positive definite. The quantity E(K) is called
von Neumann entropy. In von Neumann entropy, the notion of
a smooth distribution is extended to the smoothness of eigen-
values, because the von Neumann entropy can be written as the
Shannon entropy of eigenvalues (Nielsen and Chuang, 2000).
As seen in kernel Principal Components Analysis (PCA), a
few high eigenvalues means that the samples are concen-
trated in a linear subspace of low dimensionality (Schölkopf
and Smola, 2002). Roughly speaking, maximizing entropy
amounts to placing the samples in the feature space as evenly
as possible.

2.3 Maximizing entropy
We propose to learn a kernel matrix by maximizing the von
Neumann entropy,

min
K

tr(K log K),

tr(K) = 1, tr(KUj ) ≤ 0, j = 1, . . . , m.
(2)

Note that we dropped the constraint K � 0, because the
optimal solution of (2) is always positive definite, as shown
below. If the optimization problem is feasible (i.e. if there
is a matrix satisfying all the constraints, then it can be con-
verted into the dual unconstrained problem by means of
Lagrange multipliers. Since tr(K log K) is a strictly convex
function (Nielsen and Chuang, 2000), the optimal solution of
the dual problem corresponds to that of the original problem
as follows.

Theorem 1. The dual problem of (2) is described as

min
α≥0

log tr

[
exp

(
−

∑
j

αjUj

)]
. (3)

The optimal dual parameter α∗ corresponds to the optimal
primal parameter K∗ as

K∗ = 1

Z(α∗)
exp

(
−

∑
j

α∗
j Uj

)
, (4)

where Z(α∗) = tr
[
exp

(
− ∑

j α∗
j Uj

)]
.

The proof is given in Appendix A. The solution K∗ is always
positive definite because the matrix exponential maps any
symmetric matrix to a positive definite matrix. The dual optim-
ization problem (3) is strictly convex, so the global optimal

solution can be obtained by standard convex optimization
methods without local minima problems. In the following
experiments, we use a simple gradient descent algorithm
(details in Appendix C).

2.4 Relaxing constraints
When the problem (2) is infeasible, one can relax the problem
as follows:

min
K ,ξ

tr(K log K) + λ
∑m

j=1 ξj ,

tr(K) = 1, tr(KUj ) ≤ ξj ,
ξj ≥ 0, j = 1, . . . , m.

(5)

Here, λ controls the trade-off between entropy and the viol-
ation of constraints. The resulting dual problem is almost
the same as the original dual problem, but with a differ-
ent constraint 0 ≤ αj ≤ λ. The derivation is described in
Appendix B.

3 LOCALLY CONSTRAINED DIFFUSION
KERNEL

Let A be the n × n adjacency matrix of a graph. Also, let
D be the n × n diagonal matrix such that Dii is the vertex
degree of i-th node, i.e. the number of edges involving the
i-th node. The so-called graph Laplacian matrix is defined as
L = D−A. The diffusion kernel (Kondor and Lafferty, 2002)
is then defined as

K = exp(−βL),

where the diffusion parameter β > 0 determines the degree
of diffusion. The diffusion kernel can be interpreted in terms
of lazy random walking for sufficiently small β (Kondor and
Lafferty, 2002). At each step of random walking, the next node
is randomly chosen from the neighboring nodes according to
the transition probabilities. The ramdom walk is ‘lazy’ here,
because one can stay at the same node (i.e. self-loop). If we
fix the transition probability to every neighboring node as a
constant β, then the self-loop probability of node i is 1−diβ,
where di is the degree of node i. The kernel value Kij is then
equivalent to the probability that a random walk starting from
i will be at j after infinite time steps. Figure 2 shows the
actual values of diffusion kernels with different settings of β.
When β is sufficiently large, the kernel values among distant
nodes capture the long-range relationships between proteins
or genes.

Let us consider the normalized version of diffusion kernel,

K = 1

Z(β)
exp(−βL), (6)

where Z(β) = tr[exp(−βL)]. Note that the normaliza-
tion (6) does not affect the results of kernel-based learning
algorithms (Schölkopf and Smola, 2002). This kernel mat-
rix can be derived as the optimal solution for the following
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Fig. 2. Actual values of the diffusion kernel for different settings of
the diffusion parameter β. Each value on a node shows the kernel
value between the node and the ‘central node’ (i.e. the node with
1.00 when β = 0). As the diffuson parameter increases, the kernel
values diffuse more completely through the graph.

maximum entropy problem:

min
K

tr(K log K), tr(K) = 1, tr(KL) ≤ c,

where c is a positive constant, which is an implicit function
of β. Thus, the diffusion kernel is the maximum entropy
solution subjected to single global constraint tr(KL) ≤ c.
Let {sj , tj }mj=1 denote the node pairs connected by m edges.
The quantity tr(KL) equals the sum of Euclidean distances
between connected samples:

tr(KL) =
m∑

j=1

‖xsj
− xtj ‖2. (7)

Because the global constraint constrains the sum of distances
only, each distance is allowed to be drastically different. In
fact, in our experiments, we observed high variances in the
distances produced by this kernel (Section 4).

In order to impose a more uniform network structure, let us
consider the following local constraints:

‖xsj
− xtj ‖2 ≤ γ , j = 1, . . . , m.

The maximum entropy problem (without relaxation) is
described as

min
K

tr(K log K), tr(K) = 1, (8)

tr(KVj ) ≤ γ , j = 1, . . . , m,

where

[Vj ]st =



1 (s = sj , t = sj ) or (s = tj , t = tj )

−1 (s = sj , t = tj ) or (s = tj , t = sj )

0 otherwise
(9)

Note that L = ∑
jVj . When written in the standard form (2),

Uj = Vj − γ I . We call the resulting kernel a ‘locally con-
strained diffusion kernel’. As will be shown in the next section,
this method does not produce extremely large distances, and
yields good results in function prediction.

4 EXPERIMENTS
We computed kernels from two different types of yeast biolo-
gical networks. The first network was derived by Vert and
Kanehisa (2003) from the LIGAND database of chemical
reactions in biological pathways (www.genome.ad.jp/ligand).
In this graph, two proteins are linked if they catalyze two suc-
cessive reactions, in which the primary product of the first
reaction is the primary substrate of the second reaction. Thus,
a path in this graph represents a possible series of reactions
catalyzed by proteins along the path. The resulting metabolic
network contains 755 proteins and 7860 edges.

The second network was created by von Mering et al.
(2002) from protein–protein interactions identified via six
different methods: high-throughput yeast two-hybrid, cor-
related mRNA expression, genetic interaction (synthetic
lethality), tandem affinity purification, high-throughput mass-
spectrometric protein complex identification and computa-
tional methods. All interactions were classified into one
of three confidence categories, high-, medium- and low-
confidence, based on the number of different methods that
identify an interaction as well as the number of times the
interaction is observed. In these experiments, we used a
medium confidence network containing 2617 proteins and
11 855 edges.

The reduced variance in the values produced by the loc-
ally constrained diffusion kernel can be seen in Figure 3. This
figure displays, using heat maps, distance matrices derived
from the metabolic network using locally and globally con-
strained diffusion kernels. In the globally constrained case,
some distances are so large that the others are almost invisible,
whereas the distances produced by the locally constrained
kernel are more uniform. A direct comparison of the local
and global distributions produced by both networks is given
in Table 1. In both cases, the global kernel produces some
extremely large distances, whereas the local kernel distances
concentrate around γ .

In addition to comparing global and local kernels dir-
ectly, we tested the kernels’ utility in the context of an
SVM classification task. We used the functional categories of
the MIPS Comprehensive Yeast Genome Database (CYGD;
mips.gsf.de/genre/proj/yeast) as a gold standard. These cat-
egories are not mutually exclusive and hence are appropriately
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Global Local

Fig. 3. Distance matrices from globally and locally constrained diffusion kernels. The figure shows heat map representations of two distance
matrices, produced using the metabolic network with β = 2. Colors are mapped using a black-body heat map (lower left). For visualization
purposes, the matrix includes only nodes with degree more than 30. These images were produced using matrix2png (Pavlidis and Noble,
2003) (see online figure for colours).

Table 1. Distribution of distances in globally and locally constrained
diffusion kernels

Network Constraint ≤γ 2γ 10γ 100γ 1000γ >1000γ

Metabolic Global 7249 231 229 130 21 0
Metabolic Local 3706 4139 15 0 0 0
Interaction Global 9967 448 979 461 0 0
Interaction Local 4927 6913 15 0 0 0

The digits show the number of distances that fall between the value of previous column
and the current one. For these kernels, β = 2, and the constant γ is determined using (10).

treated as independent binary classification tasks. We selec-
ted all functional categories containing at least 30 positive
examples (see online supplement for the complete list), res-
ulting in 36 categories for the metabolic network and 76
categories for the protein–protein interaction network. In com-
puting diffusion kernels, the parameter β was varied from 0.2
to 6. For each value of β, γ was set such that the overall
strength of constraints was equal:

γ = tr[exp(−βL)L]/m. (10)

The parameter λ was set to 100 throughout the experi-
ments. For each category and each kernel, an SVM was
trained using half of the data, and its performance was
measured on the remaining half. We used the SVM imple-
mentation in the SPIDER software package (www.kyb.
tuebingen.mpg.de/bs/people/spider). Here, we report results
when the regularization parameter C = 1000; see the online

supplement for similar results from other settings of C. The
quality of the predictions produced by the SVM was meas-
ured using the receiver operating characteristic (ROC) score,
which is the area under a curve that plots the true positive rate
as a function of false positive rate, for varying classification
thresholds. A perfect classifier ranks all the positives above
all the negatives and receives an ROC score of 1; a random
classifier receives a score of ∼0.5.

Figure 4 compares the classification performance of SVMs
trained using locally versus globally constrained maximum
entropy kernels. The figure shows that, for both types of
network, the SVM performance is relatively robust across
a wide range of values of the diffusion parameter β.
Furthermore, in every case, the locally constrained kernel out-
performs the globally constrained kernel. Figure 5 displays the
same results without averaging, selecting for each class and
each kernel the value of β that yields the best ROC score.
The complete collection of ROC scores with respect to each
CYGD classification is available online.

5 DISCUSSION
Much recent research has focused on the problem of infer-
ring various types of biological networks from genome-wide
data sets (Segal et al., 2003; Pe’er et al., 2001; Toh and
Horimoto, 2002; Pilpel et al., 2001; Yeung et al., 2002). Here,
we focus on the downstream problem: given an (observed or
inferred) biological network, how do we use that network
to draw inferences about the genes or proteins in the net-
work? Such inferences might be drawn from any type of
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Fig. 4. Mean ROC score as a function of the diffusion parameter β. The plots show the mean ROC scores computed across the set of CYGD
categories, using (A) the metabolic network and (B) the protein–protein interaction network. The solid and broken lines correspond to locally
and globally constrained diffusion kernels, respectively.
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Fig. 5. Category-by-category comparison of SVM ROC scores from locally and globally constrained kernels. Each plot compares the
performance of the locally constrained (y-axis) and globally constrained (x-axis) maximum entropy kernels. Each point in the plot corresponds
to a single CYGD functional category. For both methods, the value of the diffusion parameter β is selected that yields the highest ROC score.

biological network and might concern molecular function,
cellular component or biological process. Thus, the diffusion
kernel, including the locally constrained version described
here, has broad applicability.

Furthermore, in contrast to methods that directly derive
label predictions from the network (Vazquez et al., 2003;
Deng et al., 2003), the kernel approach detaches the distance
design from the statistical inference. The derived distance
may then be combined with other data and used for multiple

purposes, including visualization, clustering, classification
and regression.
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APPENDIX A: PROOF OF THEOREM 1
The Lagrangian of (2) is described as

L = tr(K log K) +
∑

j

αj tr(KUj ) + β(trK − 1), (A1)

where αj ∈ 	, β ∈ 	 and αj ≥ 0. Setting the derivative with
respect to K to the zero matrix, we have

I + log K +
∑

j

αjUj + βI = 0.

This equation is solved as follows:

K = exp

[
−

∑
j

αjUj − (1 + β)I

]
. (A2)

= exp[−(1 + β)] exp

(
−

∑
j

αjUj

)
. (A3)

Substituting it into the Lagrangian, we have

L = − exp[−(1 + β)]tr
[
− exp

( ∑
j

αjUj

)]
− β. (A4)

The optimal β that maximizes (A4) is obtained as

β = log tr

[
exp

(
−

∑
j

αjUj

)]
− 1. (A5)
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Substituting (A5) into (A3), K is represented by αj only

K = 1

Z(α)
exp

(
−

∑
j

αjUj

)
,

where Z(α) = tr

[
exp

(
− ∑

j αjUj

)]
. Substituting (A5)

into (A4), we finally have the dual problem

max
α≥0

− log tr

[
exp

(
−

∑
j

αjUj

)]
. (A6)

APPENDIX B: DUAL PROBLEM FOR SOFT
MARGIN
The Lagrangian of (5) is written as

L = tr(K log K) + λ
∑

j

ξj +
∑

j

αj [tr(KUj ) − ξj ]

−
∑

j

δj ξj + β[tr(K) − 1],

where the Lagrange multipliers αj ≥ 0, δj ≥ 0. Setting the
derivative with respect to ξj to zero, we have

λ − αi − δi = 0,

which is rewritten as δi = λ−αi . Since δi ≥ 0, the inequality
αi ≤ λ is derived. Substituting it into the Lagrangian, we have

L = tr(K log K) +
∑

j

αj tr(KUj ) + β[tr(K) − 1],

which is exactly the same as the original Lagrangian (A1).
Therefore, following the same steps in Appendix A, we arrive
at the same dual problem with new constraints αi ≤ λ.

APPENDIX C: GRADIENT DESCENT
OPTIMIZATION
We use the gradient descent method for minimizing the dual
function

f (α) = log tr

[
exp

(
−

∑
j

αjUj

)]
.

The current parameter α(t) is updated to α(t+1) as follows:

α(t+1) = α(t) − ηt

∇f (α(t))

‖∇f (α(t))‖ ,

where ηt determines the learning rate, and ∇f (αt ) is the
gradient vector. The k-th element of ∇f (αt ) is written as

∂

∂αk

f (α) =
tr

[
−Uk exp

(
− ∑

j αjUj

)]

tr
[
exp

(
− ∑

j αjUj

)] .

When the updated parameter falls out of the interval 0 ≤ αj ≤
λ, it is pulled back to 0 or λ. In the experiments, we started
from the initial rate η1 = 100. When the rate is too large and
f (α) is increased by the update, η is reduced to its half. We
performed a maximum of 30 iterations in order to minimize
the function.
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