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Identification of higher-order functional domains
in the human ENCODE regions
Robert E. Thurman,1,2 Nathan Day,3 William S. Noble,2,3

and John A. Stamatoyannopoulos2,4

1Division of Medical Genetics, University of Washington, Seattle, Washington 98195, USA; 2Department of Genome Sciences,
University of Washington, Seattle, Washington 98195, USA; 3Department of Computer Science and Engineering, University
of Washington, Seattle, Washington 98195, USA

It has long been posited that human and other large genomes are organized into higher-order (i.e., greater than
gene-sized) functional domains. We hypothesized that diverse experimental data types generated by The ENCODE
Project Consortium could be combined to delineate active and quiescent or repressed functional domains and
thereby illuminate the higher-order functional architecture of the genome. To address this, we coupled wavelet
analysis with hidden Markov models for unbiased discovery of “domain-level” behavior in high-resolution functional
genomic data, including activating and repressive histone modifications, RNA output, and DNA replication timing.
We find that higher-order patterns in these data types are largely concordant and may be analyzed collectively in
the context of HeLa cells to delineate 53 active and 62 repressed functional domains within the ENCODE regions.
Active domains comprise ∼44% of the ENCODE regions but contain ∼75%–80% of annotated genes, transcripts,
and CpG islands. Repressed domains are enriched in certain classes of repetitive elements and, surprisingly, in
evolutionarily conserved nonexonic sequences. The functional domain structure of the ENCODE regions appears to
be largely stable across different cell types. Taken together, our results suggest that higher-order functional domains
represent a fundamental organizing principle of human genome architecture.

[Supplemental material is available online at www.genome.org.]

The concept that the chromosomes of higher eukaryotes are par-
titioned into discrete functional territories with distinct physical
properties predates the genome era by over four decades (Cooper
1959). Such territories have classically been associated with the
cytogenetic phenomena of heterochromatin and euchromatin,
which are generally believed to represent repressed and active
genomic regions, respectively (Lamond and Earnshaw 1998).
However, the potential for translating cytogenetic observations
to modern genome sequence annotations is severely limited by
the low, multimegabase resolution of the former, the lack of an
automated approach for such an endeavor, and by the finding
that euchromatic and heterochromatic territories may them-
selves contain subregions with unique functional properties gov-
erning the regulation of their constituent genes (Gilbert and
Bickmore 2006).

A variety of genetic, biochemical, and cytological data now
support the existence of multigene functional domains spanning
up to hundreds of kilobases within human and other vertebrate
genomes (Dillon 2003). Control of gene expression by long-range
elements may be confined within discrete regulatory domains
demarcated by insulator elements that function, at least in part,
by physically segregating chromatin loops at the level of the
nuclear matrix (Felsenfeld et al. 2004). For example, studies of
the human and chicken beta-globin loci indicate that in ery-
throid cells, linked developmental and differentiation stage-
specific genes lie within a domain of open chromatin, share com-
mon cis-regulatory sequences, have similar patterns of histone

modification, and replicate early during S phase (Felsenfeld 1996;
Felsenfeld et al. 2004). In nonerythroid cells, these genes are
repressed, lie within compacted chromatin, and replicate late
during S phase. Active and repressed states are also associated
with differential localization of the globin gene region of Chr11
within the cell nucleus (Osborne et al. 2004). As such, the ∼100-
kb regions surrounding the beta-like globin genes on Chr.11 and
the alpha-like globin genes on Chr.16 are commonly referred to
as the beta- and alpha-globin domains (Felsenfeld et al. 2004;
Dean 2006). Analogously, the Th2 cytokine genes share cis-
regulatory sequences that coordinate the expression of genes
within a ∼250-kb active chromatin domain (Lee et al. 2005); simi-
lar findings have been described in the context of numerous
other loci (Li et al. 2002). Recently, many developmentally regu-
lated genes were found to reside in large genomic territories high-
lighted by high levels of repressive histone modifications (Bern-
stein et al. 2005; Hochedlinger and Jaenisch 2006). In summary,
the term “domain” is frequently used to denote a genomic terri-
tory that may encompass multiple colocated genes sharing com-
mon transcriptional regulatory properties such as tissue specific-
ity of expression. Although there is no universally agreed upon
definition of a genomic domain, the literature is nearly unani-
mous in considering such regions to be of at least gene size, and
preferably larger.

A major outstanding question is, therefore, to what degree
do large-scale functional genomic studies support the existence
of such multigene domains as a general phenomenon of human
genome organization. Systematic delineation of higher-order
functional domains within the human genome is of great inter-
est for several reasons. First, a “domain map” may highlight
groups of genes that occupy a common cis-regulatory environ-
ment. Second, transitions between active and repressed domains
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may mark the position of cis-regulatory elements such as insula-
tors and boundary elements important for domain control.
Third, since active and repressed domains may occupy distinct
nuclear neighborhoods, knowledge of domain structure is ex-
pected to provide a missing link between the genomic sequence
and nuclear architecture.

Although critical for our understanding of genome structure
and function, the identification and study of higher-order func-
tional domains has heretofore been hindered by the lack of large-
scale data sets that provide a continuous picture of multiple func-
tional genomic parameters across sufficiently large stretches of
human genome sequence. Under the ENCODE Project Consor-
tium (2004), a variety of functional experimental data types have
now been assayed across a selected 1% of the human genome.
These include activating and repressive histone modifications,
RNA transcription levels, and DNA replication timing (The EN-
CODE Project Consortium 2004). Many of these data types have
been collected from multiple cell types. However, they are all
present in the context of an ENCODE Consortium-designated
common cell line, HeLaS3. The ENCODE experimental data sets
are unprecedented not only in terms of scale, but also by the fact
that multiple distinct functional features have been measured
simultaneously over the same genomic regions as a continuous
function of genomic position. These data provide the first op-
portunity to address systematically the delineation of functional
domains in human chromosomes based on multiple indepen-
dently ascertained functional features.

Here we develop a computational approach for discrimina-
tion of domain-level features in ENCODE data types. We find
that higher-order patterns in histone modifications, transcrip-
tion, and DNA replication timing are generally concordant and
can be used to define discrete active and repressed functional
domains ranging from ∼20 kb to 1 Mb in size. Active and re-
pressed domains differ markedly from one another with respect
to annotated genomic features including gene content, CpG is-
lands, the spectrum of repetitive elements, and the density of
conserved nonexonic sequences. The overall active/repressed do-
main structure appears to be largely stable across two ENCODE
common (and unrelated) tissue types, suggesting that it repre-
sents a fundamental organizing principle of human genome
structure.

Results

Data types and scale

We focused our analyses on four ENCODE experimental data
types, including bulk RNA/transcriptional output, DNA replica-
tion time, histone acetylation (H3), and histone H3k27 trimeth-
ylation. Prior data suggest that the average values of all of these
data types vary over regions that are considerably larger than the
average gene (Bernstein et al. 2005; Azuara et al. 2006; Hoch-
edlinger and Jaenisch 2006). One of the key challenges in com-
paring one or more experimental data type sampled in a con-
tinuous, high-resolution fashion across the genome is to account
for scale of effect, i.e., at what genomic resolution (e.g., 25, 50,
100 kb, etc.) does a particular behavior become manifest for a
given ENCODE data type?

To address this, we aimed to normalize the diverse data
types to a common scale using wavelet analysis (Percival and
Walden 2000), which provides a framework for multiscale analy-
sis. By decomposing a given data type into increasingly coarse
scales, wavelet analysis allows broader and broader trends in the

data to reveal themselves. Wavelets are distinguished from Fou-
rier analysis (which also provides a decomposition of a given
signal in terms of multiple scales/frequencies) by the ability to
localize signal behavior in both frequency and “time” (in this
context, genomic position). As such, wavelets are far better suited
to detect domain-type behaviors that span discrete genomic in-
tervals. Wavelets have been used for the analysis of genomic data
to uncover local periodic patterns in DNA-bending profiles (Au-
dit et al. 2004) and gene-expression data (Allen et al. 2003; Jeong
et al. 2004) to predict protein structures (Lio and Vannucci 2000)
and to correlate a variety of genomic data on multiple scales in
microbial genomes (Allen et al. 2006), and a variety of other
applications (Lio 2003).

Overview of “wavelet segmentation” approach

Our approach is summarized in Figure 1 and consists of two key
steps. First is the representation of raw continuous genomic data
at a high scale via wavelet smoothing. The second is the appli-
cation of hidden Markov models (HMMs) to partition, in an un-
biased fashion, the ENCODE regions at any given scale into two
states based on the signal strength of the wavelet smoothed data
as a function of genomic position. Following this partitioning,
we assign labels of “active” and “repressed” to the states based on
their agreement with received notions of genomic functionality.
For example, active chromatin regions are believed to be charac-
terized by high levels of transcription, the presence of activating
histone modifications, and replication during the early S phase
(Cremer et al. 2000; Dillon 2006). It should be emphasized that
although this latter assignment follows a loose heuristic, the
HMM segmentation is executed without supervision. Segmenta-
tion into more than two states is easily accomplished under this
framework, and two states were chosen (1) to match the precon-
ceived notions of active and repressed domains, and (2) in order
to achieve the simplest possible model for study. All results pre-
sented here, including segmentation data, are publicly available
at http://noble.gs.washington.edu/proj/domain.

Transformation and segmentation of ENCODE functional data

We began by computing for each ENCODE data type the wavelet
smooth over a range of scales. We did not perform smoothing on
the TR50 data for this analysis because it is already highly
smoothed by construction (Karnani et al. 2007). Figure 1B shows
an example wavelet transformation of the H3ac signal across a
1.7-Mb region (ENm005; Chr21, 32, 668, 497-34, 363, 496) into
a continuous range of scales, from 2 to 200 kb. We then seg-
mented the data from each scale using a hidden Markov model.
An HMM is a statistical model that assumes observable data are
generated from a predetermined number of hidden background
probability distributions called “states” (see Methods). For this
application we employed a simple two-state model. The crucial
output from the model is the state assignment, which gives a
state label (“0” or “1”) to each observation. For segmentations
based on a single data type, these states typically correspond to
relatively low and high values, respectively. An exemplary seg-
mentation is shown in Figure 1 for the 64-kb scale in Figure 1B
(dashed line). Importantly, however, the inputs to the HMM can
be multivariate, which enables the computation of two-state seg-
mentations simultaneously based on multiple data types.

Selection of scale for domain-level analyses

For the purposes of our analyses, we wanted a single common
scale at which all data types could be analyzed. As wavelet scale
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increases, the individual segment lengths resulting from an
HMM segmentation will generally increase, with a concomitant
decrease in the number of segments. In accordance with the con-
cept of a domain, we desired both that the median segment
length be larger than the average gene size (∼25) (Lander et al.
2001) and that the minimum segment length exceed a value
representing the lower possible size limit on domains. We se-
lected this lower bound to be 10 kb, reasoning (1) that while
smaller than the average gene size, this interval was larger than
∼50% of human genes, and (2) that regions smaller than 10 kb
may begin to converge on the signals resulting from prominent
individual regulatory elements (e.g., some promoters and other
functional elements, where histone modification signals may ex-
tend for ∼2–5 kb). To visualize this dependence, we computed
wavelet transformations into a discrete range of scales and then
performed HMM segmentations for each scale (Supplemental Fig.
S1). This revealed that to achieve a minimum segment length of
10 kb required that we analyze a minimum wavelet scale of ∼64
kb for most data types. That scale, in turn, yielded median seg-
ment lengths of 80–350 kb (see below).

We also used these experiments to test the sensitivity of
domain boundaries to the choice of wavelet scale, and found
them to be robust. We performed four-track segmentations
(TR50, RNA, H3ac, and H3K27me3) on wavelet-smoothed data at
the 32-, 64-, and 128-kb scales. Generally, one expects fewer,
larger segments as the scale increases. So, in comparisons of the
64-kb results with the other two, we looked at each segment
boundary for the coarser scale, and located the closest seg-
ment boundary to it from the finer scale segmentation. For the
64- versus 32-kb comparison, 45 of the 115 64-kb segment
boundaries coincided exactly with boundaries from the 32-kb
segmentation. The median distance between boundary elements
was 5 kb (five observations at the common scale of 1 kb for
all datasets), and 80/115 boundaries fell within 10 kb. The maxi-
mum distance was 110 kb, followed by 84 kb. Those two bound-
aries corresponded to one segment in a region that had more
segments in the 64-kb segmentation than in the 32-kb seg-
mentation, breaking the general rule. For the 64-kb versus 128-kb
comparison, exactly half of the 86 boundaries in the 128-kb
segmentation coincided precisely with boundaries in the 64-kb

Figure 1. Wavelet segmentation approach for functional domain mapping. (A) Exemplary continuous functional data type (H3 acetylation) for
ENCODE region ENm005. (B) Continuous wavelet transform heatmap (“scalogram”) of H3 acetylation data. In the heatmap, the horizontal axis
represents genomic position, while the vertical axis represents wavelet scale. Each color in the scalogram represents the magnitude of the wavelet
coefficient at that genomic position and scale, ranging from blue (small magnitude) to white (large magnitude). Larger magnitude wavelet coefficients
imply a strong trend in the original data at that position and scale. The 64-kb scale is marked with a dashed red line. (C) Wavelet smoothed data at the
64-kb scale obtained using MODWT. Horizontal axis: genomic position. Vertical axis: wavelet coefficient at that position at the 64-kb scale. (D) Results
from two HMM state segmentation of data from C, based on fitting HMM to H3ac data over all ENCODE regions. The top row indicates state 1 regions
in black, while the bottom row indicates state 0 regions in black. The high state (state 1) is taken to represent active domains based on the assumption
that H3ac is an activating mark. (E) GENCODE gene annotations for ENm005. Note the correspondence between state 1/active and GENCODE gene
and density.

Human functional domains

Genome Research 919
www.genome.org

 on August 14, 2007 www.genome.orgDownloaded from 

http://www.genome.org


segmentation, and more than two-thirds (60/85) fell within
10 kb.

Domains based on segmentation of individual ENCODE data
types

We performed wavelet transformations into a 64-kb scale for the
following experimental data types measured in the ENCODE
common cell type HelaS3: activating histone modifications
(H3k4me1, H3k4me2, H3k4me3, H3ac, H4ac) (Koch et al. 2007),
repressive histone mark H3k27me3 (The ENCODE Project Con-
sortium 2007), and bulk RNA output (The ENCODE Project Con-
sortium 2007). Replication timing has been measured across EN-
CODE regions (Karnani et al. 2007), and is expressed as a con-
tinuous function of genomic position as the TR50 curve, which
represents the time from the start of the S phase (in hours), at
which 50% of a given genomic interval has replicated. The ex-
pected relationships between these data are that active chroma-
tin should exhibit higher levels of histone acetylation and H3K4
methylation, higher average levels of bulk RNA transcription,
and earlier replication time. Conversely, repressed chromatin is
expected to exhibit the inverse, with late replication time, loss of
activating histone modifications, low RNA output, and increased
levels of histone modifications such as H3K27Me3 associated
with gene silencing.

We computed single-variable segmentations based on an ap-
proximate wavelet scale of ∼64 kb for each of the data types,
except for TR50, which is already highly smoothed. The resulting
number of segments falling into each state for each data type are
shown in Table 1. We then measured the degree of concordance
between each pair of data types by counting the percentage of
bases for which the state assignments agreed or disagreed (Table
2). H3ac and H4ac displayed the highest degree of concordance
with the other activating histone modifications and the other
data types. This accords well with the proposal that histone
acetylation is an important marker of active and repressed chro-
matin domains (Struhl 1998).

Identification of domains based on multiple experimental data
types

Next, we asked whether we could exploit the rich ENCODE ex-
perimental resource to segment the ENCODE regions into active

and repressed domains using multiple data types simultaneously.
We computed a simultaneous two-state HMM segmentation (see
Methods) on the following four experimental data types: H3ac,
H3k27me3, RNA, and TR50. Only one representative activating
histone mark (H3ac) was chosen in order to consider the simplest
possible model that still encompassed the different functional
types of ENCODE data. Exemplary results are shown in Figure 2.
As evidence for the robustness of this multivariate segmentation
in summarizing the information contained in the individual data
types, this segmentation was found to be highly concordant with
each of the constituent single-variable segmentations: 89% con-
cordant with the H3ac segmentation, 80% with RNA, 62% with
H3K27me3, and 76% with TR50. The HMM delineated a total of
115 domains, 62 in state 0 and 53 in state 1, comprising 56% and
44% of the ENCODE regions, respectively (Table 3). The median
size of domains in state 1 was considerably smaller than state 0
(131 versus 189 kb). The fitted HMM probability distributions for
each state indicated that domains in state 1 regularly displayed
higher levels of H3ac and RNA output, combined with lower
levels of H3k27me3 and earlier replication time (lower TR50);
domains in state 0 generally had the inverse. It should be em-
phasized that the HMM recognized the aforementioned associa-
tions between functional genomic data types in an unsupervised
fashion.

In accordance with received concepts, we considered state 1
to represent active and state 0 to represent repressed domains. An
exemplary repressed domain is shown in Figure 2. ENCODE re-
gion ENm005 contains a subregion encompassing the OLIG1 and
OLIG2 genes. These genes encode developmental stage-specific
transcription factors necessary for formation of the cerebellum
(Ligon et al. 2006), and are embedded within a ∼400-kb region
that contains a high density of evolutionarily conserved noncod-
ing sequences; indeed, this entire domain displays conserved
synteny with the chicken OLIG1 and OLIG2 locus. This region
was readily delineated by the HMM and assigned to state 0. The
OLIG1/2 domain replicates late during the S phase, has low levels
of H3 acetylation and transcriptional activity, and displays high
levels of repressive histone modification H3k27me3. High levels
of H3k27me3 are found across numerous other developmental-
specific gene loci (Bernstein et al. 2005; Hochedlinger and Jae-
nisch 2006), the complete silencing of which is critical, since
overexpression in mature tissues may produce a malignant phe-
notype (Nichols and Nimer 1992).

High-confidence active and repressed regions from individual
segmentations

We next asked to what degree the domain map created using
simultaneous segmentation of four data types recapitulated
or extended the picture resulting from segmentations produced
using each of the constituent data types individually. To address
this, we identified regions that were designated active or re-
pressed in all individual data-type segmentations. Using this
approach, we defined 51 “high-confidence” active domains
comprising 6.1 Mb, and 43 high-confidence repressed domains
comprising 4.2 Mb. Of these 10.3 Mb, or more than one-third
of the ENCODE regions, all of the repressed regions and all
but 1.5 kb of the active regions were concordant with the si-
multaneous four-data-type segmentation. This result provides a
level of confidence that the multiple-data-type segmentation is
effective at capturing consensus features of the constituent data
types.

Table 1. Summary of segmentations based on individual data
types

Number of segments Total size of state (Mb)

Active Repressed Active Repressed

H3ac 57 69 12.5 17.3
H4ac 55 61 13.6 16.3
H3K4me1 75 88 12.8 17.0
H3K4me2 77 95 10.9 18.9
H3K4me3 82 101 9.4 20.5
H3K27me3 59 50 18.9 11.0
RNA 86 95 12.3 17.1
TR50 48 46 16.7 12.2

Shown for each data type are the number of segments in each state and
the cumulative size of each state (Mb) derived by summing the lengths of
the individual segments. Note that the total size (active + repressed) of
both states varies slightly between individual data types because of miss-
ing data in some data sets versus others.
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Distribution of genes and transcripts between active
and repressed domains

We next considered to what degree annotated genomic features
were enriched (or depleted) in either the active or the repressed
state. To address this issue, we computed the overlap of each state
with a variety of annotated features including the transcriptional
start and termination sites of known genes and annotated mRNA
and spliced EST transcripts, CpG islands, various classes of trans-
posable (repetitive) elements, and evolutionarily conserved non-
coding sequences (Figure 3; Table 4). For each feature, we com-
puted enrichment/depletion percentages relative to random ex-
pectation and derived an empirical P value for the significance of
the observation via permutation testing (see Methods). We also
computed adjusted P-values using the Benjamini–Hochberg cor-
rection (Benjamini and Hochberg 1995) for controlling the false
discovery rate (FDR) in a multiple testing scenario (see Methods).

We observed significant enrichment in state 1 for many el-
ements expected to be associated with active chromatin terri-
tories, including transcriptional start and stop sites for genes,
mRNAs, spliced ESTs, and CpG islands. The marked disparity in
gene and transcript content between active and repressed do-
mains prompted us to ask whether particular classes of genes
were enriched in active versus repressed domains, and vice versa.
To address this question, we examined available gene ontology
(GO) annotations (Ashburner et al. 2000) for RefSeq genes and
mapped these to GENCODE (Harrow et al. 2006) genes. This
analysis revealed marked overrepresentation (P <1.44 � 10�13)
within repressed domains of genes involved in signal transduc-
tion, including a significant complement of olfactory G-protein-
coupled receptors (28/61 genes; Supplemental Tables S1, S1b).
This result accords well with the general observation that many
such genes are only active within a limited range of tissues. To
confirm that the resulting enrichment for genes in active seg-
ments was not driven primarily by the inclusion of RNA tran-
scription in the model, we compared the results with a three-
track segmentation comprising H3Ac, H3K27Me3, and TR50
only. This resulted in a domain map 78% concordant with the
four-state RNA-containing model, and exhibited significant en-
richment of transcriptional start sites (known genes, 40%;
mRNAs, 45%; and spliced ESTs, 67%).

Distribution of transposable elements between active
and repressed domains

Viewed in aggregate, transposable (repetitive) elements identified
by RepeatMasker (Jurka et al. 2005) exhibit a balanced distribu-
tion between active and repressed domains. However, we found
marked disparities for individual classes of repetitive elements.
L1 LINES, DNA repeats, and LTR elements are all enriched in state

0 regions (repressed). However, Alu SINES are enriched in state 1
regions, and to a significantly higher degree than the other ele-
ments. Alus are known to be enriched in gene-rich regions
(Batzer and Deininger 2002), and are believed to insert preferen-
tially into open or active chromatin territories.

Domain architecture and noncoding evolutionary conservation

Next, we considered to what degree the four-data-type domain
map captured the distribution of noncoding evolutionary con-
servation, and also to what degree the domain map could be
refined by incorporating evolutionary conservation as an inde-
pendent data type.

Evolutionarily conserved noncoding sequences have been
proposed to mark the locations of functional elements important
for gene and genomic regulation (Hardison 2000). Although cis-
regulatory elements such as enhancers can operate at consider-
able distances (Li et al. 2002; Nobrega et al. 2003; Spitz et al.
2003), there is a clear deterioration of efficacy with increasing
distance from target promoters (Harju et al. 2005). Therefore, if
conserved noncoding sequences harbor cis-regulatory elements
important for gene regulation, the a priori expectation is that
they should exhibit increased density in active regions of the
genome. To explore this hypothesis, we examined the distribu-
tion of nonexonic (i.e., noncoding and non-UTR) conserved se-
quences identified by the ENCODE Multi-Species Alignments
Analysis Group (MSA) (The ENCODE Project Consortium 2007).
Contrary to expectation, we found active domains to be depleted
in conserved nonexonic sequences, with 34% of all CNEs in ac-
tive domains versus 66% in repressed; see Table 4. This corre-
sponded to an active domain depletion of 18% over random
expectation.

We then asked to what degree incorporation of noncoding
evolutionary conservation as an independent data type would
impact the domain map. We transformed the MSA CNE data into
a continuous density function by calculating the fraction of CNE
bases in a 3-kb sliding window (where 3 kb represents the 99.9th
percentile of the length of elements in the MSA CNE data set).
We then performed wavelet analysis on this continuous noncod-
ing conservation density function as described above and com-
puted a new segmentation based on the individual CNE density
data type, as well as a simultaneous five-data-type segmentation
(H3ac, RNA, H3k27me3, TR50, and noncoding conservation).

The individual CNE segmentation was poorly concordant
with each of the other four individual-data-type segmentations,
and only 62% concordant with the five-data-type segmentation.
The domain map based on five data types, however, was highly
concordant (98%) with the four-data-type segmentation de-
scribed above. The HMM delineated 53 active and 61 repressed

Table 2. Concordance between segmentations of individual data types

H3ac H4ac H3K4me1 H3K4me2 H3K4me3 H3K27me3 RNA

H4ac 85%
H3K4me1 73% 80%
H3K4me2 86% 80% 77%
H3K4me3 80% 73% 68% 87%
H3K27me3 59% 63% 62% 55% 52%
RNA 75% 74% 67% 72% 68% 49%
TR50 70% 75% 74% 69% 60% 70% 61%

Data in each cell represents the concordance (%) between segmentations of the two corresponding (row, column) data types. Concordance is measured
by counting the percent of genomic bases for which the state assignments agree in both segmentations.

Human functional domains

Genome Research 921
www.genome.org

 on August 14, 2007 www.genome.orgDownloaded from 

http://www.genome.org


domains, totaling 44% (12.9 Mb) and 56% (16.3 Mb) of the
ENCODE regions, respectively.

Next, we examined the distribution of genes and other an-
notated sequence features in each state (Supplemental Fig. S2;
Supplemental Table S2). This analysis revealed that incorpora-
tion of noncoding conservation had almost no effect on the dis-
tribution of the annotated features we considered between re-
pressed and active domains. For example, the fraction of
GENCODE (Harrow et al. 2006) annotated transcription start
sites in active domains was 78.3% for the four-data-type segmen-

tation and 78.5% for the five-data-type segmentation. The en-
richment of CNEs themselves did change, although not dramati-
cally, with the active domains in the five-data-type segmentation
depleted in CNEs by 23% over random expectation (uncorrected
P-value of 0.02).

Evidence for stability of domain architecture across unrelated
tissue types

The distribution of genes and transcripts between active and re-
pressed domains suggested that these domain definitions should

Figure 2. Simultaneous segmentation of four ENCODE functional data types. (A) Exemplary results from eight ENCODE regions ENm001 (1.8 Mb),
ENm002 (1 Mb), ENm003 (600 kb), ENm004 (1.7 Mb), ENm005 (1.6 Mkb), ENm006 (1 Mb), ENm008 (1 Mb), and ENm012 (1.2 Mb). For each
ENCODE region subpanel, wavelet smoothed data are displayed as tracks ordered top-to-bottom as follows: TR50 (black), RNA (blue), H3K27me3
(purple), and H3ac (orange). State assignments (domains) resulting from simultaneous HMM segmentation are shown at bottom as black rectangles;
see Fig. 1 for additional description. (B) Close-up of ENCODE region ENm005, with bracketed intervals indicating exemplary domains in states 0 and
1. State 1 generally corresponds to higher levels of RNA and H3ac and lower levels of TR50 and H3K27me3, and is therefore assigned the active label,
while state 0 is correspondingly assigned repressed. The latter contains the oligodendrocyte-specific OLIG1 and OLIG2 genes, which are repressed in the
tissues studied under ENCODE.
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be persistent across tissue types. In the domain maps based on
either four- or five-data types, ∼78% of transcriptional start sites
of GENCODE genes fall into the active state (P <0.0001). This
figure is surprisingly high, given that only a single tissue type was
sampled and that, a priori, only a fraction of genes (∼30%) is
expected to be actively transcribed in the context of a given tis-
sue. Similarly, ∼88% of spliced EST 5� ends in public databases are
found within active domains, yet these transcripts represent ag-
gregate analyses of dozens of different human cell types. These
data suggest that at any given time, a significant majority of
genes in the genome lie within active domains that are permis-
sive for transcriptional activity. As such, restructuring of higher-
order functional domains may not be a prerequisite for activa-
tion and regulation of most genes.

Of the data types studied above, H3k27me3 and replication
timing data were available only for HeLa cells. However, activat-
ing histone modifications (H3ac, H4Ac, H3k4me1, H3k4me2,
H3k4me3) and RNA data were available for the second ENCODE

Consortium common cell type, EBV-transformed primary lym-
phoblastoid cells (line GM06990, Coriell). We therefore asked to
what degree the domain segmentations produced for these indi-
vidual data types would be concordant between two unrelated
tissues. Overall, we found these figures to be quite high, with
activating histone modifications averaging 74% concordance,
and 81% RNA. Taken together, the results from individual data
types and the distribution of annotated genomic features be-
tween active and repressed domains delineated on the basis of
four or five data types strongly suggest that the functional do-
mains we delineated are likely to be persistent across tissue types.

Discussion

The concept that the human genome in vivo is partitioned into
a series of functional domains is widely espoused in the litera-
ture. Heretofore, however, this model has been based largely on
extrapolation from limited studies of specific developmentally
regulated mammalian multigene loci under control of distal
regulatory elements (Dean 2006), and from analogous studies in
avians (Felsenfeld et al. 2004) and flies (Drewell et al. 2002). Such
domains exhibit early replication and high levels activating his-
tone modification when their constituent genes are transcrip-
tionally active or committed, and later replication time, deple-
tion of activating marks, and higher average levels of repressive
histone modifications when transcriptionally silenced. Expand-
ing on these characteristics are observations that coregulated
genes tend to cluster along human chromosomes (Dolganov et
al. 1996; Su et al. 2004), and that silenced developmental regu-
lators acquire repressive histone modifications in a domain-like
pattern (Bernstein et al. 2006). Prior studies have therefore col-
lectively created the expectation that human gene loci in an
active versus repressed functional state should be differentiable
on the basis of histone modification patterns, transcriptional per-
missivity, and timing of replication during the S phase. Previ-
ously, however, neither the requisite data sets nor the analytical
tools have been available to evaluate the generality of this con-
cept.

Here we have shown that the ENCODE regions are readily
divisible into extended domains with common characteristics
measured by a combination of functional genomic assays. Al-
though the ENCODE territories comprise only 1% of the ge-
nome, they were selected to capture the diversity of human ge-
nomic domains, including extremes of gene density and non-
coding evolutionary conservation. As such, we anticipate that
our basic conclusions should be extensible to the genome at
large.

We have developed an analytical paradigm combining
wavelet analysis with hidden Markov model segmentation that
should likewise be extensible horizontally across the genome,
and also vertically into different cell and tissue types as more data
become available in each dimension. This paradigm may be par-
ticularly useful in the context of model organisms, where the
acquisition of genome-wide data is more readily accomplished.

It is perhaps surprising that the human genome is so readily
partitioned into regions with distinct functional phenotypes on
the basis of relatively few experimental data types. This suggests
that, for a given tissue type, additional functional experimental
data types may not alter the basic domain map dramatically.
Rather, it is likely that data such as additional repressive histone
modifications (e.g., H3k9 methylation) or additional markers of
active chromatin such as DNaseI sensitivity will help to refine the

Table 3. Summary of segmentations based on four data types
(H3ac, H3K27me3, RNA, TR50) segmentation results

Active Repressed

Number of segments 53 62
Total size (Mb) 12.9 16.3
Average segment length (kb) 244 263
Median segment length (kb) 131 189
Minimum segment length (kb) 28 17

Shown are the number and size of segments (as in Table 1), together with
the average, median, and minimal segment lengths.

Figure 3. Enrichment and depletion of annotated genomic features in
active and repressed domains. Data are based on simultaneous segmen-
tation of four data types (H3ac, H3K27me3, RNA, TR50). Green bars
correspond to active state regions, red bars to repressed regions. Values
(Y axis) indicate percentage enrichment or depletion over random ex-
pectation. For example, GENCODE TxStarts are ∼71% enriched over ex-
pectation in active regions and ∼61% depleted under expectation in
repressed regions (see Table 4 for corresponding data). Shaded bars re-
flect enrichment or depletion that is not significant at the 0.01 level based
on the label permutation test (see Methods).
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borders of domains. These borders may be particularly important
for the identification of regulatory elements that exert insulator
or domain boundary function (Bell et al. 2001).

It is even more surprising that the domain architecture re-
mains largely intact across two unrelated tissues, cervical carci-
noma cells (HeLa) and B-lymphoblastoid cells (GM06990), at
least at the level of the individual ENCODE data types that we
studied. Although this observation awaits validation in further
tissue environments and the inclusion of additional experimen-
tal data types, it suggests a model in which the majority of the
genome (∼75%) remains in a predictable functional state, where
additional large-scale remodeling of domain architecture is not
required for gene activity or repression. It also raises the possi-
bility of a universal functional “skeleton” that is common be-
tween cell types, and may in turn reflect some basic constraints
of nuclear organization. On the other hand, the fact that up to
25% of the genome may be contained in large-scale functional
domains that do vary between tissues suggests that the regulatory
mechanisms underlying such remodeling must be pervasive. It
will be of considerable interest to define such domain-stable and
domain-variable regions in the genome through the study of
multiple cell types, as this may point the way to heretofore un-
appreciated regulatory connections between diverse cis-linked
genes.

One intriguing feature of our domain map is the degree to
which highlighting genomic territories by integrating multiple
functional data types exposes an organization that cannot be
readily predicted from analysis of large-scale patterns of evolu-
tionary conservation alone. Although it is commonly assumed

that conserved noncoding sequences may be involved princi-
pally in gene activation (e.g., as enhancers), repression of gene
activity is an equally important regulatory faculty; indeed, in the
case of certain transcriptional factors involved in development
and differentiation, repression is equally critical because incom-
plete silencing may potentiate malignancy.

In summary, our results collectively provide important new
insights into the functional organization of the human genome
and suggest a general analytical framework for approaching
higher-level functional domains in complex genomes.

Methods

Wavelet analyses
The basis for understanding wavelet transforms is the continuous
wavelet transform (CWT) (Torrence and Compo 1998; Percival
and Walden 2000). Mathematically, for a given time series x(t),
the CWT W(a, t) for given scale a and time t is given by

W�a,t� ≡
1

�a
�−�

�

x�u���u − t
a � du,

where �(s) is the wavelet function of choice, satisfying the basic
properties ∫��� �(u) du = 0 and ∫��� �2(u) du = 1. Simple examples
of �(s) include the Haar wavelet and the so-called “Mexican hat”
wavelet. The wavelet coefficient W(a, t) captures information
about the local behavior of x at scale a near time (genomic posi-
tion, in our case) t.

The discrete wavelet transform (DWT) can be thought of as

Table 4. Enrichment and depletion of annotated genomic features in active and repressed domains based on the four-track simultaneous
segmentation

Element
State 0

repressed State 1 active
State 0

enriched
State 0
P-value

State 0
adjusted
P-value

State 1
enriched

State 1
P-value

State 1
adjusted
P-value

GENCODE TxStarts 588 (0.217) 2121 (0.783) �0.611 0 0 0.771 0 0
mRNA TxStarts 917 (0.199) 3698 (0.801) �0.644 0 0 0.812 0 0
Spliced EST TxStarts 15,189 (0.116) 115,531 (0.884) �0.792 0.0001 0.000246 0.999 0.0013 0.002773
EST Overlap 9,250,097 (0.486) 9,776,837 (0.514) �0.128 0.0024 0.0048 0.162 0.0005 0.001143
CpG Island Overlap 69,104 (0.183) 308,325 (0.817) �0.672 0 0 0.848 0 0
All repeats (RepeatMasker) 7,266,816 (0.550) 5,952,407 (0.450) �0.015 0.1915 0.1915 0.018 0.1738 0.1794
DNA transposons 491,817 (0.605) 320,946 (0.395) 0.085 0.0262 0.034933 �0.107 0.0145 0.0232
LINEs (L1) 2,718,900 (0.663) 1,379,214 (0.337) 0.189 0 0 �0.239 0 0
LINEs (L2) 596,075 (0.597) 402,723 (0.403) 0.07 0.0559 0.06389 �0.088 0.0438 0.05191
LTRs 1,354,800 (0.659) 700,604 (0.341) 0.182 0.0001 0.000246 �0.229 0.0001 0.000246
SINE Alus 1247416 (0.329) 2538678 (0.671) �0.409 0 0 0.516 0 0
Simple repeats 298,957 (0.433) 391,776 (0.567) �0.224 0.006 0.01129 0.283 0.0076 0.01351
Conserved elements (ENCODE MSA),

strict 332,652 (0.466) 381,347 (0.534) �0.165 0.0312 0.03840 0.208 0.0226 0.03144
Conserved elements (ENCODE MSA),

moderate 706,557 (0.483) 756,471 (0.517) �0.134 0.0298 0.03814 0.169 0.0181 0.02633
Conserved elements (ENCODE MSA),

loose 1,757,850 (0.504) 1,726,910 (0.496) �0.096 0.0174 0.02633 0.121 0.0105 0.01768
Conserved elements (ENCODE MSA),

nonexonic 589,993 (0.660) 303,737 (0.340) 0.131 0.0961 0.1025 �0.184 0.0590 0.06510

Column 1 indicates genomic annotations based on genes and transcripts, CpG islands, repetitive elements, and evolutionary conservation. Rows 1–3:
Total number of GENCODE transcriptional start sites, mRNA 5� ends, and 5� ends of spliced ESTs. Row 4: Total percent of bases overlapped by all ESTs
(spliced and unspliced). Total ESTs. Row 5: Total percent of bases overlapped by CpG islands. Rows 6–12: Total percent of bases overlapped by all
repetitive elements; DNA repeats; L1 LINEs; L2 LINEs; LTR elements; Alu SINEs; and simple repetitive sequences. Rows 13–15: Total percent of bases
overlapped by different stringencies (strict, moderate, loose) of conserved sequence elements identified by the ENCODE MSA group. Row 16: Percent
bases overlapped by nonexonic noncoding MSA conserved sequences at moderate stringency (=MSA moderate minus GENCODE exons). Columns 2–3
contain the number of elements (or the number of bases of each element) in each state, with the fraction of the total in parentheses. Columns 4–9 show
the relative proportion of enrichment or depletion of the element within each state over the expected value, the corresponding P-values, and an adjusted
P-value. P-values and adjusted P-values are computed via permutation of the state labels using 10,000 iterations (see Methods).
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a discretization of the CWT across evenly spaced values of t and
dyadic scales aj = 2j�, where � is the resolution of x(t). For fixed
level J (scale 2J �), the DWT allows for a decomposition

x = �
j=1

J

Dj + SJ,

of x into a sum of the wavelet smooth SJ and wavelet details Dj,
each of which is a time series the same length as x. This decom-
position is called a multiresolution analysis. Each Dj represents
the local variation in x at scale 2J�, while SJ = x � ∑J

j=1 Dj can be
thought of as a smoothed version of x, with the details at lower
scales removed. The maximal overlap DWT (MODWT) (Percival
and Walden 2000) is a modification of the DWT that also gives
rise to the multiresolution analysis above, but which, among
other things, allows input sequences x of arbitrary length (the
DWT requires the length of x to be a power of 2), at the cost of
requiring more, redundant, intermediary wavelet coefficients.

For this analysis we use the Daubechies “least asymmetric”
LA(8) wavelet filter (Percival and Walden 2000) (discrete analog
of the wavelet function �[s]). This is a general purpose wavelet,
whose “width” (8) strikes a balance between good smoothing
properties and lack of significant boundary effects. We use the R
package waveslim for computing multiresolution analyses, using
reflection boundary conditions.

Wavelet analyses require equally spaced data. Each
ENCODE data type has a nominal spacing interval based on the
assay used to collect the data (∼50 base pairs [bp] for RNA tran-
scription, ∼1 kb for Sanger histone modifications, for instance).
However, all data types have gaps beyond the nominal spacing,
due to assay-specific issues such as repeats in the original ge-
nomic sequence. As a preprocessing step to wavelet analysis, we
thus interpolate through the gaps using two methods. For gaps
<2 kb, we linearly interpolate the available flanking data. For
gaps >2 kb, we fill using an interpolated loess curve, where the
width of the loess window is chosen to be 50 times the gap length
(R function loess, default weights).

Hidden Markov models
A Hidden Markov model (HMM) is a statistical model for systems
assumed to be governed by a stochastic process defined by a
predetermined finite number of hidden states (Rabiner 1995).
Each state is associated with a probability distribution (the emis-
sion probabilities) from which the observed outputs are gener-
ated. The transition from one state to another is also defined by
a random process, so there is a probability associated with each
pair of states; collectively these are the transition probabilities.

In our application, the problem is to simultaneously learn
the model parameters defining the emission and transition prob-
abilities and the most likely states corresponding to each ob-
served value. Our outputs (RNA transcription levels, DNA repli-
cation timing, etc.) are continuous variables, so we require con-
tinuous emission probability distributions. We assume
independent Gaussian distributions for all emission probabili-
ties.

We used the HMMSeg software package (see also http://
noble.gs.washington.edu/proj/hmmseg; Day et al. 2007) for
computations. Each model is trained using expectation maximi-
zation, repeated 10 times from random initial parameters. The
trained model with the highest total probability is used to find
the single state path with the highest probability using the Vit-
erbi algorithm (Rabiner 1995). In order to segment multiple
tracks at once, HMMSeg allows for multivariate emission prob-
abilities, defined by multivariate, independent Gaussian distribu-
tions (diagonal covariance structure).

Data processing

Raw data
All data except for the MSA conserved sequences are download-
able from the UCSC browser, under the “ENCODE” section, us-
ing hg17 coordinates. Specific track names are as follows: bulk
RNA/transcriptional output: encodeAffyRnaHeLaSignal; DNA
replication time: encodeUvaDnaRepTr50; Histone H3 acetylation
(H3): encodeSangerChipH3acHela; and Histone H3k27 trimeth-
ylation: encodeUcsdChipH3K27me3. We constructed a continu-
ous track representing the density of conserved nonexonic se-
quences identified by the ENCODE MSA group by computing the
fractional occupancy in a sliding 3-kb window, stepping at 1-kb
intervals throughout the ENCODE regions. This track is available
at http://noble.gs.washington.edu/proj/domain/.

Preprocessing
Prior to wavelet processing, data are preprocessed using the linear
and loess interpolation strategy described in the main text, pro-
ducing equally spaced data at intervals consistent with the origi-
nal resolution: 50 bp for RNA and DNA replication timing, 500
bp for H3K27me3, and 1000 bp for H3ac. To reduce noise, the
interpolated RNA data are thresholded by replacing all negative
values with zeros. The conservation density data set is equally
spaced by construction, at a resolution of 1000 bp.

Wavelet smoothing
Each data set except for TR50 is smoothed out to a common scale
of 64 kb using MODWT wavelet smoothing, and using R func-
tion mra from the wavelslim package: parameter settings are
method = “modwt,” wf = “la8,” boundary = “reflection,” and
n.levels = 10 for RNA and replication timing, seven for
H3K27me3, and six for H3ac and conservation density. For the
multitrack segmentations, the resulting smoothed data sets are
then each interpolated at the 1000-bp resolution interpolated
coordinates for H3ac.

Data were not available for DNA replication timing in one of
the 44 ENCODE regions (ENm011), because this region is not
represented on the Affy ENCODE 1.0 tiling DNA microarray
used to generate data. As such, only data for the remaining 43
ENCODE regions are used in the subsequent analysis.

HMM segmentation
We used the HMMSeg software package (Day et al. 2007) to per-
form individual and simultaneous multitrack segmentations of
the processed datasets (43 files per data set), with the following
parameter settings: num-states = 2, num-starts = 10, and max-
iter = 100. Default values are used for the rest of the parameters.
HMMSeg is freely available at http://noble.gs.washington.edu/
proj/hmmseg/.

Enrichment of annotated elements
All annotated elements are available publicly through the UCSC
Genome Browser. The expected overlap of any element with a
specified state in an arbitrary segmentation is just Nd, where N is
the total number of elements (or total number of base pairs oc-
cupied by the elements), and d is the fraction of the segmented
area covered by the specified state. If Ns is the observed number
of elements in the given state, then the relative enrichment over
the expected value is (Ns � Nd)/Nd. In the special case of the
conserved noncoding sequence elements, d is corrected to ex-
clude coding exons and UTRs from the total segmented area.
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Significance testing
Enrichment P-values are computed as follows. A segmentation
divides the ENCODE regions into alternating segments with la-
bels 0 and 1. We randomly shuffled the state labels on each
segment (in particular, they no longer need to alternate) and
recomputed the enrichment/depletion percentage in each of the
two new states. We repeated this procedure 10,000 times. The
reported P-value is the fraction of times that the shuffled enrich-
ment values are as, or more, extreme than the observed enrich-
ment. We also report adjusted P-values using the Benjamini–
Hochberg correction (Benjamini and Hochberg 1995) for control-
ling the false discovery rate in a multiple-testing scenario,
computed for each segmentation using all permutation-
computed P-values for both states using the R function p.adjust
from the stats package.

GO annotations
We used the GO�TermFinder software (Boyle et al. 2004), which
assesses the statistical signficance of a given subset of genes an-
notated using the hierarchical annotation set forth by the Gene
Ontology (GO) Consortium (Ashburner et al. 2000).

We applied the software to our segmentations, using the set
of Ensembl (Hubbard et al. 2005) genes (v37), many of which
include annotations using the GO standard.
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