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The increasing stream of data produced by the Human Genome Project and similar

work on other species requires sophisticated computational analysis. This dissertation

describes Meta-MEME, a software toolkit for modeling families of related proteins.

Meta-MEME produces probabilistic models that provide insight into the structural

and functional operation of proteins, and may be used to discover functional and

evolutionary relationships among proteins. In addition, the dissertation introduces

Family Pairwise Search, a heuristic homology detection algorithm based upon the

linear combination of multiple pairwise sequence comparison scores.

Meta-MEME combines two existing technologies|motif discovery via

expectation-maximization and hidden Markov modeling (HMMs)|to build motif-

based models of protein families. A motif is a subsequence that is conserved across

all or most members of a protein family. Biologically, a motif corresponds to a region

of the protein that is essential for the proper functioning or structural conformation of

the protein. MEME is an unsupervised motif discovery tool that, given an unaligned

set of related protein or DNA sequences, builds statistical models of one or more

motifs. Meta-MEME combines these motif models within a hidden Markov model

framework. A Meta-MEME model improves upon the collection of individual motif

models by including information about the typical order and spacing of motifs within

the family.
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Meta-MEME provides two important improvements over existing protein

HMMs. First, because Meta-MEME's models focus on motif regions, they are much

smaller than traditional protein HMMs. This decreased size makes the models more

computationally e�cient and allows the models to be trained from smaller data sets.

Second, the generalized topology of Meta-MEME models implies a complex model of

molecular evolution, allowing for the repetition or shu�ing of motif-sized elements

within a single protein sequence.

The models produced by Meta-MEME provide biologists with insight into

the characteristics of the given family of related proteins. Furthermore, the models

may be used to search protein databases for previously unidenti�ed homologs and to

generate multiple alignments of the motif regions of the proteins. Family Pairwise

Search, although lacking an explicit model and accurate statistics, is much more

e�cient than Meta-MEME and provides better homology detection performance.
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Chapter I

Introduction

The Human Genome Project is a �fteen-year, three billion dollar research

e�ort coordinated by the U.S. Department of Energy and National Institute of Health,

the goal of which is to discover the entire sequence of the human chromosome by the

year 2005 [75]. This is a monumental task, involving the sequencing of approximately

100 000 genes in 3 billion base pairs of DNA. At the same time, the genetic sequences of

other organisms, including bacteria, yeast and mice, are being decoded. The GenBank

database of publicly available DNA sequences currently contains over 1.6 million

entries [55], and the number of known sequences is increasing rapidly as various

genome projects come on line [52, 54, 81].

This wealth of data represents a challenge for molecular biologists. Deter-

mining the sequence of As, Cs, Gs and Ts that make up the human genetic code

is only the �rst step in the e�ort to understand the functions of the genes encoded

therein. Ultimately, biologists hope to understand how the genes encoded on the

chromosome work individually and in concert to a�ect and direct the development

of the human organism. This knowledge, in addition to being of intrinsic scienti�c

interest, will allow researchers to predict, prevent and treat a wide range of diseases

that involve a genetic component. However, the task of discovering the function of

each newly-sequenced gene is expensive and time-consuming. Given the rapid pace

at which sequencing centers are now producing sequence data, functional analysis in

1
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the wet lab can only be applied to a small percentage of the new data.

On the other hand, since biological sequence data can be accurately rep-

resented in a computer database, the wealth of new sequence data provides an op-

portunity for computer scientists. Relatively fast analyses of these data can provide

insight into the functions of new genes, both by analyzing the genes themselves and

by teasing out similarities with genes for which functional information is already

available. Computational analyses of biological sequence data may never replace the

wet lab techniques of the molecular biologist. However, by mining statistically signif-

icant trends from genetic databases, the computer scientist can direct the attention

of molecular biology, uncovering biologically signi�cant functional information that

might otherwise have remained undiscovered.

This dissertation presents a set of computational techniques for the analy-

sis of genetic sequence data. Speci�cally, the methods developed here can be used

to characterize families of evolutionarily related proteins. Drawing upon techniques

from arti�cial intelligence and speech recognition, we produce probabilistic models

of protein families. These models provide biologists with insight into the general

characteristics of the given family, and may be used to identify evolutionarily related

positions within the protein sequences and to search protein databases for previously

unidenti�ed family members. The accompanying software toolkit, Meta-MEME, im-

plements the algorithms described herein. Meta-MEME is freely available as ANSI

C source code and is accessible over the web for use by biologists [63].

The general approach adopted here is Bayesian1 in the sense that every

modeled event is represented by a random variable. Bayesian modeling involves se-

lecting a set of relevant random variables and a corpus of relevant prior knowledge,

then using the given evidence, the background knowledge, and the laws of proba-

bility to draw conclusions. Several useful introductions to Bayesian statistics are

available [110, 132].

In keeping with this approach, we begin by stating explicitly some of the

1Thomas Bayes (1702{1761) was an English mathematician and cleric who developed the foun-
dation of what would later become probability theory.
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background knowledge that informs the models produced by Meta-MEME. Sec-

tion I.A describes the biological background knowledge that Meta-MEME employs.

In addition to basic knowledge about what proteins consist of and how they work,

Meta-MEME assumes that proteins can be best described as consisting of a series

of motifs. In this context, a motif is a structural or functional unit that appears

in a similar form in many evolutionarily related proteins. Meta-MEME's models are

motif-based in the sense that they assume that most of the relevant information about

a protein is concentrated in these motif regions. Meta-MEME assumes that, besides

the contents of the motif regions, the only important information about a protein

resides in the order and spacing of the motifs within the protein. Thus, the prior

information that proteins are motif-based allows Meta-MEME to focus its modeling

e�orts on these relatively small regions, ignoring the noisier, spacer regions between

motifs.

The motif-based nature of proteins �ts well with a second piece of back-

ground knowledge implicit in Meta-MEME, namely, that molecular evolution is

largely domain-based [119, 36, 45, 25, 44, 103, 95]. A domain is a separately evolved,

independent structural unit of a protein. Generally speaking, domains are larger than

motifs, and a single domain may contain multiple motifs. In a domain-based model

of evolution, proteins evolve via point mutation, but also by less well-understood,

large-scale mechanisms such as gene duplication, exon shu�ing and transposable el-

ements. The topology of the Meta-MEME's models re
ects this domain-based view

of molecular evolution.

In addition to providing an overview of the relevant molecular biology, Chap-

ter I describes three important tasks in this domain that can be addressed by compu-

tational means: multiple alignment, phylogenetic inference, and homology detection.

Chapter I also introduces the class of statistical models, called hidden Markov models,

that will be employed in the modeling of protein families.

Chapter II describes in detail the architecture of the protein models used

by Meta-MEME, as well as the algorithms employed in building, training, and using
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these models.

In Chapter III, an alternative method for solving the homology detection

task is presented. This method, called Family Pairwise Search (FPS), is a relatively

simple algorithm that involves combining the scores of multiple pairwise comparisons.

FPS was developed as a baseline for comparison with other homology detection meth-

ods, and its excellent performance is surprising [59]. Accordingly, in Chapter III we

develop a hybrid, motif-based extension to FPS and show that incorporating motif

models into the algorithm leads to still better performance.

The �nal chapter of the dissertation presents experimental results that ex-

amine Meta-MEME's e�ectiveness on the multiple alignment and homology detection

tasks. The primary conclusion is that Meta-MEME, in its current instantiation, fails

to improve upon the homology detection performance of its non-HMM counterpart,

MAST. A multi-motif model of the type constructed by Meta-MEME should be able

to exploit information about the order and spacing of motifs within the family. This

meta-motif information is not available to a method that treats motif models sepa-

rately. The assumption that this information is valuable in detecting homologs is not

violated by Meta-MEME's poor performance. Rather, the experiments reported in

Chapter IV suggest that the usual expectation-maximization training algorithm for

HMMs is inappropriate for Meta-MEME models. Furthermore, the relatively poor

performance of purely motif-based methods, compared with that of the motif-based

extension of Family Pairwise Search, suggests that a method which focuses on motifs

but retains information from non-motif regions provides the best possible homology

detection performance.

I.A Biology background

I.A.1 Genes and proteins

Genes are commonly understood as discrete genetic elements, each of which

determines a particular phenotypic trait. The gene, for example, for eye color de-
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TACACAGAGAGCCACGGCCAGGGCTGAAACAGTCTGTTGAGTGCAGCCATGGGGGACGTCCTGGAACAGTTCTTCATCCTCACAGGGCTGCTGGT
GTGCCTGGCCTGCCTGGCGAAGTGCGTGAGATTCTCCAGATGTGTTTTACTGAACTACTGGAAAGTTTTGCCAAAGTCTTTCTTGCGGTCAATGG
GACAGTGGGCAGTGATCACTGGAGCAGGCGATGGAATTGGGAAAGCGTACTCGTTCGAGCTAGCAAAACGTGGACTCAATGTTGTCCTTATTAGC
CGGACGCTGGAAAAACTAGAGGCCATTGCCACAGAGATCGAGCGGACTACAGGGAGGAGTGTGAAGATTATACAAGCAGATTTTACAAAAGATGA
CATCTACGAGCATATTAAAGAAAAACTTGCAGGCTTAGAAATTGGAATTTTAGTCAACAATGTCGGAATGCTTCCAAACCTTCTCCCAAGCCATT
TCCTGAACGCACCGGATGAAATCCAGAGCCTCATCCATTGTAACATCACCTCCGTAGTCAAGATGACACAGCTAATTCTGAAACATATGGAATCA
AGGCAGAAAGGTCTCATCCTGAACATTTCTTCTGGGATAGCCCTGTTTCCTTGGCCTCTCTACTCCATGTACTCAGCTTCCAAGGCGTTTGTGTG
CGCATTTTCCAAGGCCCTGCAAGAGGAATATAAAGCAAAAGAAGTCATCATCCAGGTGCTGACCCCATATGCTGTCTCGACTGCAATGACAAAGT
ATCTAAATACAAATGTGATAACCAAGACTGCTGATGAGTTTGTCAAAGAGTCATTGAATTATGTCACAATTGGAGGTGAAACCTGTGGCTGCCTT
GCCCATGAAATCTTGGCGGGCTTTCTGAGCCTGATCCCGGCCTGGGCCTTCTACAGCGGTGCCTTCCAAAGGCTGCTCCTGACACACTATGTGGC
ATACCTGAAGCTCAACACCAAGGTCAGGTAGCCAGGCGGTGAGGAGTCCAGCACAACCTTTTCCTCACCAGTCCCATGCTGGCTGAAGAGGACCA
GAGGAGCAGACCAGCACTTCAACCTAGTCCGCTGAAGATGGAGGGGGCTGGGGTCACAGAGGCATAGAATACACATTTTTTGCCACTTT

(a)
MGDVLEQFFILTGLLVCLACLAKCVRFSRCVLLNYWKVLPKSFLRSMGQWAVITGAGDGIGKAYSFELAKRGLNVVLISRTLEKLEAIATEIERT
TGRSVKIIQADFTKDDIYEHIKEKLAGLEIGILVNNVGMLPNLLPSHFLNAPDEIQSLIHCNITSVVKMTQLILKHMESRQKGLILNISSGIALF
PWPLYSMYSASKAFVCAFSKALQEEYKAKEVIIQVLTPYAVSTAMTKYLNTNVITKTADEFVKESLNYVTIGGETCGCLAHEILAGFLSLIPAWA
FYSGAFQRLLLTHYVAYLKLNTKVR

(b)

Figure I.1: The DNA (a) and corresponding amino acid (b) sequences of
human 17� hydroxysteroid dehydrogenase.

termines whether your eyes will be blue, green, brown or some other shade. The

truth, of course, is much more complicated. Figure I.1(a) shows a single human gene.

Rather than determining a particular trait, this gene, like the vast majority of all

genes, encodes a sequence of DNA bases (adenine, guanine, thymine and cytosine)

that serves as the blueprint for a particular protein. Occasionally, as in the case of

eye color, the protein thus encoded has a function that is closely linked to a particular

phenotypic trait. Usually, however, the function of the protein, and hence of the gene

that codes for it, does not have a directly observable phenotype.

Figure I.1(b) shows the amino acid sequence for the protein coded by the

gene in Figure I.1(a). Rather than being composed of four bases, proteins are con-

structed from an alphabet of twenty amino acids. The universal genetic code trans-

lates from triples of DNA bases into single amino acids. The mechanism by which a

gene is transcribed and translated from DNA bases on the chromosome into a sep-

arate protein is complex; however, for our purposes, it is enough to know that this

process of transcription and translation occurs. We are primarily interested in the

resulting proteins.
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I.A.2 Protein structure and function

Proteins are of scienti�c interest because they perform essentially every task

that an organism needs to accomplish at the molecular level. Thus, proteins perform

tasks as varied as opening and closing ion channels in neurons, transporting molecules

to various parts of the cell or across permeable membranes, and latching onto and

thereby disarming invading parasites.

Any protein can be represented as a sequence of amino acids, varying in

length from around 50 to over 5000. However, this amino acid representation of

the protein does not tell the whole story. Figure I.2 shows two views of the three-

dimensional structure of tobacco 5-epi-aristolochene synthase [120]. In Figure I.2(a),

only the backbone of the molecule is portrayed. This backbone corresponds to the

amino acid sequence shown in Figure I.2. The three-dimensional con�guration of this

backbone is well de�ned: every time a cell synthesizes this particular sequence of

amino acids, the sequence always folds into this exact three-dimensional structure.

Each amino acid consists of between 10 and 22 atoms. Figure I.2(b) shows the same

molecule with all of the atoms included. This three-dimensional structure is the

complete picture of tobacco 5-epi-aristolochene synthase.

The three-dimensional structure of a protein is important because it deter-

mines the protein's function. For example, enzymes are proteins that speci�cally bind

to a wide range of molecules. The target molecule, called the substrate, attaches to a

particular site on the enzyme, called the active site. The active site consists of a small

set of amino acids that are adjacent to one another on the surface of the enzyme. The

function of the enzyme critically depends upon the chemical properties of the amino

acids in the active site. If these properties change|if, for example, a mutation in the

DNA causes one of the amino acids in the active site to be di�erent from usual|then

the enzyme may fail to perform its function because it does not bind properly to the

substrate.

The three-dimensional structure of many proteins can be determined directly

using crystallographic techniques. However, these techniques are even more expen-
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(a)

(b)

Figure I.2: Two views of the three-dimensional structure of tobacco 5-epi-
aristolochene synthase [120].
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sive and time-consuming than the functional analyses of proteins. Finding the crystal

structure of a single protein can take up to eighteen months and is not guaranteed

to be successful. Indeed, for large classes of proteins, including most transmembrane

proteins, the proteins' lack of solubility precludes the use of crystallography for de-

termining structure.

In theory, however, since nearly every protein sequence folds into a unique

three-dimensional structure, it should be possible to predict that structure from

the amino acid sequence alone. This prediction task is called the protein folding

problem. Since a protein's function is almost solely dependent upon the protein's

three-dimensional structure, and since biologists are very interested in discovering

the functions of newly sequenced proteins, there is strong motivation to solve the

protein folding problem. Indeed, scientists have been attempting to do so since the

late 1940s, but with very limited success. In the absence of a solution to the protein

folding problem, we must search for other means of inferring protein function.

Currently, the most successful means of inferring protein function exploits

information about evolutionary relationships among proteins. Proteins that share

a common evolutionary ancestor are said to be homologous. A set of homologous

proteins, all of which are descended from a common ancestor, is called a protein family.

Because the overall three-dimensional structure, or fold, of a protein remains fairly

constant over evolutionary time, the various members of a protein family typically

share a common fold. This similarity of fold implies a similarity of function, with the

degree of functional similarity depending upon the degree of evolutionary divergence

that has occurred within the family.

I.A.3 Three tasks

One of a biologist's most useful tools for displaying the features of a set of

evolutionarily related sequences is the multiple alignment. Figure I.4 shows an exam-

ple of such an alignment. The alignment speci�es the position-by-position correspon-

dence between homologous proteins. This correspondence has evolutionary, and often
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Protein
sequence

Protein
structure

Protein
function

Protein
homolog

wet lab

homology detection

structure prediction

Figure I.3: Three di�erent means of inferring protein function. The function
of a protein can be inferred directly via wet lab experiments, or indirectly either by
discovering the three-dimensional structure of the protein or by �nding one or more
homologous proteins that provide evidence for the original protein's function. The
dotted line in the �gure represents the biological determination of protein function.
The protein consists of a sequence of amino acids that fold into a three-dimensional
structure which determines the protein's function.

ASG2_ECOLI ALALPNITILATGGTIAGGGDSATKSN.YTVGKVGVENLV
ASG2_HAEIN AADLPNITILATGGTIAGSGQSSVNSA.YKAGQLAIDTLI
ASPG_WOLSU .MAKPQVTILATGGTIAGSGESSVKSS.YSAGAVTVDKLL
ASPG_ERWCH ADKLPNIVILATGGTIAGSAATGTQTTGYKAGALGVDTLI

consensus AXALPNITILATGGTIAGSGXSSXKSXGYKAGA GVDTLI

Figure I.4: An example of four aligned sequences. See text for description of
the underlined region.
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structural or functional, signi�cance. The alignment can show which regions of the

proteins are highly conserved and hence likely to be evolutionarily signi�cant. Fur-

thermore, for example, if we know the three-dimensional structure of ASG2 ECOLI

and from that structure we �nd that the active site consists of the underlined amino

acids (GGTIAGGGD), then from the given multiple alignment we could safely infer

the locations of the active sites of the other sequences in the alignment, even though

we may not have structural information for these sequences. This information could

then be used, for example, to decide which sites to mutate when performing a func-

tional analysis of ASG2 HAEIN.

In addition to providing functional insights, multiple alignments may serve

as input to phylogenetic inference algorithms. The usual means of inferring the phy-

logenetic tree that relates a set of species is to extract one or more proteins from each

species in the set, build an alignment of the proteins, and then infer a phylogenetic

tree from the alignment using a criterion such as maximum parsimony [51] or maxi-

mum likelihood [49]. Thus, in this method, the multiple alignment is a necessary �rst

step in �nding the phylogenetic tree.

In order to build a multiple alignment, we must start with a set of sequences

that are known to be homologous. Furthermore, one of the most e�ective means of

inferring the function of an unidenti�ed protein is to ask what functions are performed

by homologous proteins. Thus, discovering homologies between sequences is very

useful. Unfortunately, the only way to conclusively prove that two sequences are

homologous would be to prove their descent from a common ancestral sequence.

In practice, this common ancestor is not available, so the only means of detecting

homology is to infer it by statistical means.

The most widely used means of inferring homology involves performing a

pairwise comparison between a single query sequence and a sequence in a protein

database. Dynamic programming algorithms, such as the Smith-Waterman algo-

rithm [118] and its heuristic approximations, BLAST [2] and FASTA [104], can be

used to assign to each sequence in a database a score indicating the probability that
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this sequence is homologous to the query sequence.

Because homology inferences are based upon statistical measures, they be-

come increasingly uncertain when the evidence for homology is weak. The twilight

zone of sequence similarity sets the boundary of con�dence levels for detecting evo-

lutionary relatedness of proteins [43]. For most pairwise alignment programs, the

twilight zone falls between 20-25% sequence identity [38].

In order to push back the twilight zone and thereby discover more remote

homologs, additional information is needed. Family-based methods of homology de-

tection leverage the information contained in a set of proteins that are known to be

homologous. In a diverse family of proteins, individual members may have very low

pairwise sequence similarity and hence might be missed by a pairwise analysis. Using

a representative set of sequences from the family, however, homology inference algo-

rithms can uncover these missed relationships because homology is transitive [106, 3].

The simplest means of detecting homologs using a set of related query pro-

teins is to perform multiple pairwise comparisons [59]. Each sequence in the database

is compared with each sequence in the query set and the resulting scores are combined

into an overall score for that sequence. This approach may be augmented by adding

the newly discovered homologs to the query set and iterating until a transitive closure

of the homology relationship is computed [98].

More sophisticated homology detection methods involve two steps: �rst

building a statistical model of the family and then comparing that model to each

sequence in the database. Examples of such models include pro�les [57] and hidden

Markov models (HMMs) [83, 22, 46]. One drawback to model-based homology detec-

tion is that the models usually contain many free parameters and therefore require a

large amount of training data. For example, a typical, 200-state HMM may contain

on the order of 5000 trainable parameters.
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GUNA_BUTFI   VIYEICNEP
GUNB_RUMAL   LIFEGLNEP
GUN_BACS6    IIWELANEP
GUN3_FIBSU   LFFELLNEP
GUNC_PSEFL   IGIDVFNEP
GUN1_BUTFI   LVFETMNEP
GUNB_BACLA   LMFESVNEP
GUN5_THEFU   VLYEIANEP
GUND_CLOCL   LIFETMNEP
GUNH_CLOTM   LLFEIMNEP
GUNA_XANCP   LGLDLKNEP
GUNC_CLOTM   IAFELLNEV
GUNB_CLOTM   IGFDLKNEP
EXG1_YEAST   IGIELINEP

Figure I.5: A typical motif. Column 1 consists of the names of the sequences
belonging to the family; column 2 contains the corresponding motif instances. This
particular motif is the glycosyl hydrolases family 5 signature. [12, 74]

I.A.4 Motifs

The size of the model may be greatly reduced by focusing only upon mo-

tif regions. A motif is a short subsequence that is highly conserved across family

members. Figure I.5 shows an example of one motif. The motif is represented by

a subsequence of length nine excised from each of fourteen members of the family.

The level of conservation within the motif is high: all members of the family have an

asparagine (N) in the seventh position and a glutamic acid (E) in the eighth position.

Even the less conserved columns contain amino acids that are biochemically similar,

such as the valines (V), leucines (L) and isoleucines (I) in the �rst column.

Usually, motifs are conserved by evolution for important structural or func-

tional reasons. For example, the motif may participate in the binding site of the pro-

tein, or it may play a critical role in stabilizing the overall structure of the molecule.

As such, the motifs constitute a summary, or �ngerprint [4], of the biologically essen-

tial details of the family of proteins [91].
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Motifs may be modeled as regular expressions [12, 99], or more generally as

pro�les [57] or position-speci�c scoring matrices, in which each column in the ma-

trix represents a distribution across the amino acids at that position in the motif.

These matrix models may be learned via expectation-maximization [6] or Gibbs sam-

pling [87] from a set of unaligned protein sequences. Because motif-based methods

ignore the poorly conserved spacer regions between motifs, they can be trained using

smaller sets of related sequences than are required for complete sequence modeling.

Unfortunately, using multiple models in concert to �nd homologous se-

quences can be di�cult. One means of combining multiple motif models is to search

the target database with each motif model separately and then to combine the scores,

assuming that motif occurrences are statistically independent. This is the approach

taken by MAST [11]. Although the independence assumption is clearly invalid in

theory, the technique works well in practice.

One important improvement upon MAST's approach would be to exploit

information about the order and spacing of motifs within the protein family. This

information is a critical part of the motif signature for the family [92] and can be

critical in determining the statistical signi�cance of a weak match to the motif model.

For example, consider a training set of sixteen sequences, each containing three motifs

in the order 1-2-3 and separated by spacers of length 10. If a candidate sequence

contains motifs 1 and 2 in the right positions, and a weak match to motif 3 ten amino

acids after motif 2, then that match is very likely to be genuine. On the other hand,

if the same weak match appears in a sequence with no other motif matches, then

the match is likely to be false. MAST, by treating motif occurrences independently,

sacri�ces the opportunity to exploit information about the order and spacing of motifs

within the family.

In contrast, the BLOCKS method for protein family classi�cation [71, 67]

does take the order and spacing of motifs into account when searching for homologous

sequences. The BLOCKS database [28] contains, for each known protein family, an

ordered set of motif models (called blocks) along with the minimum and maximum
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observed spacings between the blocks in the training set. The BLIMPS program [73]

searches this database of blocks using a single sequence as a query, thus taking into

account the order and spacing of motifs. The primary drawback to the BLOCKS

method is the rigidity of the spacer length speci�cations and the lack of a statistical

model from which accurate scores can be derived.

A preferable approach, rather than using motif models independently or

combining them in an ad hoc fashion, would be to build a completely probabilistic,

motif-based model of the protein family. This model would contain all of the infor-

mation in the individual motif models, as well as information about the order and

spacing of motifs in the family. An appropriate framework for such a model is pro-

vided by the theory of hidden Markov models (HMMs). HMMs have a well-founded

probabilistic interpretation and are supported by e�cient algorithms for training and

use. Accordingly, the Meta-MEME toolkit builds, trains and uses motif-based HMMs

of protein families. Before describing the details of the Meta-MEME algorithms, how-

ever, we provide the reader with background on hidden Markov models in general and

on their use in computational molecular biology.

I.B Hidden Markov models

I.B.1 De�nition

A hidden Markov model (see Figure I.6) is a mathematical framework that

models a series of observations based upon a hypothesized underlying but hidden

process. The model consists of a set of states and transitions between these states.

Each state emits a signal, based upon a state-speci�c emission probability distribu-

tion, and then stochastically transitions to some other state, based upon a transition

probability distribution. If we denote the state at time t as qt, then a hidden Markov

model is completely characterized by the following parameters [112]:

� the number N of states in the model, with individual states denoted as Si for
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1

2 3

a11

a31
a21

a12

a33
a22

Figure I.6: A simple, three-state hidden Markov model. Each state has an asso-
ciated emission probability distribution that determines what observation is emitted
by the state and a transition probability distribution that determines which state will
be visited next.

1 � i � N ,

� the numberM of distinct observation symbols per state, with individual symbols

denoted as vi for 1 � i �M ,

� initial state probabilities �i = Pr(q1 = Si) for 1 � i � N ,

� state transition probabilities A = [aij], where aij = Pr(qt+1 = Sjjqt = Si) for

1 � i; j � N , and

� observation probabilities B = fbi(k)g, where bi(k) = Pr(vk at tjqt = Si) for

i � i � N and 1 � k �M .

Although introduced relatively recently to computational molecular biol-

ogy, HMMs have been in use for speech recognition for many years [14]. In speech

recognition, the series of observations being modeled is a spoken utterance; in com-

putational biology, the series of observations is a biological sequence of DNA bases

or amino acids.

Hidden Markov models have a strong theoretical basis in probability and

are supported by e�cient algorithms for training, database searching, and multiple
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EndStart

Delete

Insert

Match

Figure I.7: The topology of a standard linear HMM. Emission probability
distributions for match and insert states are not shown.

sequence alignment. A useful HMM tutorial was written by Rabiner [112], and more

detailed information is available in [113]. The tutorial describes three basic problems

for HMMs: given an observation sequence and a model, how do we (1) e�ciently

compute the probability of the observation sequence, given the model, (2) choose a

corresponding state sequence which is optimal in some meaningful sense (i.e., best

\explains" the observations), and (3) adjust the parameters of the model to maximize

the probability of the sequence, given the model? In computational biology, Rabiner's

three problems correspond to (1) determining whether a given sequence belongs to

the modeled family, (2) �nding an alignment of the given sequence to the rest of the

family, and (3) training the model based upon known members of the family. The

model parameters are learned via expectation-maximization [42], and the sequences

are aligned and homolog detected via dynamic programming.

I.B.2 The standard HMM topology

Hidden Markov models were �rst applied to problems in molecular biology

by Churchill [39]. Krogh et al. [83] applied HMMs to protein modeling and brought

widespread recognition to the approach. We refer to the linear HMMs described

in that paper as standard HMMs. This standard topology has subsequently been

used by many researchers [46, 22]. Two standard HMM packages are freely available,

SAM [78, 115] and HMMER [46, 76].
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Start

Delete

Insert

Match

End

a1 a2 A3  - A4 A5

A3 A4 A5

a1 a2

Figure I.8: The HMM as a generative model. The HMM generates the sequence
a1 a2 A3 A4 - A5 by alternately emitting a symbol according to the current state's
emission distribution and then transitioning to a new state based upon the transition
distribution. The \-" symbol corresponds to a non-emitting delete state in the model
and would be a gap in a multiple alignment.

The topology of the standard HMM (see Figure I.7) attempts to re
ect the

process of molecular evolution. The core of the standard model is a sequence of states,

called match states, that represent the canonical sequence for this family. Each match

state corresponds to one position in the canonical sequence. This series of states is

similar to a pro�le [57] or to a MEME motif model, since the emission probabilities

at each state are distributed across the alphabet of amino acids.

To model the process of evolution, two additional types of states|insert and

delete states|are included in the HMM. One delete state lies in parallel with each

match state and allows the match state to be skipped. Since delete state do not emit

characters, aligning a sequence to a delete state corresponds to the sequence having a

deletion at that position. Insert states with self-loops are juxtaposed between match

states, allowing one or more bases to be inserted between two match states. These

three series of states are connected as shown in Figure I.7. The topology of the

model is linear: once a state has been traversed, it cannot be entered a second time.

The three types of states in the standard model imply a simple model of molecular

evolution that involves only point mutations, insertions and deletions.

Although rarely used in this fashion, HMMs may be understood as gener-
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Figure I.9: Aligning two sequences according to the Viterbi paths. The
Viterbi path is the most likely path through the model, given the sequence. A se-
quence alignment is generated by aligning symbols emitted from corresponding states.
Multiple symbols emitted from a single insert state are not aligned.

ative models (see Figure I.8). Starting at some pre-determined, non-emitting initial

state, the succeeding state is selected randomly according to the transition proba-

bility distribution at the start state. At the new state, an amino acid is randomly

emitted according to the emission probability distribution at that state. From there

the process repeats, emitting a symbol and transitioning to a new state. The process

terminates when the stop state is reached.

I.B.3 Using HMMs for multiple alignment

The evolutionary model implicit in the topology of an HMM enables these

models to be used for multiple sequence alignment. The Viterbi algorithm [41] is a

dynamic programming algorithm that calculates the series of model states q0 : : : qT

most likely to have generated a given sequence O0 : : : OT ; i.e., the algorithm calculates

max
q

�0
TY
t=1

aqt�1qtbqt(Ot): (I.1)

The resulting series of states is called the Viterbi path. A multiple alignment for a

set of sequences may be generated by �nding the Viterbi path for each sequence and

then aligning each path to the original model, as shown in Figure I.9.
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I.B.4 Using HMMs for homology detection

HMMs also provide an accurate means of detecting sequence homologies.

The forward algorithm is similar to the Viterbi algorithm, except that it computes

the total probability of a sequence, given a model. Thus, during the updating of

cells in the dynamic programming matrix, the maximum operation performed by the

Viterbi algorithm is replaced by a summation to �nd the total probability of the

sequence. An appropriately normalized version of this probability score may be used

to determine whether a candidate sequence from a database belongs to the modeled

family. The ability of an HMM to discriminate, with a high degree of precision

and recall, family members from non-family members in a large sequence database

indicates that the model incorporates necessary and su�cient conditions for family

membership, with respect to the proteins in the given database.

Because the similarity between protein family members typically re
ects

a similarity in their three-dimensional structures, HMMs are implicitly attacking

a version of the protein folding problem. However, instead of determining how a

given protein will fold, the HMM only determines (roughly) whether the protein will

fold in a particular way, i.e., the way that other members of the family fold. In

this respect, hidden Markov modeling resembles a threading approach to the protein

folding problem [29].

I.B.5 Drawbacks of the standard topology

Hidden Markov models have been successfully applied in the domains of

speech recognition and biological sequence modeling. One immediately apparent dif-

ference between these two domains is the amount of available training data. Training

sets for state-of-the-art speech recognition systems frequently contain many gigabytes

of recorded speech; in contrast, families of related biological sequences usually consist

of kilobytes or even hundreds of bytes of characters. Even for speech recognition

systems, for which the training set size is relatively large, researchers attempt to sim-
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plify their models in order to reduce the number of trainable parameters [134]. When

modeling biological sequences, the need for smaller models is even more pronounced.

The large number of model parameters is a major weakness of the standard

protein HMM. A standard HMM of length n using an alphabet of size 20 contains 6

trainable transition probabilities and 19 trainable match state emission probabilities

for each of n positions, as well as 19 insert state emission probabilities, yielding a

total of 25n+ 19 trainable parameters. For a protein family whose members have an

average length of 200, such a model contains 5019 parameters. Many small families of

biological sequences contain less than this number of characters in all known family

members combined. In order to estimate the values of the model parameters reliably,

a large training set of proteins that are already known to be related is required.

For example, over 200 randomly selected sequences are required to adequately model

the globin family [32], and Krogh et al. [83] mention a lower limit of approximately

70 carefully selected training sequences in order to model the same family. Smaller

families cannot e�ectively train a standard HMM because reliable training requires

that the number of samples greatly exceeds the number of free parameters. A model

based upon a smaller data set may over�t the data, modeling details speci�c to the

training set but not to the larger protein family.

In order to avoid over�tting, standard HMMs often rely upon a set of

Bayesian prior probabilities, such as Dirichlet mixture priors empirically derived from

known multiple alignments [32, 116]. However, even with accurate prior probabilities,

when the training set is small and the model is large, the trained model will depend

upon the prior probabilities more than it re
ects the training sequences. The only

e�ective means of ensuring that the trained model re
ects the characteristics of a

particular protein family is to keep the number of model parameters small.

Another important disadvantage of the standard topology is that it implies

an over-simpli�ed model of molecular evolution that involves only point mutations,

insertions and deletions. The actual mechanisms of molecular evolution are quite

complex, involving point mutations, crossover, exon shu�ing, gene duplication and
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various types of transposable elements [89]. Many of these mechanisms operate on a

larger scale than single amino acids. The separately evolved, independent structural

units that comprise most proteins are called protein domains [25, 44, 103, 95] The

diversity of protein functions results primarily from the combinatorial arrangement of

a �nite number of these domains [36, 45]. Thus, most proteins can be understood and

accurately modeled as an arrangement of autonomously structured domains [119]. A

protein family such as the kinases may consist of individual proteins that contain

a common set of domains in di�erent orders. More frequently, small sections of an

ancestral protein may be cut out and re-inserted multiple times, with the result that a

single protein may contain up to 50 copies of a given subsequence. These phenomena

cannot be accounted for by a linear topology.

The Meta-MEME software toolkit directly addresses both of these draw-

backs of standard HMMs. By constructing motif-based models, Meta-MEME greatly

reduces the number of parameters in a typical model. And by allowing for the cre-

ation of models with non-linear topologies, Meta-MEME allows for a more realistic

implicit model of molecular evolution.
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Chapter II

Meta-MEME

The Meta-MEME software toolkit [61, 62], along with the MEME motif

discovery tool [6], provides biologists with a complete set of Bayesian, motif-based

sequence analysis tools. Given a training set of known family members, the biolo-

gist can discover a representative set of motifs, combine those motifs into a single,

motif-based hidden Markov model, re-train the motifs and the transitions between

the motifs in the context of the HMM, and then use the model to build multiple

alignments and detect previously unknown homologies. This process is summarized

in Figure II.1 and will be described in detail in this chapter.

II.A Motif discovery using MEME

MEME (Multiple Elicitation of Motifs by Expectation-maximization) is an

unsupervised motif discovery tool [6, 8, 7, 60]. Given an unaligned set of related

protein or DNA sequences, MEME discovers therein one or more conserved motif

regions and builds statistical models of those regions. The parameters of the models

are trained via expectation-maximization so as to maximize the posterior probability

of the data, given the model. Since MEME does not allow insertions or deletions

within motifs, the models that it builds are matrices in which each column of the

matrix contains an amino acid distribution. Thus, such a model is formally equivalent

23
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Figure II.1: Schematic diagram of the Meta-MEME toolkit.
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to a standard linear HMM with the insert and delete states removed. A parallelized

version of MEME running on a supercomputer is available on the web [60].

MAST (Motif Annotation and Search Tool) [11, 10] is a companion program

for MEME that uses MEME motif models to search a sequence database for homologs

of the initial training set. For each sequence in the database, MAST computes a p-

value for each motif in the query and combines these values assuming that motif

occurrences are statistically independent. The resulting sequence-level p-value scores

are used to rank the sequences in the database.

As mentioned in section I.A.4, MAST's discriminative ability would likely

improve if it searched concurrently with multiple motifs, rather than assuming that

motif occurrences are statistically independent. By treating motifs independently,

rather than in concert, MAST ignores important information about the order and

spacing of motifs within a family. This information is an essential aspect of the

family signature [92].

Meta-MEME addresses the problem of searching using multiple motif models

by combining motif models within a hidden Markov model framework. Although

Meta-MEME has only been tested using motifs discovered by MEME, extending

the approach to motifs discovered by other means, such as the Gibbs sampler [87]

or BLOCKMAKER [71, 67], would be straightforward. Meta-MEME models fall

into two categories: linear models, which are a constrained version of the standard

topology described previously, and completely connected models, which allow for a

more complex implicit model of molecular evolution. The following sections describe

these two types of topologies.

II.B Linear models

The topology of the linear models produced by Meta-MEME can be repre-

sented as a constrained version of the standard HMM topology (see Figure II.2). As

in MEME, the motifs themselves allow neither gaps nor insertions; thus, each motif
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Motif 1 Motif 2

1-x0 1-x1 1-x2

x1 x2

1.0 1.01.0 1.0 1.0

1-x0 1-x1 1-x2

x0 x2x1

x0

EndStart

Figure II.2: A small, linear motif-based HMM. Only the darker nodes and
transitions are used in the model; the gray background nodes would appear in a
standard HMM but are unreachable in this HMM. Note that this is a simpli�ed
example; real motifs generated by MEME are longer.

is modeled by a sequence of match states, with transition probabilities of 1.0 between

adjacent states. Spacer regions between motifs are represented by insert states, as

described in more detail in section II.D.

In order for Meta-MEME to build multi-motif models from MEME output

in an unsupervised way, the program must decide automatically how many motifs to

include in the model. For models with a linear topology, Meta-MEME uses a simple

heuristic. As MEME generates successive motifs for a data set, it �rst �nds the highly

signi�cant motifs and then begins to model motifs which are conserved in only a subset

of the given sequences. In e�ect, MEME �nds motifs representing subfamilies of the

given family. Since such subfamily motifs are not useful for characterizing the entire

family, they should not be included in the Meta-MEME model. Models generated by

Meta-MEME, therefore, only incorporate those motifs for which the motif occurs in

the majority of the training sequences, up to some user-selected maximum number

of motifs. Motif occurrences are de�ned by a threshold on the p-values calculated by

MAST.

Once the motif models have been generated by MEME and selected ac-

cording to the majority occurrence heuristic, they must be combined into a single,
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25-[4]-21-[1]-12-[2]-2-[5]-67-[3]-40

Figure II.3: An example of a motif occurrence diagram as generated by
MAST. The diagram shows the lengths of non-motif regions, alternating with the
indices of �ve motifs (in brackets). Motifs are indexed according to the order in which
MEME discovers them.

linear model. Ideally, the order and spacing of motifs should re
ect the canonical

order and spacing of motifs in the family. To determine this canonical motif schema,

MAST searches the given training set of sequences. For each such sequence, MAST

produces a motif occurrence diagram (see Figure II.3) that shows the motif occur-

rences with p-values less than 0.0001, as well as the lengths of the spacers between

occurrences. Meta-MEME selects from this output the highest-scoring sequence con-

taining signi�cant matches to each of the motifs selected for use in the HMM. The

motif occurrence diagram associated with this sequence is then used as a template

for building the linear HMM.

A Meta-MEME model with a linear topology solves one of the two major

problems faced by standard HMMs. By focusing on motif regions, such a model

reduces the number of parameters relative to a standard HMM and hence is more

easily trained. Admittedly, a Meta-MEME model also e�ectively reduces the size

of the training set by throwing out training data from the noisy regions. However,

because proteins are motif-based, Meta-MEME models can be accurately trained from

smaller data sets than can standard HMMs. The simplest way to see this is to think of

the extreme case, in which all of the information in the protein family is concentrated

in the motif regions. In this case, the non-motif regions would contain pure noise.

For a standard HMM of such a family, the number of observations per state in the

motif and non-motif regions would be the same, but the non-motif regions would still

be completely untrained: training them would amount to randomly perturbing the

parameters. This is the sense in which the parameters of such a model are under-

determined: the non-motif regions may be trained by the same number of observations
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per state as the motif regions, but the non-motif counts are e�ectively fewer because

of the noise. By throwing out the non-motif regions, the average "trained-ness" of

the parameters increases.

II.C Completely connected models

Although the Meta-MEME models described above are more easily trained

than standard HMMs, both types of models are linear; hence, both topologies fail

adequately to account for complex, domain-based mechanisms of molecular evolu-

tion. Modeling phenomena such as repeated or shu�ed protein domains requires the

introduction of cycles into the HMM topology. For the standard HMM, introducing

such non-linearity is too expensive, with respect both to the size of the model and the

cost of computation. Meta-MEME's motif-based HMMs, however, can be straightfor-

wardly generalized, with relatively small cost, to allow a complete set of inter-motif

connections.

Figure II.4 shows an example of the generalized topology of the standard

Meta-MEME model. Rather than connecting motifs in a particular order, this model

contains a complete set of transitions among motifs. This topology allows for the

accurate modeling of families such as the ice-nucleation proteins, which contain up

to 57 consecutive copies of a single subsequence [133, 64]. The completely connected

topology also allows for the modeling of families, such as the kinases, in which a set

of domains appears in di�erent orders in di�erent family members. In the model,

connections between motifs represent the less-conserved spacer regions, the contents

of which are modeled by insert states, as in the linear Meta-MEME models. Although

the motifs in this model are completely connected, the total number of motifs is a low

constant value, and within each motif the topology is strictly linear. Furthermore, by

discarding most information from the noisy, inter-motif spacers, the total number of

parameters is small relative to a standard linear HMM.

In addition to improving the range of protein families that can be accurately
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Motif 4

Motif 1

Motif 3Motif 5

Motif 2Motif 6

EndStart

Figure II.4: Topology of a completely connected Meta-MEME model. Each
edge in the graph contains a model of an inter-motif spacer region.
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modeled, the completely connected topology brings with it an additional advantage:

the majority occurrence heuristic can be discarded. Because the completely connected

topology allows for an arbitrary ordering of motifs within the family, motifs which

represent subfamilies can be included in the model without loss of accuracy for non-

subfamily members. Furthermore, the training by expectation-maximization of inter-

motif transition probabilities will minimize the chance of transitioning to very weak

motifs that do not accurately represent the family. Thus, training will e�ectively

eliminate non-representative motifs from the model.

Just as for the linear topology, information from a MAST analysis of the

training set can be used to set informed initial values for the model's transition proba-

bilities. However, rather than relying upon a single, canonical diagram, the completely

connected models are initialized using all of the motif occurrence information in the

training set. Information from all of the training set diagrams is combined into two

matrices. The �rst, the average length matrix, contains in position (x; y) the average

observed length of the spacers between motif x and motif y. Spacers that are not

observed in the training set are assigned an arbitrary length of 10 amino acids. The

second, motif-to-motif frequency matrix, contains at (x; y) the frequency with which

motif x is followed by motif y. This matrix is initialized with pseudocounts of one

motif-to-motif transition in each position, so as to avoid building a model containing

probabilities of 0.0. The transition probabilities of the completely connected model

are calculated so as to re
ect the observed data in these two matrices. Thus, the

transition probabilities from the last state of a motif are copied directly from the

transition frequencies observed in the training set. And the transition probabilities

on the self-loops of the spacer states are calculated so as to re
ect the observed av-

erage spacer lengths. The details of this calculation are described in the following

section.
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II.D Modeling spacer regions

In Meta-MEME, the regions between motifs are not modeled very precisely,

since the contents of these spacer regions are not highly conserved. In the simplest

form of model, each spacer region is modeled using a single insert state. The transition

probabilities into this state and on the state's self-loop are calculated such that the

expected length of the emission from this state equals the length of the corresponding

spacer region in the canonical motif occurrence diagram (for linear models) or the

corresponding average observed spacer length (for completely connected models). In

e�ect, then, the length of each spacer region is modeled by a single parameter.

To calculate this parameter, consider a spacer state for which the incoming

transition probability is x, the outgoing transition probability is 1� x, and the prob-

ability of a self-loop is x. Let n be the number of times the node is visited. Then the

expected number of visits, �, to such a node is, by de�nition,

� =
1X
n=0

n(1� x)xn (II.1)

At �rst there are two possibilities: visit the node with probability x, or skip it with

probability 1� x. Skipping the node gives a spacer of length 0, while visiting it gives

a spacer length 1 plus the expected remaining path length, �. So we have

� = (1� x)0 + x(1 + �) (II.2)

Because of the Markov property, regardless of the path length so far, if we reach this

node again then the expected path length from it is simply �. So we have

� = x(1 + �) (II.3)

Solving for x yields

x = �=(1 + �) (II.4)

This equation is used to calculate transition probabilities for spacer states.

One important drawback to the use of a single insert state as a model of

inter-motif spacer regions is that this model generates sequences whose lengths follow
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Figure II.5: An exponential distribution generated by a single-state spacer
model. The �gure shows a histogram of the lengths of sequences randomly generated
by a standard HMM with length 1 and a self-transition probability of 0.9 on the insert
state.
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an exponential distribution. Figure II.5 is a histogram of spacer lengths randomly

generated by a single insert state with a self-transition probability of 0.9. The expo-

nential nature of the distribution is evident. Thus, the single-state model only makes

sense if we have reason to believe that the lengths of spacers in actual proteins also

follow such a distribution.

An informal examination of the spacer lengths within a large set of protein

families leads to little evidence that the distributions tend to a particular form. Fig-

ure II.6 shows spacer length distributions for a typical family. These distributions take

many forms. Some are sharply peaked. Some appear to have long tails to either the

right or left. None of the observed histograms appeared to be strongly exponential.

Given that little can be said about the general form of the distributions

of spacer lengths, the usual choice would be to model these distributions using a

bell-shaped curve such as a Gaussian. Explicitly representing this length distribution

within the HMM is straightforward [88]. However, including in the model single states

that generate multiple amino acids violates the Markov property of the model and

therefore results in a large increase in computational complexity. For each of the

algorithms discussed previously (the Baum-Welch, Viterbi and forward algorithms),

the running time for a model with explicit length distributions increases by a factor

of n, where n is the maximum length of a sequence emitted by a single state in the

model. This increase occurs because during the update of the cells in the dynamic

programming matrix, rather than only considering cells in the previous column, each

cell in the previous n columns must be considered.

In order to avoid the computational overhead of modeling length distribu-

tions explicitly, Meta-MEME employs multi-state spacer models, as shown in Fig-

ure II.7. These multi-state spacers exploit the Central Limit Theorem [132], which

states that, in the limit, the sum of multiple, independent distributions with �nite

means and variances approaches a normal distribution. The example shown in Fig-

ure II.7 contains eight states. A distribution generated by a similar eight-state model
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Figure II.6: Observed spacer length distributions of a typical protein family.
A family of short chain alcohol dehydrogenases from PROSITE [12] was used. Highly
similar sequences were removed, and six motifs were discovered in the resulting set of
divergent sequences. The �gures are histograms of sequence lengths, as determined
from MAST motif occurrence diagrams of the data set, using a p-value threshold of
0.0001.
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Figure II.7: An 8-state spacer model.
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Figure II.8: Approximation of a normal distribution generated by a multiple
insert states. This histogram of sequence lengths was generated by a standard HMM
of length 8 with probabilities of 0.9 on each insert state self-transition.

is shown in Figure II.8.1 As can be seen, although the distribution still has a longer

tail to the right, it is much more bell-shaped than the distribution created by a single

spacer state. The expected length of the spacer generated by an n-state spacer is just

the sum of the expected lengths of n single-state spacers. Hence, equation II.4 can be

straightforwardly generalized in order to compute initial self-transition probabilities.

An obvious apparent drawback to the multi-state spacer model is the in-

creased number of parameters involved. In order to avoid over�tting the training

data, Meta-MEME ties these parameters. Thus, during training, all of the self-loop

transition probabilities in one spacer are treated as a single parameter and are up-

dated in lock-step.

Because multi-state spacers approximate a normal distribution by summing

1The architecture of the model used to generate Figure II.8 di�ers from that shown in Figure II.7
only because the software for emitting samples from an HMM assumes the standard topology. This
topology does not allow adjacent insert states, so the mean of the distribution in Figure II.8 is 8
greater than the predicted value because the model contains a match state juxtaposed between every
pair of insert states.
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exponential distributions, these spacer models are only e�ective in conjunction with

total probability scoring. The Viterbi algorithm does not create the desired distri-

bution because the algorithm only considers the probability of the single most likely

path through the model. To see that this is so, consider the case of an n-length

sequence being scored against an m-state spacer model. In order for the distribution

of scores generated by this m-state model to be bell-shaped, it must be possible for

the score of an n-length sequence to be less than that of a sequence of length n + 1.

We will show that, with respect to transition probabilities, this inequality can hold

for total probability scoring but not for Viterbi scoring.

If the self-transition loop on each spacer state has probability x, any n-length

path through the model will have a probability of xn�m(1� x)m. In this case, since

all paths are equi-probable, the Viterbi score of this sequence is the probability of any

path through the model. We can show that the Viterbi score of an n-length sequence

is necessarily greater than or equal to the score of n+ 1-length sequence as follows:

xn�m(1� x)m >= xn+1�m(1� x)m (II.5)

xn�m >= x � xn�m (II.6)

1 >= x (II.7)

Since x is the probability of a self-transition on a spacer state, it is necessarily less

than or equal to 1. This implies that the original inequality is true, and that therefore

the Viterbi score of an n-length sequence is always greater than the score of an n+1-

length sequence. Thus, since the Viterbi scores generated by a multi-state spacer are

non-increasing in the length of the sequence, the distribution of such scores cannot

be a bell-shaped curve.

A similar argument shows that it is possible for total probability scores to

either increase or decrease as the length of the sequence changes. The total probability

score for the sequence-to-model match is the sum of the probabilities of all paths

through the model. We have shown that the probability of any single path is xn�m(1�

x)m. To count the total number of such paths, we consider choosing from the n� 1
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inter-character positions in the sequence a set of m� 1 places to transition between

states in the spacer model. This results in
�
n�1
m�1

�
possible paths and a total probability

score of  
n� 1

m� 1

!
xn�m(1� x)m

We can characterize the situations in which the sequence score changes from increasing

to decreasing with sequence length as follows:

 
n� 1

m� 1

!
xn�m(1� x)m =

 
n

m� 1

!
x(n+1)�m(1� x)m (II.8)

This equation can be simpli�ed algebraically as follows:

 
n� 1

m� 1

!
=

 
(n+ 1)� 1

m� 1

!
x (II.9)

(n� 1)!

(m� 1)!(n�m)!
=

n!

(m� 1)!(n� (m� 1))!
x (II.10)

1 =
n

n� (m� 1)
x (II.11)

n� (m� 1) = xn (II.12)

n =
m� 1

1� x
(II.13)

x =
n�m+ 1

n
(II.14)

Equation II.13 shows that the total probability scores generated by a spacer model

of length m with self-transitions x will increase with sequence length until n reaches

(m� 1)=(1�x), after which the scores will decrease. Thus, the point (m� 1)=(1�x)

corresponds to the peak of the bell-shaped curve. Equation II.14 suggests that, for

example, modeling a spacer of average length 30 using a 3-state model requires spacer

state self-transitions of 30 � 3 + 1=30 = 0:933. Note that, for single-state spacers,

Equation II.14 collapses to x = 1. This makes sense, since a single-state spacer can

only generate a single path, corresponding to the Viterbi path, and we have already

shown that the Viterbi score is non-increasing with increasing sequence length.
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Model topology Trainable parameters ADH Fer4
standard 25n 5.95 5.12
linear Meta-MEME 19l +m 1.00 1.00
completely connected Meta-MEME 19l +m+m2 1.03 1.05

Table II.1: Comparison of model sizes for di�erent HMM topologies. The
second and third columns contain the model sizes for two families, the short chain
alcohol dehydrogenases (ADHs), and the 4Fe-4S ferredoxins (Fer4). n is the average
length of sequences in the modeled family; l is the total length of the motifs in the
family, and m is the total number of motifs. The values of l, m, and s are averages
taken from models built in Chapter IV. For the ADHs, l = 58, m = 6 and n = 264;
for the ferredoxins, l = 35:2, m = 6 and n = 138:3.

II.E Model size and computational complexity

An important advantage of Meta-MEME over standard HMMs is the small

size of motif-based HMMs. Linear Meta-MEME models, in particular, have fewer

parameters relative to a non-motif-based HMM. For a family of average length n, a

standard HMM contains a distribution across twenty amino acids at each of n match

states, as well as nine transition probabilities from each set of match-insert-delete

states to the next. Emission distributions at insert states are not trained. Since the

emission and transition distributions from each state must sum to 1.0, the standard

HMM contains 25 trainable parameters for each match state. In contrast, if the family

can be characterized by a set of m motifs of total length l, then a linear Meta-MEME

model of the family contains 19l trainable emission probabilities within the motifs

and m + 1 trainable transition probabilities in the spacers. Table II.1 shows model

sizes for two typical families, the short chain alcohol dehydrogenases (ADHs) and the

4Fe-4S ferredoxins. For these two families, the respective standard HMMs are 6.0

and 5.1 times larger than the corresponding linear Meta-MEME models. Even when

the topology is generalized to allow complete inter-motif connectivity, Meta-MEME's

models contain fewer parameters than a standard HMM. Generalizing the topology

introducesm2 additional transition parameters. As shown in Table II.1, this results in

a 3% and 5% increase in model size respectively for ADHs and ferredoxins. Thus, both

Meta-MEME topologies o�er a signi�cant reduction in parameters, thereby allowing
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Model topology Complexity ADHs Ferredoxins
standard 9n2 36.6 29.5
linear Meta-MEME, s=1 (l +m+ 1)n 1.0 1.0
linear Meta-MEME, s=3 (l + 3(m+ 1))n 1.2 1.3
complete Meta-MEME, s=1 (l +m+m2 + 1)n 1.6 1.9
complete Meta-MEME, s=3 (l + 3(m+m2 + 1))n 2.9 3.9

Table II.2: Computational complexity of HMM dynamic programming al-
gorithms using di�erent topologies. The �nal two columns contain the ratios of
running times relative to linear Meta-MEME for two families, the short chain alcohol
dehydrogenases (ADHs), and the 4Fe-4S ferredoxins. n is the length of the protein
sequence; m is the number of motifs in the motif-based HMM; l is the total length
of those motifs, and s is the number of HMM states used to model a single spacer.
For the ADHs, l = 58, m = 6 and n = 264; for the ferredoxins, l = 35:2, m = 6 and
n = 138:3. Each parameters is an average over �ve randomly selected training sets.

the models to be trained from smaller training sets.

In addition to improving the trainability of the models, reducing their size

improves their e�ciency. The computational complexity of each of the HMM algo-

rithms, including the dynamic programming algorithms that underlie Baum-Welch

training, is O(tn), where t is the number of transitions in the model and n is the

number of positions in the sequence under consideration. For standard HMMs, t is

approximately 9n, since the model has one match state for each amino acid in a typ-

ical sequence, and since each set of match-insert-delete states has nine corresponding

transitions. A linear Meta-MEME model, by contrast, contains l + s(m + 1) tran-

sitions, where s is the number of states representing a single spacer. Generalizing

the topology to completely connect the motifs adds an additional sm2 transitions.

Table II.2 compares the running times of the HMM algorithms for standard, linear

Meta-MEME and completely connected Meta-MEME models. A linear Meta-MEME

model of the ADHs improves on the standard HMM's running time by a factor of

36.6. Even with complete connections among motifs, Meta-MEME still performs 23.5

times faster than a standard HMM.
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I CYA_MANSE  gdifyp.........GYCPDVKPVnd....FDLSAFAGAWHeiaklplen
LACB_BOVIN  mkclllalal.....TCGAQALIVtqtmkgLDIQKVAGTWYslamaasdi
BBP_PIEBR   nvyhd..........GACPEVKPVdn....FDWSNYHGKWWevakypnsv
RETB_BOVIN  erdcr..........VSSFRVKEN......FDKARFAGTWYamakkdpeg
MUP2_MOUSE  mkmllllclgltlvcVHAEEASSTgrn...FNVEKINGEWHtiilasdkr

Figure II.9: An example of a motif-based multiple alignment. Motif regions ap-
pear in capital letters. Non-motif regions are unaligned. The sequences are lipocalins
and are truncated after the �rst alignment row.

II.F Model training

Once a set of MEME motif models has been assembled into a single hid-

den Markov model, the model's emission and transition parameters can be trained

via the Baum-Welch algorithm [112], a version of the expectation-maximization al-

gorithm. Typically, this algorithm maximizes the likelihood of the data, given the

model. However, like MEME, Meta-MEME employs Dirichlet mixture priors [32] in

the training of emission probabilities, thereby maximizing the posterior probability of

the model, given the data. In MEME, information about the occurrences of multiple

motifs within a single sequence is unavailable. Hence, training the model parameters

in the context of the HMM can be expected to improved both the motif models and

the transitions among them.

II.G Multiple alignment

A hidden Markov model generates a multiple alignment of a set of sequences

by �rst recovering the Viterbi path (i.e., the most likely sequence of states) cor-

responding to each given sequence and then aligning amino acids from di�erent se-

quences that were generated by the same hidden state in the model. Because multiple

alignments, as they are traditionally understood and used by biologists, are inher-

ently linear, Meta-MEME only produces multiple alignments from models with linear

topologies. An example of such an alignment is shown in Figure II.9.

The most striking feature of this alignment, as compared with traditional
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alignments, is that the Meta-MEME alignment is motif-based. The spacer regions

between motifs (represented by lowercase letters) are not aligned at all. In the �gure,

although the contents of the spacer regions have been included, no attempt has been

made to align even the most obvious similarities. There are three important points to

be made about these motif-only alignments. First, the task of aligning the biologically

signi�cant motif regions is the most important part of the multiple alignment task,

from a biological perspective [92]. An alignment that fails to properly align these

regions is not very useful. Second, from a computational perspective, the task of

aligning the spacer regions, insofar as they can be aligned, is much easier than the

global task of aligning entire sequences. Meta-MEME has done the hard part, and the

remaining, relatively small, unaligned regions could be passed to another sequence

alignment algorithm for post-processing. Finally, there are situations, especially in

phylogenetic inference, where it makes sense to throw out the spacer regions entirely,

using only the motif regions.

II.H Phylogenetic inference

The multiple alignment task is often the precursor to the task of inferring

the evolutionary relationships among a set of species. The usual means of building a

phylogenetic tree that summarizes these relationships involves selecting a homologous

protein from each species in the desired tree, producing a multiple alignment of those

proteins, and then inferring the phylogenetic tree from the alignment, based upon

some assumed model of evolution.

One reason to use a motif alignment, rather than a complete alignment, for

phylogenetic inference is that the motif regions are far less likely to yield alignment

errors. Especially for sequences that are widely divergent, a perfect multiple align-

ment may be impossible to create. Consequently, an alignment of the entire sequence

will often contain errors that can lead to corresponding errors in the phylogenetic

inference. Several authors [20, 86] have produced phylogenetic trees based upon con-
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strained alignments from which the noisy regions have been discarded. Similarly,

CLUSTALW [123] contains an option for eliminating from consideration all positions

in the multiple alignment that contain insertions or deletions. Meta-MEME provides

a theoretically justi�ed means of deciding which regions of the sequences are highly

conserved and hence can be trusted for producing a phylogenetic tree.

There is reason to believe, however, that motif-only multiple alignments may

be useful even in situations in which the alignment is undisputed. Recent evidence [96]

suggests that the best phylogenetic trees are generated by amino acids that are im-

portant in determining the three-dimensional structure of the protein. This evidence

is discussed in more detail in Section IV.A.

II.I Homology detection

In addition to aligning known family members, a Meta-MEME model may

be used to identify previously unrecognized homologs. Meta-MEME computes a

score for each sequence in a protein database. If the model is accurate and the

scores are computed properly, homologs of the training set will appear at the top

of the the score-ranked list of proteins, possibly including sequences that were not

previously known to be homologous to the modeled family. In order to be e�ective,

this procedure requires that three distinct questions be addressed: how to score the

database sequences properly; how to normalize those scores for the lengths of the

sequences; and how to compute a threshold for statistically signi�cant homologies.

There are two choices for the type of scores computed during homology de-

tection: the Viterbi score and the total probability score returned by the forward

algorithm. Both of these scores can be computed by exactly similar dynamic pro-

gramming algorithms that di�er only in the operation performed when a cell of the

dynamic programming matrix is updated. The Viterbi algorithm computes a max-

imum; the forward algorithm computes a sum. Because of this di�erence, however,

the Viterbi score can be calculated more quickly than the total probability score.
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The �nal score for each method involves a long series of multiplications; therefore,

these algorithms must be either dynamically scaled or carried out in log space in

order to avoid precision problems. The max operator used in the Viterbi algorithm

translates cleanly into log space. In contrast, the sum operation cannot be carried

out in log space without a conversion involving an exponentiation and a logarithm.

Because of this additional overhead, the total probability score generally takes longer

to compute. However, in a Bayesian framework, the total probability score makes

more sense, especially since the Baum-Welch training algorithm maximizes this total

probability, rather than the Viterbi score.2 An additional motivation for using total

probability scoring in Meta-MEME is that the combination of multiple exponential

distributions used by the multi-state spacer models does not occur when a single

Viterbi path is used for scoring.

An important drawback to total probability scores is that they are strongly

dependent upon the length of the scored sequence. This dependence is not precisely

linear and cannot be easily computed a priori. Krogh et al. [83] have developed

an empirical normalization procedure that �ts a piecewise linear curve to the scores

generated by a large database, excluding outliers. A more straightforward method,

however, is to rely upon the implicit length normalization that occurs when the

scores are compared to background scores generated by a simple background model.

The usual background model consists of a linear hidden Markov model with length

equal to the given sequence and no insert or delete states. The emission probability

distribution at each match state in the model is set equal to an empirical frequency

distribution from a large protein database. If the e�ect of the transition probability

distributions upon the score is relatively small, then by multiplying together a series

of background emission probabilities of the same length as in the foreground model,

the background score depends upon the length of the sequence in the same way

that the foreground model does. Thus, since both the foreground and background

models are length dependent in a similar way, the ratio of the two, known as the odds

2There does exist a Viterbi approximation of the Baum-Welch algorithm [21, 94], but it is not
implemented in Meta-MEME.
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Figure II.10: Length dependence of HMM total probability scores. Figure (a)
plots the log total probability score of a motif-based linear HMM as a function of
sequence length for all sequences in SWISS-PROT version 28. In Figure (b), the
scores have been converted to log-odds. The background model is a linear HMM
of the same length as the given sequence. All transitions have probability 1.0 and
emission probabilities are taken from the non-redundant protein database.
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score, contains very little length dependence. In practice, the raw odds score has a

large dynamic range, so Meta-MEME reports the logarithm in base 2 of the odds.

This log-odds score is used in most of the experiments reported in later chapters.

Figure II.10(a) shows the length dependence of log total probability scores for a

standard HMM; Figure II.10(b) shows the same scores as log-odds.

An additional bene�t of odds scoring is that the resulting scores have a well

de�ned theoretical threshold. Using total probability scoring, the odds score S of a

sequence s relative to foreground model � and background model 
 is

S =
Pr(sj�)

Pr(sj
)
(II.15)

Ultimately, however, we are interested in the probability that the sequence belongs

to the family (Pr(�js)), rather than the likelihood of the family given the sequence;

i.e., we want to know whether

Pr(�js)

Pr(:�js)
> 1:0 (II.16)

A ratio of 1.0 implies equal probabilities that the sequence may or may not belong in

the family. A larger value indicates family membership; a smaller value indicates non-

family membership. If the size of the family is small relative to the size of the database

being searched, then the background model 
 of the entire database is approximately

the same as a model of non-family members. Thus, the inequality II.16 becomes

Pr(�js)

Pr(
js)
> 1:0 (II.17)

The left-hand side of this inequality can be converted using Bayes' Rule as follows:

Pr(�js)

Pr(
js)
=

Pr(sj�)Pr(�)

Pr(s)

Pr(s)

Pr(sj
)Pr(
)
(II.18)

=
Pr(sj�)

Pr(sj
)

Pr(�)

Pr(
)
(II.19)

The �rst term is the odds score S, so inequality II.17 becomes

S
Pr(�)

Pr(
)
> 1:0 (II.20)

S >
Pr(
)

Pr(�)
(II.21)
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Figure II.11: Scaling of Viterbi scores via log-odds. Figure (a) plots the log
Viterbi score of a motif-based linear HMM as a function of sequence length for all
sequences in SWISS-PROT version 28. In Figure (b), the scores have been converted
to log-odds. The background model is a linear HMM of the same length as the given
sequence. All transitions have probability 1.0 and emission probabilities are taken
from the non-redundant protein database.
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Figure II.12: Long false positive matches to an HMM with a completely
connected topology. The �gure plots the total probability log-odds score as a
function of sequence length for a completely connected motif-based HMM of the 4Fe-
4S ferredoxin family. All sequences in SWISS-PROT version 28 with lengths from
1200 to 3000 are included. The longest 4Fe-4S ferredoxin in this database has length
1171, so all data shown here are for non-family members. Sequences scoring above 0
are marked with larger points. Note in particular the four rightmost false positives.
Details about these sequences are given in Table II.3.

This inequality re
ects that, when searching a large database, false matches to the

model are likely to appear by chance. If we approximate the prior probabilities of fam-

ily membership and non-family membership using frequency data from the database,

then the theoretical threshold for the odds score S just is the ratio of these fre-

quencies. The scaling accomplished by computing odds is evident in Figure II.10(b).

Figure II.11 shows that the same scaling occurs for Viterbi scores, even though the

Viterbi score lacks the strong length dependence of the total probability score.
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Sequence Length Total Viterbi
G168 PARPR 2704 29.43 -56.76
BAR3 CHITE 1700 27.96 -44.36
FUR2 DROME 1680 6.70 -45.44
VWF HUMAN 2813 2.64 -58.79

Table II.3: Low Viterbi log-odds scores of long false positive matches. The
four longest sequences that receive positive total probability log-odds scores in Fig-
ure II.12 each receive a very low Viterbi log-odds score.

II.J Explicit length modeling

In practice, when searching a database for homologs using a motif-based

HMM with a completely connected topology, many of the highest-scoring false positive

matches to the model tend to be very long sequences. This problem arises because,

as mentioned above, the implicit length normalization carried out by the odds scoring

procedure assumes that the sequence score depends primarily upon the emission prob-

ability distributions in the given model. For a standard HMM, most sequences that

match the model reasonably well do so by traversing primarily match states, with

relatively few insertions and deletions. Thus, since the transitions between match

states generally have high probabilities, the standard HMM score is determined pri-

marily by the emission probabilities at the match states. For a motif-based HMM, on

the other hand, the spacer states and their accompanying self-transitions account for

much of the sequence score. Hence, the implicit length normalization is less e�ective

for these models.

One means of improving the length normalization is to mimic the topology

of the foreground model in the background model [26]. Thus, instead of consisting

of a single chain of match states, the background model topology is identical to the

foreground model. In the background model, every emission probability distribution

is set equal to the global background distribution.

Although complex background models work well in practice, they are not

easily interpretable. In a Bayesian framework, the background model describes all
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members of the domain; i.e., all known proteins. Giving the background model the

same topology as the foreground obfuscates the background model's function.

Therefore, rather than relying upon a complex background model, we carry

out length normalization by explicitly modeling the lengths of the sequences in the

given family. Hence, we treat a single sequence as though it consists of two distinct

features: the sequence s, and the sequence length `. Inequality II.17 then becomes

Pr(�js; `)

Pr(
js; `)
> 1:0 (II.22)

Applying Bayes' Rule, as above, yields

Pr(�js; `)

Pr(
js; `)
=

Pr(s; `j�)Pr(�)

Pr(s; `)

Pr(s; `)

Pr(s; `j
)Pr(
)
(II.23)

=
Pr(s; `j�)

Pr(s; `j
)

Pr(�)

Pr(
)
(II.24)

If we assume that the length score and sequence score are independent, then

Pr(s; `j�)

Pr(s; `j
)
=

Pr(sj�)Pr(`j�)

Pr(sj
)Pr(`j
)
(II.25)

Substituting from equation II.25 into equation II.24 and the result into inequality II.22

yields
Pr(sj�)Pr(`j�)

Pr(sj
)Pr(`j
)

Pr(�)

Pr(
)
> 1:0 (II.26)

Finally, to derive a score similar to the odds score described previously, let

S 0 =
Pr(sj�)Pr(`j�)

Pr(sj
)Pr(`j
)
(II.27)

Then inequality II.26 becomes

S 0 >
Pr(
)

Pr(�)
(II.28)

This odds score S 0 is analogous to the score S in inequality II.21 and has the same

threshold for statistical signi�cance.

In order to calculate the odds score S 0, we need to compute four terms:

Pr(sj�), Pr(sj
), Pr(`j�) and Pr(`j
). We have already described how to compute

the �rst two terms using the HMM and the background model for s. To compute
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Pr(`j�), the likelihood of a sequence of length `, we need a model of sequence lengths.

The most straightforward such model is a normal distribution based upon the ob-

served sequence lengths in the training set. Thus, the observed lengths are used

to compute empirical estimates of the mean and variance of a normal distribution.

Then, during homology detection, this distribution is used to evaluate Pr(`j�).

One complicating factor in such a model is that, when the training set is

very small, the estimated variance of the distribution of sequence lengths can be very

poor. As usual, when the training data is insu�cient, we exploit prior information to

provide a more reasonable model. In this case, the prior information takes the form

of pseudocounts. If we assume that the observed training set mean is accurate, then

we can compute pseudocount values such that the variance of the pseudocounts is

equal to a prior �2 on the variance. A set of n pseudocounts with mean �, each with

value a, has variance

�2 '

P
n(a� �)2

n
(II.29)

�2 ' (a� �)2 (II.30)

a ' � � � (II.31)

We calculate the variance prior by computing the average standard deviation of

sequence lengths for all 1150 families in PROSITE [12]. The resulting value is

� = 114:6. Thus, the values of the pseudocounts are computed using equation II.31

with � = 114:6 and � equal to the empirical mean of the training set. Choosing the

number n of pseudocounts corresponds to choosing the weight of the prior. Meta-

MEME is conservative in using n = 2. These 2 pseudocounts are added to the

observed set of sequence lengths prior to computing the variance of the length model.

The remaining term in the computation of S 0 is the likelihood of the length

` according to a background model of sequence lengths. This model is empirically

derived from a large protein database, the NCBI non-redundant database [53]. A

histogram of sequence length frequencies is computed across all observed sequence

lengths up to a maximum of 5300 (see Figure II.13). Each bin in the histogram
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Figure II.13: Empirical distribution of sequence lengths in the non-
redundant protein database.

contains sequences of length �5 and is initialized with a single pseudocount to avoid

zero probabilities. This histogram is used directly to evaluate Pr(`j
). Any sequence

of length greater than 5300 receives a length score of 1/N , where N = 292 459 is the

size of the database.

Figure II.14 shows the same data as Figure II.10(a) and II.11(b), but in-

cluding the explicit length model in the odds calculation. In Figure II.15, the false

positives evident in Figure II.12 are eliminated by the length model.

II.K Discussion

In many ways, Meta-MEME resembles the BLOCKS method for protein

family classi�cation [71, 67]. The BLOCKMAKER program discovers highly con-

served regions of protein families by combining motifs found by either the MOTIF

algorithm [117] or the Gibbs sampling algorithm [87]. Individual blocks may be rep-

resented as ungapped position-speci�c scoring matrices, similar to the motif models
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Figure II.14: Combining normally distributed length scores with total prob-
ability and Viterbi scores.
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Figure II.15: Elimination of long false positive matches via explicit length
modeling.

created by MEME. However, MEME is more likely than BLOCKMAKER to split a

motif in two if any of the sequences contain an insertion or deletion, so MEME mo-

tifs tend to be shorter than BLOCKMAKER blocks. Since motifs (and blocks) are

supposed to model ungapped regions, MEME generally produces more accurate mod-

els. The BLOCKS database [28] contains, for each known protein family, an ordered

set of blocks along with the minimum and maximum observed spacings between the

blocks in the training set. The BLIMPS program [73] searches this database using a

single sequence as a query, thus taking into account the order and spacing of blocks.

Clearly, Meta-MEME's linear models and the BLOCKS method share many features.

In general, however, a hidden Markov model approach is more attractive because of

its well-founded underlying probabilistic theory.

The motif-based hidden Markov models produced by Meta-MEME o�er sev-

eral important advantages over other multiple alignment and homology detection

methods. First, Meta-MEME models focus on the biologically signi�cant regions

of the given protein family. By exploiting the prior knowledge that protein fam-
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ilies tend to consist of conserved motif regions separated by noisy spacer regions,

Meta-MEME produces alignments and detects homologs in a biologically motivated

fashion. Furthermore, multiple alignments produced by Meta-MEME do a better job

of aligning the important, motif regions. The models are also e�ective at discovering

remote homologies. By modeling the spacer regions between motifs in a very sim-

ple way, Meta-MEME selectively discards information from the training set about

the contents of spacer regions. This discarding of information is bene�cial for dis-

tantly related sequences, because distant homologs typically show conservation only

in functionally or structurally important portions of their sequences.

Another important advantage of Meta-MEME models is their small size.

The HMMs produced by Meta-MEME are typically less than one-�fth as large as cor-

responding models of complete proteins. This reduction in size allows Meta-MEME

models to be trained from relatively few known family members. This ability is impor-

tant, since many families contain only a handful of known sequences. In addition to

improving the trainability of the models, the reduced parameter set greatly increases

the e�ciency with which the models can be trained and used, sometimes producing

up to a factor of 30 speedup relative to standard HMMs.

Finally, a motif-based HMM di�ers from a standard HMM in the assump-

tions it makes about molecular evolution. Point mutations are allowed within motif

regions, but insertions and deletions are not. This constraint re
ects the strong bi-

ological constraints imposed on the motif regions. Inter-motif spacer regions, on the

other hand, are modeled less precisely. Contents of these regions are relatively uncon-

strained, and the lengths of the spacer regions are modeled only loosely. Furthermore,

within the HMM the motifs may be completely connected, so that entire motifs may

be repeated, skipped, or shu�ed. Motif-based HMMs therefore allow for evolutionary

mechanisms such as large-scale deletions and copying events. Thus, this generalized

topology implies a domain-based model of molecular evolution [119].



Chapter III

Family Pairwise Search

Science may be described as the process of building models to explain nat-

ural phenomena. Although every scienti�c theory implies a corresponding model,

some models are less explicit than others. An explicit model with an exact inter-

pretation is desirable, since it e�ectively summarizes the important features of the

target phenomenon, rendering them easily explicable. In the case of protein family

characterization, a statistical model with a probabilistic interpretation, in addition to

being useful for tasks such as multiple alignment and homology detection, can provide

biological insight into the important functional or structural features of the modeled

family.

Unfortunately, the most elegant model is not always the most useful. In this

chapter, we introduce a simple, non-model-based algorithm, called Family Pairwise

Search (FPS) which, for small training sets, outperforms several complex and theo-

retically justi�ed protein modeling techniques on the homology detection task. The

FPS algorithm involves computing, for each sequence in the database being searched,

its average pairwise similarity score with the sequences in the family of known ho-

mologs comprising the query. These similarity scores may be computed using a se-

quence search algorithm such as BLAST [2]. For small query sets, the FPS algorithm

outperforms a full-sequence hidden Markov Model approach (HMMER [46]) and a

motif-based modeling approach (model construction by MEME [6] followed by search

55
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with MAST [11]) to homology detection.

The explanations for the relatively poor performances of these model-based

techniques di�er. For HMMER, the di�culty lies in the large number of model

parameters relative to the size of the training set. When only a few sequences are

available for training, the number of parameters in the model is on the order of

the total size of the training set. Consequently, even with strong prior information,

training these models accurately is di�cult. MEME, on the other hand, reduces the

number of trainable parameters by focusing only upon the motif regions of the training

set. The result is a set of relatively well-trained motif models. However, MEME loses

homology information by discarding the non-motif regions of the sequences [107], and

this loss a�ects MAST's search performance.

Cobbling [72] is a hybrid modeling scheme that addresses both of these

problems. A cobbled pro�le model of a protein family is constructed by converting a

single, representative family member (the template sequence) into a pro�le [57] and

then replacing the motif regions with pro�le representations of the motifs. All gap

opening and extension penalties in the pro�le are set to the same values. The number

of trainable parameters in the cobbled pro�le model is small, because models are only

learned for the motif regions. The rest of the pro�le is constructed by simply replacing

the letter in the template sequence with a column from a pairwise score matrix such

as BLOSUM [69]. Thus, the cobbled model retains useful homology information in

the inter-motif regions by embedding the motif models into the pro�le constructed

from the inter-motif regions of the template sequence.

In this chapter we extend the FPS algorithm to searching with pro�les. We

show that when a small set of protein family members is available, searching with the

BLAST algorithm using a single cobbled pro�le fails to detect homologs as well as the

BLAST FPS algorithm using sequences. However, even better homology detection

performance is attainable by applying the FPS algorithm to cobbled pro�les. In

our experiments, this cobbled pro�le FPS technique also provides signi�cantly better

homology detection performance than the purely model-based methods HMMER and
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Figure III.1: Schematic diagram of the Family Pairwise Search algorithm.

MEME/MAST. The FPS algorithm does not require BLAST as the similarity step,

and accordingly, we show that accuracy can be improved further by replacing BLAST

with the Smith-Waterman algorithm.

III.A The Family Pairwise Search algorithm

The Family Pairwise Search algorithm is illustrated in Figures III.1 and

III.2. The input to the algorithm is a query set of sequences that are known to be

homologous to one another, as well as a sequence database to be searched. FPS

outputs a version of the database sorted in order of decreasing homology with the

query set. The algorithm proceeds in four steps. First, the sequences in the query

set are each converted into a separate query. Second, the queries are input to a

similarity algorithm and compared to each sequence in the search database. Third,

each sequence in the search database is assigned a similarity score equal to its average

similarity with the sequences in the query set. Fourth, the search database is sorted

according to the average similarity score.

In this chapter, we study the variations of the FPS algorithm outlined in

Table III.1. In the simplest form of the algorithm, the sequences in the query set

are used directly to search the database. The current work additionally investigates

two other query formats: cobbled pro�les and sequences with their non-motif regions
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procedure FPS (sequence set, database, threshold)
query set  Query construction(sequence set)
for i  1 to size(database)
target  database[i]
sum of scores = 0.0
for j  1 to size(query set)

query  query set[j]
(evalue, score)  Similarity algorithm(query, target)
if (evalue < threshold) then
sum of scores = sum of scores + score

end
end
scores[i] = sum of scores / size(query set)

end
return scores

Figure III.2: The Family Pairwise Search algorithm.

Method Query format Search Averaging

BLAST FPS sequence BLAST Yes
motif-only BLAST FPS motif regions BLAST Yes
cobbled pro�le BLAST FPS cobbled pro�le BLAST Yes
PFS FPS pro�le PFS Yes
cobbled pro�le PFS FPS cobbled pro�le PFS Yes
BLAST single sequence BLAST No
cobbled pro�le BLAST single cobbled pro�le BLAST No
MAST motif models MAST No
HMMER sequence model hmmsw No

Table III.1: Summary of homology detection methods investigated here.
Five query format types are considered: the original sequences, the motif regions
of the sequences, motif models built from the sequences, a standard HMM of the
sequences, or the cobbled pro�les of the sequences. PFS refers to the Pro�lesearch [57]
algorithm as implemented on the Bioccelerator [40].
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removed. For comparison, we also study searching with a representative sequence

selected from the query set, searching with a cobbled pro�le constructed using the

representative sequences as a template, searching using one or more motif models,

and searching using a standard HMM. These last four search methods do not involve

the averaging step of the FPS algorithm.

To convert a sequence in the query set to a cobbled pro�le, we use a modi�ed

version of the Cobbler [72] algorithm to embed motif pro�les into a pro�le constructed

from the template sequence. Our modi�ed version of the algorithm can output both

log-odds pro�les and frequency pro�les. Log-odds pro�les, for use with the Smith-

Waterman algorithm, are built by replacing each letter in the sequence with the

BLOSUM row for that letter; frequency pro�les, for use with the BLAST algorithm,

use the target letter frequencies corresponding to the BLOSUM row, rather than the

log-odds scores. To convert a pro�le into a cobbled pro�le, motif models (built as

described below) are converted either into log-odds position-speci�c score matrices

(for log-odds pro�les) or target frequency matrices (for frequency pro�les) and are

used to replace the appropriate positions in the pro�le as in the original Cobbler

algorithm. Log-odds pro�les are built using BLOSUM55, whereas frequency pro�les

use BLOSUM62 in order to be comparable with the standard BLAST algorithm. All

gap opening and extension penalties in the log-odds pro�les were set to 100.

Motifs need only be discovered once for each query set. Ungapped motifs

are discovered and modeled using MEME version 2.2 [6] with the default parame-

ter settings from the web interface [60]. These defaults include empirical Dirichlet

mixture priors weighted according to the megaprior heuristic [9], a minimum motif

width of 12 and a maximum of 55, and a motif model biased toward zero or one motif

occurrence per sequence. A total of ten motifs are discovered from each query set,

and motif signi�cance is judged using the majority occurrence heuristic [62]: motifs

that do not appear in more than half of the query sequences are discarded. This

heuristic excludes motifs that are speci�c to subfamilies of the given query set. For

eight-sequence queries, the heuristic selects an average of 5.1 motifs. MEME outputs
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the motifs in BLOCKS [68] format for use as input to the modi�ed Cobbler algorithm.

To test the e�ect of focusing on the motifs, we construct a set of queries

with the inter-motif regions removed. The motif regions of a sequence are identi�ed

by aligning the sequence with a motif-based linear hidden Markov model using Meta-

MEME. The intervening spacer regions are deleted, and the resulting concatenated

sequence of motifs is treated as the query for the similarity step of the FPS algorithm.

To evaluate the bene�t of the averaging aspect of the FPS algorithm, we

compare FPS to the use of a single, representative sequence from the query set.

We choose this representative sequence using the same method as the unmodi�ed

Cobbler algorithm. Essentially, the sequence which best matches the motifs for the

family is chosen. This sequence is used to search the database, and the averaging

step in the FPS algorithm is skipped. For comparison, we also include a test of the

original Cobbler method. This involves using the same, representative sequence as

the template for a cobbled pro�le. The database is searched using just this pro�le,

and the averaging step is skipped.

Finally, we compare the FPS approach with two strictly model-based ap-

proaches. The MEME motifs discovered previously are provided as a single query to

the MAST [11] homology search algorithm. For each sequence in the database, MAST

compute a p-value for each motif in the query and combines these values assuming

that motif occurrences are statistically independent. The resulting sequence-level

p-value scores are used to rank the sequences in the database.

In addition, hidden Markov models of each query set are built using the

HMMER software package version 1.8 [46]. Models are trained using expectation-

maximization coupled with simulated annealing. The default geometric annealing

schedule is used, and Dirichlet mixture priors allow the models to be trained with

smaller training sets. Database searches are carried out using a modi�ed form of the

Smith-Waterman algorithm. This algorithm performs a local search for sequence-to-

model matches, allowing partial matches to either the sequence or the model. For

each database sequence, a log-odds score in bits is computed.
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In the second step of the FPS algorithm, the queries are input to a simi-

larity algorithm and compared to each sequence in the search database. Any algo-

rithm suitable for comparing the given type of query with protein sequences may

be employed in this second step of FPS. The current work investigates using the

BLAST and Smith-Waterman algorithms for computing query-to-sequence similar-

ities. For BLAST searches, we use the \bit score" [3] as the similarity score. For

Smith-Waterman searches, we use the negative logarithm of the p-value of the Smith-

Waterman score.1

We use gapped BLAST version 2.0 [2, 3], a heuristic approximation of a

dynamic programming optimization of maximal segment pair scores. In order to

use cobbled pro�les as BLAST queries, we obtained a pre-release version of PSI-

BLAST [3] that is capable of storing and reading binary checkpoint �les. Since these

�les contain a frequency matrix representation of the query, converting our cobbled

frequency pro�les to the BLAST checkpoint format is straightforward. PSI-BLAST

is run for one iteration with its default parameters. The �ltering of low-complexity

regions in the query sequence is turned o� because this option is unavailable in con-

junction with reading checkpoint �les. For BLAST searches using sequences as the

queries, we use the BLOSUM62 score matrix.

For Smith-Waterman searches, we use the Pro�lesearch (PFS) algorithm

as implemented on the Bioccelerator [40]. We set the gap opening penalty to 8

and the extension penalty 0.3. In order to calculate p-values corresponding to

Smith-Waterman scores, we calculated the score distribution by �tting the Karlin-

Altschul [80] distribution to 10 000 random sequences of length 250 using linear re-

gression. The estimated values of � and K can then be used to calculate the p-value

of any score.

In the third step of the FPS algorithm, the similarity scores for a given

database sequence with each of the queries are averaged together to give the score

1We de�ne the p-value of the Smith-Waterman score of a sequence as the probability that the
score of a random sequence of the same length as the given sequence would be at least as high as
the observed score for the sequence.
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for comparing the sequence with the family. For convenience, we only include in this

average the sequences most similar to the query. We assign all other sequences the

lowest possible similarity score. For both similarity algorithms tested here, the lowest

possible score is zero. When BLAST is used as the similarity algorithm, we compute

all similarity scores that correspond to an E-value2 smaller than 1000. When PFS is

used, we compute scores for the 1000 highest-scoring sequences. Because all protein

families in the database we search have far fewer than 1000 members, this approach

should yield the same results as actually computing all similarity scores.

III.B Comparing homology detection methods

We use a collection of 73 protein families [10, 59] in our homology detection

experiments (see Appendix A). These families were selected from the PROSITE

database [12] for their di�culty, based upon the number of false positives reported

in the PROSITE annotations. The families range in size from 5 to 109 sequences,

and from 949 to 58 015 amino acids. The associated release of SWISS-PROT [13]

contains 36 000 sequences and nearly 12.5 million amino acids.

Bias within the families is minimized via sequence weighting. Since many

weighting schemes perform almost as well as one another [70], all the experiments

reported here employ a simple, binary weighting scheme based upon BLAST similarity

scores [87]. This approach is simple, since the highly similar sequences can be removed

at once before any analysis is performed, and leads to faster training, since the sizes

of the weighted training sets are reduced. For these experiments, a BLAST similarity

threshold of 200 is used. The sizes of the weighted PROSITE families range from 1 to

73 sequences with an average of 10.7 sequences, and from 394 to 18 702 amino acids

with an average of 4202.

For each family, nested query sets of sizes 2, 4, 8 and 16 sequences are

randomly selected from the set of weighted sequences. This results in 73 query sets

2An E-value is just the p-value multiplied by the size of the database being searched.
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of size 2, 57 sets of size 4, 35 of size 8, and 16 query sets of size 16.

A modi�ed version of the Receiver Operating Characteristic, called ROC50

[58], is used to compare the various search techniques. The ROC score is the area

under a curve that plots true positives versus false positives for varying score thresh-

olds. ROC analysis combines measures of a search's sensitivity and selectivity. The

ROC50 score is the area under the ROC curve, up to the �rst 50 false positives. This

value has the advantages of yielding a wider spread of values, of requiring less storage

space, and of corresponding to the typical biologist's willingness to sift through only

approximately �fty false positives. ROC50 scores are normalized to range from 0.0

to 1.0, with 1.0 corresponding to the most sensitive and selective search. The lists

of positive family members used in calculating ROC50 scores are taken from PRO-

SITE. For MAST and PFS, sequences are ranked by p-value. For BLAST, sequences

are ranked by average bit scores, and for HMMER, sequences are ranked by average

log-odds scores.

III.C Results

Our experiments show that, while the FPS algorithm that uses as queries

the raw sequences is an e�ective homology detection method, it can be signi�cantly

improved by embedding motif models in the query sequences. We illustrate and

explain this method through a series of experiments. In what follows, in comparing

two search methods, a method is \signi�cantly better" if the pairwise di�erences in

ROC for the 73 families is signi�cant at the 1% con�dence level, based upon a paired

t test.

III.C.1 Comparing BLAST FPS with model-based tech-

niques

Figure III.3(a) shows the average ROC50 scores for all 73 protein families in

the study. In the �gure, for query sets of size 2, 4, 8 and 16, all di�erences between
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Figure III.3: BLAST FPS performs better than model-based techniques.
The �gure shows average ROC50 scores as a function of query set size. Figure (a)
includes data for all families in the study; Figure (b) only includes data from families
containing more than �fteen and less than 32 members after binary sequence weight-
ing. Error bars represent standard error. Figure (a) includes 73 query sets of size 2,
57 sets of size 4, 35 of size 8, 16 of size 16 and 3 sets of size 32; Figure (b) includes
13 query sets of each size.
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search techniques at a given query set size are signi�cant. Thus, BLAST FPS uni-

formly outperforms the other two methods, and MAST outperforms HMMER. Only

three families contain more than 32 weighted members, so the di�erences between

techniques at that query set size are not signi�cant.

One unexpected characteristic of Figure III.3(a) is the downward trend of

the BLAST FPS and MAST scores as the query set size increases. However, this

trend is an artifact of the presentation of the data: the 73 2-sequence queries contain

many sequences from very small families. For these small families, the task of homol-

ogy detection is relatively easy. The sixteen 16-sequence query sets, however, each

correspond to a relatively large and hence di�cult-to-recognize protein family. The

e�ect of family size upon recognition di�culty is illustrated in Figure III.4, in which

ROC50 scores are plotted as a function of family size. The scores show a signi�cant

downward trend as the family size increases.

Figure III.3(b) corrects for di�erences in family size by including only fam-

ilies containing between 16 and 31 members. Here, the trend toward better perfor-

mance with more query sequences is clearer. All three methods improve signi�cantly

at each increase in the query set size except for HMMER between queries of size 2

and 4.

Some protein families are di�cult to recognize regardless of the homology

detection method employed. Table III.2 shows the �fteen families that received the

lowest ROC50 scores from all three methods. The data show a strong correlation

between the families for which BLAST FPS and MAST had di�culty: the seven

most di�cult families for each method are the same. This agreement indicates that,

for these families, a low ROC50 score indicates a family that is di�cult to recognize,

rather than a problem with the homology detection method.

Any evaluation of homology detection methods can only be as accurate as the

curated list of family members upon which the evaluations are based. Unannotated

family members will cause all three methods to apparently perform poorly on that

family. Thus, for example, the �rst 50 false positives that BLAST FPS uncovered



66

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10 15 20 25 30 35 40

R
O

C
 5

0

Number of sequences in purged family

BLAST FPS

(a)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10 15 20 25 30 35 40

R
O

C
 5

0

Number of sequences in purged family

MAST

(b)

Figure III.4: The e�ect of family size upon recognition di�culty. The �gures
show average ROC50 scores as a function of family size. Each �gure includes ROC50

scores from 35 8-sequence queries. The slope of the regression line in Figure (a) is
-0.0053 and in Figure (b) is -0.0045. Both slopes are signi�cantly di�erent from 0.0
at a 1% level of con�dence. In each �gure, two outlying families (with 53 and 73
sequences) are left out for the sake of scale.
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Family BLAST FPS HMMER MAST Total
ROC50 R ROC50 R ROC50 R rank

Cytochrome c 0.562 1 0.043 2 0.548 1 4
ABC transporters 0.774 4 0.292 4 0.784 6 14
N-6 Adenine-speci�c

DNA methylases 0.814 7 0.257 3 0.747 5 15
Aminoacyl-transfer RNA

synthetases class-II 0.632 2 0.455 11 0.654 2 15
Binding-protein-dependent

transport systems inner
membrane component 0.802 6 0.431 9 0.710 3 18

Lipases 0.771 3 0.528 13 0.814 7 23
Gram-positive cocci surface

proteins 0.779 5 0.764 16 0.718 4 25
Eukaryotic putative RNA-

binding region RNP-1 0.903 11 0.389 8 0.887 13 32
Myc-type, helix-loop-helix

dimerization domain 0.864 8 0.375 7 0.912 17 32
Short-chain alcohol

dehydrogenases 0.895 9 0.512 12 0.869 11 32
GTP-binding elongation

factors 0.938 14 0.752 15 0.873 12 41
Glycosyl hydrolases 0.941 15 0.360 6 0.943 22 43
4Fe-4S ferredoxins 0.897 10 0.837 18 0.918 18 46
Growth factor and

cytokines receptors 0.954 18 0.444 10 0.925 19 47
C-5 cytosine-speci�c

DNA methylases 0.934 13 0.844 19 0.936 20 52

Table III.2: Di�cult families. Listed are the �fteen families that contain eight or
more weighted sequences and that received the lowest ROC50 scores for 8-sequence
queries. For each method, the families are ranked by increasing ROC50 score. The
rank of each family with respect to each method is given in the columns labeled \R."
The families are listed in order of increasing total rank.
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for the cytochrome c family contain six sequences for which the annotation includes

the words CYTOCHROME C. Three of these false positive sequences are cytochrome C

precursors; three more are listed as cytochrome c family members in a later version

of SWISS-PROT (one as a potential member).

An important di�erence between BLAST FPS and MAST on the one hand

and HMMER on the other is that the former two algorithms allow multiple local

matches. The hmmsw program, although it performs a local search, allows only a

single subsequence of the HMM to match a subsequence of the database protein

sequence. The three-row topology of the standard linear HMM implies a simple

model of evolution, involving point mutations, insertions and deletions. Semi-local

searching adds to this model the possibility of large-scale deletions and insertions at

either end of the protein. Still, however, the linear topology cannot accurately model

protein families in which motifs or domains are repeated or shu�ed. Accordingly,

one would expect HMMER to perform poorly on families known to contain repeated

elements. Figure III.5 illustrates this e�ect. PROSITE annotations were used to

separate out those families containing repeated elements. For all query set sizes,

HMMER performs signi�cantly worse on families containing repeated domains. For

MAST, although some di�erences between ROC50 scores for families with and without

repeats are signi�cant, those di�erences are smaller, and no consistent trend appears.

Surprisingly, however, BLAST FPS performs better on families without repeated

domains.

One important reason for using homology detection to infer protein function

is speed. Most wet lab experiments are slow relative to a protein database search.

However, not all computational methods are equally fast. In this respect, BLAST

FPS clearly outperforms both MEME/MAST and HMMER. For example, Table III.3

shows typical timing data for one protein family. For an 8-member query set, BLAST

FPS requires only 82 seconds; combined, MEME and MAST require 9.7 minutes,

and HMMER training and searching require 2.9 hours. BLAST implements a linear

algorithm, whereas the training algorithms for both MEME and HMMER are roughly
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Figure III.5: Detecting homologs of families containing repeated elements.
The �gures show average ROC50 scores as a function of query set size for families with
and without repeated elements. Each �gure contains data for 21 families containing
repeats and 52 families without repeats. Error bars represent standard error.
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Program Query set size
2 4 8

BLAST 18.2 39.4 82.3
MEME 67.2 170.4 548.0
MAST 65.5 39.7 33.9
hmmt 41.6 62.6 1716.7
hmmsw 8965.2 8772.3 8692.0

Table III.3: Typical execution times for the three homology detection meth-
ods. Times reported are total CPU time in seconds on a 167 MHz Sparc Ultra for
one protein family.

O(n2) in the size of the training set. On the other hand, the MAST search algorithm

is considerably faster than the corresponding HMMER search algorithm, hmmsw. A

MAST query requires less than a minute, but with hmmsw, searching even a relatively

small database like SWISS-PROT takes nearly 2.5 hours on a fast workstation.

III.C.2 Adding motif models to the FPS algorithm

The experiments summarized in Figure III.6 show that using a single rep-

resentative sequence from a protein family as the query in a BLAST search is the

poorest homology detection method among those we examine here. Homology detec-

tion using the motif models as the query to the MAST algorithm is far better. Better

still is the FPS algorithm using sequence queries and the BLAST similarity algorithm

(BLAST FPS). Using only the motif regions of the sequences as queries to BLAST in

the FPS algorithm (motif-only BLAST FPS) gives intermediate homology detection

accuracy.

These results indicate that BLAST is taking advantage of homology infor-

mation in the non-motif, spacer regions of the given sequences. When the inter-motif

regions are eliminated from the queries, BLAST FPS's performance degrades signif-

icantly. On the other hand, MAST's signi�cantly improved performance relative to

motif-only BLAST FPS shows that MEME is producing useful models of the motif

regions.
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Given that the model is helpful and that throwing out non-motif regions

is detrimental, the apparent solution should be to build models of entire sequences,

rather than only of the motif regions. However, we have already seen that, for the

relatively small training set sizes under investigation here, a model of the entire

sequence fails to provide accurate homology detection for these 73 families. This

failure most likely results from the large number of parameters in a sequence-level

model relative to the amount of noise in the non-motif regions of the sequences. For

the less conserved regions of the training sequences, aligning positions may be di�cult

or impossible. Consequently, building models of these regions is also di�cult.

One solution to this dilemma is to build models in which the motif regions are

based upon the entire set of given sequences, and the non-motif regions are based only

upon a single sequence in the family. This is the cobbled pro�le approach. Figure III.7

con�rms that this approach improves homology detection accuracy. Cobbled pro�le

BLAST has signi�cantly greater accuracy than single sequence BLAST. The �gure

also shows, however, that using only a single cobbled pro�le built from a representative

sequence, as in the original Cobbler paper, is tremendously inferior to the BLAST FPS

algorithm. Combining the cobbled pro�le approach with the FPS algorithm, however,

yields better search accuracy. Cobbled pro�le BLAST FPS is signi�cantly better than

BLAST FPS. Substituting the Smith-Waterman (PFS) algorithm for BLAST gives

yet better performance. Cobbled pro�le Smith-Waterman FPS is signi�cantly better

than even cobbled pro�le BLAST FPS. This is not surprising, since the BLAST

algorithm is a heuristic approximation of the Smith-Waterman algorithm. Cobbled

pro�le Smith-Waterman FPS is also signi�cantly better than searching with a single

pro�le derived from a representative sequence (data not shown).

III.D Discussion

Our results show the bene�ts of building models of protein families. The

�rst set of experiments indicate that, for small query sets, a non-model-based FPS
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algorithm (BLAST FPS) out-performs both sequence-level and motif-based models on

the homology detection task. The second set of experiments reported here, however,

show that statistical models, used appropriately, can be helpful even for very small

query sets. The Cobbler approach [72] is an e�ective means of reducing the size of

the models being trained while retaining homology information in noisy regions of the

query sequence. The FPS algorithm takes Cobbler one step further by retaining the

noisy regions of all query sequences, rather than a single representative. The result is

an intelligent compromise, an algorithm that models only the regions of the sequence

that are e�ectively model-able while retaining all of the information from the noisier

regions. The version of this algorithm based upon the Smith-Waterman algorithm,

rather than BLAST, performs best overall, probably due to the exhaustive search for

local alignments performed by the Smith-Waterman algorithm.

The reasons for the FPS algorithm's excellent performance are two-fold.

First, the average similarity score incorporates information from multiple sequence

comparisons into a single score. The method thereby allows for the detection of

remote homologs that lack signi�cant similarity with one or more of the training

set sequences. The average similarity score is therefore similar to the intermediate

sequence approach suggested by Pearson [107] and Park et al. [102]. Second, FPS

may perform well relative to motif-based methods because the similarity algorithms

allow for query-to-target matches along the entire length of the sequences, rather

than only within the motif regions. These non-motif regions often contain important

evidence of homology [107].

The improved performance of both cobbled pro�le BLAST and BLAST FPS

relative to BLAST can be explained in terms of the use of homology information in the

query sequences. When multiple query sequences are available, searching for homologs

using BLAST with a single representative sequence obviously discards important

homology information from the rest of the query set. Cobbled pro�les remedy this

problem somewhat, since they include in the motif regions information from all the

query sequences. BLAST FPS furthers the improvement by including all of the
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information from all of the query sequences.

This kind of explanation, however, fails to account for cobbled pro�le

BLAST FPS's strong performance relative to BLAST FPS. Since the BLAST FPS

algorithm already considers all of the information in the query sequences, the im-

provement that cobbled pro�les add to the algorithm must derive from the motif

models themselves, rather than because cobbled pro�le BLAST FPS considers more

information in the query set.

Statistical models of the type built by MEME o�er two important advan-

tages over direct pairwise sequence similarity algorithms. First, a position-speci�c

scoring matrix entails the assumption that amino acid occurrences at one position in

a protein are statistically independent of amino acid occurrences at other positions.

This site independence assumption allows a candidate protein to receive a high score

even if that protein does not closely resemble a single query sequence but instead

is comprised of a mix of sites similar to several proteins in the query set. Second,

a statistical model can incorporate prior knowledge that e�ectively augments the

information provided in the query set. For this purpose, MEME employs a set of

empirically derived Dirichlet mixture priors [32]. These priors allow MEME to guess

from very little evidence a biologically plausible amino acid distribution for each po-

sition in the motif model. Thus, cobbled pro�le BLAST FPS's improved homology

detection performance relative to BLAST FPS illustrates the positive e�ect of the site

independence assumption and of the use of prior information in detecting homologs.

An important consideration for any homology detection method is speed.

Since the FPS algorithm involves comparing each of the n sequences in the protein

family to the sequences in the search database, the algorithm requires approximately

n times as long as searching with a single representative sequence. In practice, how-

ever, if binary weighting of the family is employed (i.e., highly similar sequences are

discarded), n is fairly small. In this study, for example, the average weighted fam-

ily size is 10.7. In conjunction with a heuristic algorithm such as BLAST, or with

special-purpose hardware such as the Bioccelerator, FPS is therefore quite e�cient,
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especially considering the relatively large improvement in performance that the al-

gorithm o�ers over single-sequence BLAST. Adding motif modeling to FPS incurs

considerable overhead, since the MEME motif discovery algorithm is roughly O(n2)

in the size of the training set. However, as we have shown, the model-based method

o�ers the best homology detection performance. For large families, searching once us-

ing MAST is faster than searching with multiple cobbled pro�les using either BLAST

or PFS, and MAST is almost as accurate.

For fairness of comparison, the experiments reported here employ the default

settings of each technique. It may be the case, however, that selecting di�erent

parameter settings for the various homology detection methods may result in slightly

di�erent results. For example, although both MEME and HMMER employ Dirichlet

mixture priors, MEME weights the prior more heavily by default. This heuristic may

have given MEME an advantage for the smaller training sets.

The large di�erence in performance between single-sequence BLAST queries

on the one hand and family-based homology detection methods on the other suggests

a bootstrap approach when only a single query sequence is available. In such an

approach, BLAST would be used initially to search for close homologs, which would

then be given to a family-based homology detection algorithm.

Iterating this bootstrap procedure should provide even better homology in-

formation than the single pass reported here. Iterative applications of BLAST have

been suggested by Koonin and Tatusov [82] and implemented in Probe [98] and PSI-

BLAST [3]. PSI-BLAST employs a non-motif-based, position-speci�c scoring matrix

representation; Probe, on the other hand, employs motif models. The current results

indicate that a hybrid Cobbler representation may be superior to either a sequence-

level or motif-only model. We therefore intend to investigate the use of the cobbled

pro�le BLAST FPS algorithm within an iterative framework.

The text of Chapter III, in part, is a reprint of the material as it appears in Pro-

ceedings of the Second International Conference on Computational Molecular Biology [59].
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Chapter IV

Experimental results

IV.A Motif-based multiple alignment

IV.A.1 Introduction

For the biologist, one of the most familiar means of illustrating the evolu-

tionary relationships among a set of sequences is the multiple alignment. By aligning

corresponding positions among a set of homologous sequences, a multiple alignment

quickly illustrates the extent to which a set of sequences has been conserved over

evolutionary time. Furthermore, regions of high conservation, as opposed to poorly

conserved regions containing many insertions and deletions, indicate to the biologist

regions of the sequences that may have particular biological signi�cance.

In the �rst set of experiments reported here, we compare motif alignments

created by Meta-MEME with multiple alignments generated by ten other multiple

alignment methods. The quality of an alignment is judged, following McClure et

al. [92, 91], according to its success in properly aligning a set of known, biologically

signi�cant regions. We �nd that, overall, Meta-MEME performs as well or better

than all but one of the competing alignment methods. With respect to alignments

derived from a standard linear HMM, Meta-MEME performs considerably better.

Meta-MEME alignments di�er from standard alignments in that Meta-

77
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MEME only aligns the motif regions of the given set of sequences. These motif-only

alignments could be easily augmented using traditional sequence alignment meth-

ods. However, motif-only alignments are useful as inputs to phylogenetic inference

algorithms. For particularly divergent data sets, a motif-only alignment is likely to

contain fewer errors than an alignment of entire sequences. Furthermore, recent evi-

dence suggests that motif-only alignments may be phylogenetically useful even when

the alignment contains few errors.

In the second set of experiments reported here, we use Meta-MEME to an-

alyze a set of mitochondrial proteins from fourteen chordate and �ve non-chordate

species. This data set was used by Naylor and Brown [96] in a comparison of phy-

logenetic inference algorithms. Because these are species for which there exists an

abundant fossil record, their phylogenetic relationships are undisputed. Hence, there

is a known, true tree for this data set. Furthermore, because the mitochondrial se-

quences are so similar to one another, the alignment is relatively easy to create, so it

too is undisputed. Finally, since the data set is large, containing thirteen complete

proteins for each species, the phylogenetic inference algorithms should be able accu-

rately to infer the true tree. However, Naylor and Brown report that none of the

phylogenetic methods that they used, including equally-weighted parsimony, max-

imum likelihood and distance methods, succeeded in recovering the true tree, and

most of the methods disagreed about what the incorrect tree is. Furthermore, their

analysis of the positions in the multiple alignment that are consistent with the true

tree with respect to a parsimony analysis suggest that a molecular phylogeny based

upon \amino acids that seemed to be critical for determining the proteins' three-

dimensional structure" [23] provides the best match to morphological data. This

hypothesis leads to our second experiment, in which we show that, for the data set

used by Naylor and Brown, Meta-MEME, in conjunction with a parsimony-based

phylogenetic inference package, is the only known method capable of �nding the true

tree for this data set.
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IV.A.2 Methods

For the validation of Meta-MEME multiple alignments, four families of

known homologs are aligned [92, 91]. For each family, twelve representative sequences

are selected. The �rst set includes �- and �-globins from mammals and birds, myo-

globins from mammals, and hemoglobins from insects, plants and bacteria. These

globin sequences share between 10 and 70% pairwise sequence identity. The sequence

sets for the other three families are more divergent, with a maximum pairwise sequence

identity of 30%. These families are the eukaryotic kinases, including serine/threonine,

tyrosine and dual speci�city kinases from mammals, birds, fungi, retroviruses and her-

pes viruses; the eukaryotic aspartic acid proteases, including pepsins, chymosins and

renins; and the RH domain of the RNA-directed DNA polymerase.

Following McClure et al., biologically signi�cant regions of each family are

de�ned a priori. In most cases, these regions correspond to motif regions, although

some of the biologically signi�cant regions are too short properly to be called motifs

(e.g., several kinase regions consist of a single amino acid). Nevertheless, for sim-

plicity, we refer to these pre-de�ned regions as motifs. For the latter three families,

the motif regions are de�ned based upon independent biological evidence. For the

globins, there is no external measure of authenticity, but reasonable motif regions are

selected a priori in order to provide a uniform testing paradigm.

The quality of an alignment is measured as the percentage of the pre-

determined motif regions that are successfully aligned in the multiple alignment. A

successful alignment of a particular motif sequence is one that exactly matches that

sequence with the corresponding motif in at least one other family member. The

quality of a motif alignment improves if all motifs in the family are aligned to one

another, rather than being aligned in two or more disjoint blocks. In addition, gapless

motifs with no insertions or deletions are preferred over gapped motifs. In the report-

ing of results, quality is reported as the percentage of correctly aligned motif regions,

with annotations indicating gapped motifs and motifs with misaligned subsets.

For each family, eight motifs are discovered using MEME version 2.0. Motifs
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Species name Common name GenBank ID
Paracentrotus lividus sea urchin J04815
Strongylocentrotus purpuratus sea urchin X12631
Branchiostoma 
oridae lancelet
Xenopus laevis frog M10217
Gallus gallus chicken X52392
Didelphis virginiana opossum Z29573
Mus musculus mouse J01420
Bos taurus cow J01394
Cyprinus carpio carp X61010
Oncorhynchus mykiss trout L29771
Petromyzon marinus lamprey U11880
Balaenopterus physalus �n-back whale X61145
Balaenopterus musculus blue whale X72204
Rattus norvegicus rat X14848
Drosophila yakuba fruit 
y X03240
Cepaea nemoralis snail U23045
Anopheles gambiae mosquito L20934
Ascaris suum nematode X54253
Caenorhabditis elegans nematode X54252

Table IV.1: Species included in the mitochondrial data set. The last �ve
species serve as a collective outgroup that is used to root the phylogenetic tree.

are selected according to the majority occurrence heuristic (see Section II.B) for

inclusion in a linear Meta-MEME model. The model is written in HMMER format,

and the hmma program is used to align the training set sequences with the model.

HMMER models of each family are built using the HMMER program hmmt.

This program implements a simulated annealing training algorithm. The program

is run with its default parameters, including an exponential annealing schedule and

add-one pseudocount priors. Again, hmma is used to create multiple alignments.

The data set for phylogenetic analysis consists of thirteen concatenated mi-

tochondrial protein sequences from each of fourteen chordate species as well as �ve

non-chordate species that serve as a collective outgroup. The names of the species

are given in Table IV.1. The total size of the data set is 71 001 amino acids.

Fifty motifs are discovered four divergent sequences (snail, nematode, opos-
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sum and lancelet) using MEME 2.0. These sequences were selected using the purge

program with a BLAST threshold of 1500 bits [98]. Of the �fty motif models, one is

discarded because it appears in less than half of the nineteen sequences in the original

data set. The remaining motif models are combined into a Meta-MEME linear hidden

Markov model with single-state spacer models. The HMM is then used to align the

mitochondrial sequences, throwing out non-motif regions. The resulting alignment is

given as input to the protein parsimony program in Phylip [50]. The reported tree is

the single most parsimonious tree found in ten random shu�es of the sequences.

IV.A.3 Results

Multiple alignments

Figures IV.1 and IV.2 show multiple alignments generated by HMMER and

by Meta-MEME for the globin family. This is the least divergent of the four data

sets; therefore, both multiple alignments succeed in accurately aligning all of the motif

regions of the sequences.

The set of RH domains of the RNA-directed DNA polymerase is much more

divergent than the globin sequences. The results indicate that, of the four families

under consideration, this one is the hardest to align. For this data set, Meta-MEME

performs much better than HMMER. Figures IV.3 and IV.4 show that Meta-MEME

succeeds in aligning all four of the pre-de�ned motif regions, whereas the HMMER

analysis of the same data yields a correct alignment of only the �rst two motifs.

The results in Tables IV.2 through IV.5 compare the alignment performance

of Meta-MEME and HMMER to the performance of nine alignment methods tested

by McClure et al. on the same four sets of sequences. These results are summarized in

table IV.6. Overall, Meta-MEME performs as well or better than eight of the other ten

multiple alignment methods examined, and only slightly worse than the second best

method. Given the relatively ad hoc nature of these test, it is not possible to assign a

threshold for statistical signi�cance to these di�erences in performance. Nevertheless,
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       xxxxxxxxxxx.xxxxxxxxx.xxxxx..........xxxxxx.xxxxxxx.xxxxxxxxxx.xxxxxxxxx
HAHU    V.LSPADKTN..VKAAWGKVG.AHAGE..........YGAEAL.ERMFLSF..PTTKTYFPH.FDLS.HGSA
HAOR    M.LTDAEKKE..VTALWGKAA.GHGEE..........YGAEAL.ERLFQAF..PTTKTYFSH.FDLS.HGSA
HADK    V.LSAADKTN..VKGVFSKIG.GHAEE..........YGAETL.ERMFIAY..PQTKTYFPH.FDLS.HGSA
HBHU    VHLTPEEKSA..VTALWGKVN.VDEVG...........G.EAL.GRLLVVY..PWTQRFFES.FGDL.STPD
HBOR    VHLSGGEKSA..VTNLWGKVN.INELG...........G.EAL.GRLLVVY..PWTQRFFEA.FGDL.SSAG
HBDK    VHWTAEEKQL..ITGLWGKVNvAD.CG...........A.EAL.ARLLIVY..PWTQRFFAS.FGNL.SSPT
MYHU    G.LSDGEWQL..VLNVWGKVE.ADIPG..........HGQEVL.IRLFKGH..PETLEKFDK.FKHL.KSED
MYOR    G.LSDGEWQL..VLKVWGKVE.GDLPG..........HGQEVL.IRLFKTH..PETLEKFDK.FKGL.KTED
IGLOB   M.KFFAVLALCiVGAIASPLT.ADEASlvqsswkavsHNEVEIlAAVFAAY.PDIQNKFSQFaGKDLASIKD
GPUGNI  A.LTEKQEAL..LKQSWEVLK.QNIPA..........HS.LRL.FALIIEA.APESKYVFSF.LKDSNEIPE
GPYL    GVLTDVQVAL..VKSSFEEFN.ANIPK...........N.THR.FFTLVLEiAPGAKDLFSF.LKGSSEVPQ
GGZLB   M.L.DQQTIN..IIKATVPVLkEHGVT...........ITTTF.YKNLFAK.HPEVRPLFDM.GRQ..ESLE

       xxxxx.xxxxxxxxxxxxx..xxxxxxxxxxxxxxx..xxxxxxx.xxxxxxx...xxxxxxxxxxxxxxxx
HAHU    QVKGH.GKKVADA.LTN......AVA.HVDDMPNA...LSALS.D.LH AHKL....RVDPVNF.KLLSHCLL
HAOR    QIKAH.GKKVADA.L.S......TAAGHFDDMDSA...LSALS.D.LH AHKL....RVDPVNF.KLLAHCIL
HADK    QIKAH.GKKVAAA.LVE......AVN.HVDDIAGA...LSKLS.D.LH AQKL....RVDPVNF.KFLGHCFL
HBHU    AVMGNpKVKAHGK.KVLGA..FSDGLAHLDNLKGT...FATLS.E.LH CDKL....HVDPENF.RL.LGNVL
HBOR    AVMGNpKVKAHGA.KVLTS..FGDALKNLDDLKGT...FAKLS.E.LH CDKL....HVDPENFNRL..GNVL
HBDK    AILGNpMVRAHGK.KVLTS..FGDAVKNLDNIKNT...FAQLS.E.LH CDKL....HVDPENF.RL.LGDIL
MYHU    EMKASeDLKKHGA.TVL......TALGGILKKKGHH..EAEIKPL.AQSH ATK...HKIPVKYLEFISECII
MYOR    EMKASaDLKKHGG.TVL......TALGNILKKKGQH..EAELKPL.AQSH ATK...HKISIKFLEYISEAII
IGLOB   T.GA...FATHATRIVSFLseVIALSGNTSNAAAV...NSLVSKL.GDDH KA....R.GVSAA.QF..GEFR
GPUGNI  NNPK...LKAHAAVIFKTI...CESATELRQKGHAVwdNNTLKRL.GSIH LK....N.KITDP.HF.EVMKG
GPYL    NNPD...LQAHAG.KVFKL..TYEAAIQLEVNGAVAs.DATLKSL.GSVH VS....K.GVVDA.HF.PVVKE
GGZLB   Q......PKALAM.TVL......AAAQNIENLPAIL..PAVKKIAvKH CQAGVaaaH.YPIVGQEL.LGAIK

       xxxxxxxxx.xxxxxxxxx.xxxxxxxxxxxxxxxxxxxxxxx..x
HAHU    VT.LAA.H..LPAEFTPA..VHASL DKFLASV.STVLTS..KY..R
HAOR    VV.LAR.H..CPGEFTPS..AHAAM DKFLSKV.ATVLTS..KY..R
HADK    VV.VAI.H..HPAALTPE..VHASL DKFMCAV.GAVLTA..KY..R
HBHU    VCVLAH.H..FGKEFTPP..VQAAY QKVVAGV.ANALAH..KY..H
HBOR    IVVLAR.H..FSKDFSPE..VQAAW QKLVSGV.AHALGH..KY..H
HBDK    IIVLAA.H..FTKDFTPE..CQAAW QKLVRVV.AHALAR..KY..H
MYHU    QV.LQSKHPgDFGADAQGA.MNKALELFRKDM.ASNYKELGFQ..G
MYOR    HV.LQSKHSaDFGADAQAA.MGKALELFRNDM.AAKYKEFGFQ..G
IGLOB   TA.LVA.Y..LQANVSWGDnVAAAW NKA.LDN.TFAIVV..PR..L
GPUGNI  ALLGTIKEA.IKENWSDE..MGQAWTEAYNQLVATIKAE..MK..E
GPYL    AILKTIKEV.VGDKWSEE..LNTAW TIAYDELAIIIKKE..MKdaA
GGZLB   EVLGDAAT..DDILDAWGK.AYGVIADVFIQVEADLYAQ..AV..E

Figure IV.1: HMMER alignment of the globins. The pre-de�ned motif regions
are indicated by underlining. Capital letters correspond to match states in the HMM;
lowercase letters are generated by insert states and are therefore unaligned.
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       ..........................xxxxxxxx..............xxxxxxxxxxxxxxxxx.......
HAHU    vlspa.................dktnVKAAWGKVgahag.....eygaEALERMFLSFPTTKTYFphfd...
HAOR    mltda.................ekkeVTALWGKAaghge.....eygaEALERLFQAFPTTKTYFshfd...
HADK    vlsaa.................dktnVKGVFSKIgghae.....eygaETLERMFIAYPQTKTYFphfd...
HBHU    vhltp................eeksaVTALWGKVnvde.......vggEALGRLLVVYPWTQRFFesfgdls
HBOR    vhlsg................geksaVTNLWGKVnine.......lggEALGRLLVVYPWTQRFFeafgdls
HBDK    vhwta................eekqlITGLWGKVnvad.......cgaEALARLLIVYPWTQRFFasfgnls
MYHU    glsdg.................ewqlVLNVWGKVeadip.....ghgqEVLIRLFKGHPETLEKFdkfkhlk
MYOR    glsdg.................ewqlVLKVWGKVegdlp.....ghgqEVLIRLFKTHPETLEKFdkfkglk
IGLOB   mkffavlalcivgaiaspltadeaslVQSSWKAVshn.........evEILAAVFAAYPDIQNKFsqf....
GPUGNI  altek.................qealLKQSWEVLkqnip.....ahslRLFALIIEAAPESKYVFsflkds.
GPYL    gvl.....................tdVQVALVKSsfeefnanipknthRFFTLVLEIAPGAKDLFsflkgs.
GGZLB   mldqqtin...........iikatvpVLKEHGVTit...........tTFYKNLFAKHPEVRPLFdmg....

       ......xxxxxxxxxxxx...............xxxxxxxxx.........xxxxxxxxxxxxxxx......
HAHU    ...lshGSAQVKGHGKKVadalt......navaHVDDMPNALsa......lSDLH AHKLRVDPVNFk.....
HAOR    ...lshGSAQIKAHGKKVadals......taagHFDDMDSALsa......lSDLH AHKLRVDPVNFk.....
HADK    ...lshGSAQIKAHGKKVaaalv......eavnHVDDIAGALsk......lSDLH AQKLRVDPVNFk.....
HBHU    tpdavmGNPKVKAHGKKVlgafs......dglaHLDNLKGTFat......lSELH CDKLHVDPENFr.....
HBOR    sagavmGNPKVKAHGAKVltsfg......dalkNLDDLKGTFak......lSELH CDKLHVDPENFn.....
HBDK    sptailGNPMVRAHGKKVltsfg......davkNLDNIKNTFaq......lSELH CDKLHVDPENFr.....
MYHU    sedemkASEDLKKHGATVltalggi..lkkkghHEAEIKPLAq........SH ATKHKIPVKYLEF......
MYOR    tedemkASADLKKHGGTVltalgni..lkkkgqHEAELKPLAq........SH ATKHKISIKFLEY......
IGLOB   ...agkDLASIKDTGAFAt..............HATRIVSFLse......vIALSGNTSNAAAVNSlvsklg
GPUGNI  .neipeNNPKLKAHAAVIfkticesatelrqkgHAVWDNNTLkr......lGSIH LKNKITDPHFEvmk...
GPYL    .sevpqNNPDLQAHAGKVfklt.......yeaaIQLEVNGAVasdatlkslGSVH VSKGVVDAHFPvvk...
GGZLB   ...rqeSLEQPKALAMTVlaa..........aqNIENLPAILpav...kkiAVKH CQAGVAAAHYPi.....

       .............xxxxxxxxxxxxxxxxxxxxxxxxxxx............xxxxxxxxxx
HAHU    ............lLSHCLLVTLAAHLPAEFTPAVHASL DKfl........asVSTVLTSKYR
HAOR    ............lLAHCILVVLARHCPGEFTPSAHAAM DKfl........skVATVLTSKYR
HADK    ............fLGHCFLVVVAIHHPAALTPEVHASL DKfm........caVGAVLTAKYR
HBHU    ............lLGNVLVCVLAHHFGKEFTPPVQAAY QKvv........agVANALAHKYH
HBOR    ............rLGNVLIVVLARHFSKDFSPEVQAAW QKlv........sgVAHALGHKYH
HBDK    ............lLGDILIIVLAAHFTKDFTPECQAAW QKlv........rvVAHALARKYH
MYHU    .............ISECIIQVLQSKHPGDFGADAQGAM NKalelf..rkdmaSNYKELGFQG
MYOR    .............ISEAIIHVLQSKHSADFGADAQAAM GKalelf..rndmaAKYKEFGFQG
IGLOB   ddhkargvsaaqfGEFRTALVAYL QANVSWGDNVAAAWNKal.........dNTFAIVVPRL
GPUGNI  ...........gaLLGTIKEAIKENWSDEMGQAW TEAYNQl...........VATIKAEMKE
GPYL    ...........eaILKTIKEVVGDKWSEELNTAW TIAYDEla.........iIIKKEMKDAA
GGZLB   .............VGQELLGAIKEVLGDAATDDILDAW GKaygviadvfiqvEADLYAQAVE

Figure IV.2: Meta-MEME alignment of the globins. The pre-de�ned motif
regions are indicated by underlining. Motifs discovered by MEME and included in
the model are in capital letters. Amino acids in the inter-motif regions are in lowercase
and are unaligned.
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       xxxxxxxxxxxxxx.xxxxxxx..xxxxx.xxxx..x...xxxx........xxxxxxxx....xxxxx..x
HTLV-II LDTAPCLFSDGSPQ.KAAYVLW..DQTIL.QQDI..T...PLP.........SH.ETHS.......AQ...K
SRV-I   LNNALLVFTDGSS....TGMAA....YTL.A..D..T...TIKF........QT.NLNS.......AQ...L
RSV     PVPGPTVFTDASSS.THKGVVV....W.R.E.GP..R...WEIK........EIADLGA.....SVQQ....
HIV-II  IPGAETFYTDGSCN.RQSKEGK..AGY.V.T.DR..G...KDKV........KKLEQTT......NQQ....
MoMLV   PDADHTWYTDGSSL.LQEGQRK..AGAAV.T.TE..T...EVIW........AK.ALDAG....TSAQ...R
Ingi    PREHYKLWTDGSVS.LGEKLGA...AALL.H.RN..N...TLIC........AP.KTGA.....GELSCsyR
CAMV    PEEKLIIETDASDD.YWGGMLK..AIKIN.EGTN..T...ELICryasgsfkAA.EKNY.....HSND....
17.6    FTKKFTLTTDASDVaLGAVLSQ..DGHPL.S.YIs.R...TLN.........EH.EINY......STI...E
MAUP    FNNSTNLQEP.SDS.RLLYRKG...SWVN.I.RFaaY...LYSK........LSEEKHGLvpkfLEKL...R
HBV     RPGLCQVFADATP..TGWGLVM...GHQR.M..R..G...TFSA........PL.PIHT.....AE LL....
Copia   FENKIIGYVDSDWA.GSEIDRKstTGYLFkMFDF..N...LICW........NTKRQNSVa...ASST...E
E.coli  MLKQVEIFTDGSCL.GNPGPGG..YGAIL.R.YR..GrekTFSA........GYTRTTNNr...ME LM....

       xxxxxxx......xxxxxx.xxxxxxx.xxx.xxxxxxx..xxxx.xxxxxxxxxxxx....xxxxxxxx..
HTLV-II GELLAL.......ICGLRAaKPWPSL..NI..FLD.S....K YLI.KYL.HSLAIGAFl...GTSAHQ....
SRV-I   VELQAL.......IAVLSA.FPNQPL..NI..YTD.S....A YLA.HSI.PLLETVAQikhiSETAKL....
RSV     LEARAV.......AMAL...LLWPTTP.TNV.VTDSA F...VAKM.LLK.MGQEGV.P....STAAAF....
HIV-II  AELEAF.......AMAL...TDSGPKV.NI..IVD.S....Q YVM.GIS.ASQPTESE....SKIVNQ....
MoMLV   AELIALTqa...lKMAEGK.KLNVYTD.SR YaFATAHI...HGEI.YRR.RGLLTS.E....GKEIKN....
Ingi    AECVALE......IGLQRL.LKWLPRYrST..PSRLSIFs.DSL S.MLT.ALQTGPLA....VTDPIL....
CAMV    KETLAV.......INTI.K.KFSIYL..TPVhFLI.R....TDNT .HFK.SFVNLN.Y....KGDSKL....
17.6    KELLAI.......VWAT.K.TFRHYLL.GRH.FEISSD...HQ PL.SWL.YR.M.KD......PNSKL....
MAUP    EINFALDkvdvteIDSK LS.RLMKFSV.SA..AYDEVGTl.ALKS.LFKFRNSERESI....KASFKQLRen
HBV     AACFARSr.....SGANIIgTDNSVVL.SR..KYTSFPWllGCAA.NWILRGTSFV.Y....VPSALNPA..
Copia   AEYMAL.......FEAVREaLWLKFLL.TS..INIKL....ENPI.KIYEDNQ GCISIa..nNPSCHKRAk.
E.coli  AAIVALE......ALKEHC.EVILSTD.SQ..YVRQGI...TQWIhNWKKRGWKTADK....KPVKNV....

       .....xxxxxxxxxxxxxxxxx.xxxxxx.xxxxxxxxx..xxxxxxxxxxxx...xxxx.xxx...xxxx
HTLV-II .....TLQA..ALPPLLQGKT....IYLH.HVRSHT......N.LPDPISTFN...EYTDsLIL...APL.
SRV-I   .....FLQCQ.QLIYNRSIPF....YIGH.V.RAHS......G.LPGPIAHGN...QKAD.LATktvASN.
RSV     .....ILED..ALS..QRSAM...AAVLH.V.RSHSEVPgfFT.EGNDVADS....QAT..F.....QAY.
HIV-II  .....IIEEM.IKK..EAIYV...AWVPA.H.KGIGG.....NQEV.D.HLV....SQG...IR...QVL.
MoMLV   .....KDEIL.ALLKALFLPKRlSIIHCPgHQKGHSAEAr.GN.RMADQAARKaaiTET..PDT...STLL
Ingi    .....RRLWR.LLLQVQRRKI...RIRLQ.FVFDHCGVK..RN.EVCD.EMA....KKA..ADL...PQL.
CAMV    .....GRNIRWQAW..LSHYS...FDVEH.I.KGTD......N.HFAD.FLS....REF..N.....KVNS
17.6    .....TRWRV.KLS..EFDFD....IKY..I.KGKE......N.CVAD.ALSR...IKL..E.....ETY.
MAUP    gkiaeFSEAR.RLW.FEILKL....IRLD.L.FNAS......S.LACD.DLL....SHL..QDR...RSI.
HBV     .....DDPSRGRLG..LSRPL....LRLP.F.RPTTGR....TSLYAD.SPSV...PSHL.PD....RVH.
Copia   ....hIDIKYHFAR.EQVQNN...VICLE.Y.IPTE......N.QLADIFTK....PLP..AAR...FVE.
E.coli  .....DLWQRLDAALGQHQIKW.EWVKGH.AGHPENER....CDELAR.AAAM...NPTL.EDTg.yQVEV

Figure IV.3: HMMER alignment of the RH domains of the RNA-directed
DNA polymerase. The pre-de�ned motif regions are indicated by underlining.
Capital letters correspond to match states in the HMM; lowercase letters are generated
by insert states and are therefore unaligned.
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        ..............xxxxxxxx.........................................xxxxxxxx
HTLV-II  ldt.........apCLFSDGSPqkaayvlwdqtilqqd..........itplpshethsaqkgE LLALICG
SRV-I    lnn.........alLVFTDGSStgmaaytladtti................kfqtnlnsaqlvE LQALIAV
RSV      pvp.........gpTVFTDASSsthkgvvvwregprw...........eikeiadlgasvqqlE ARAVAMA
HIV-II   ipg.........aeTFYTDGSCnrqskegkagyvtdrg..........kdkvkkleqttnqqaE LEAFAMA
MoMLV    pda.........dhTWYTDGSSllqegqrkagaavttet.......eviwakaldagtsaqraE LIALTQA
Ingi     pre.........hyKLWTDGSVslgeklgaaallhrnntl......icapktgagelscsyraECVALE IG
CAMV     pee.........klIIETDASDdywggmlkaikinegtntelicryasgsfkaaeknyhsndkE TLAVINT
17.6     ftk.........kfTLTTDASDvalgavlsqdghplsyi........srtlneheinystiekE LLAIVWA
MAUP     fnnstnlqepsdsrLLYRKGSWvnirfaay..........................lysklseEKHGLVPK
HBV      rpg.........lcQVFADATPtgwglvmghqrmr................gtfsaplpihtaE LLAACFA
Copia    fen.........kiIGYVDSDWagseidrksttgylfkmfdf.nlicwntkrqnsvaasste aEYMALFEA
E.coli   mlk.........qvEIFTDGSClgnpgpggygailryrg.......rektfsagytrttnnrmE LMAAIVA

        x....................xxxxxxxxxx........................................
HTLV-II  Lraak............pwpsLNIFLDSKYLikylhslaigaflgtsahqtlqaalp..............
SRV-I    Lsafp.............nqpLNIYTDSAYLahsiplletvaqikhisetaklflqcqq............
RSV      Lllwp.............ttpTNVVTDSAFVakmllkmgqegvpstaaafiledal...............
HIV-II   Ltds..............gpkVNIIVDSQYVmgisasqpteseskivnqiie...................
MoMLV    Lkmae.............gkkLNVYTDSRYAfatahihgeiyrrrglltsegkeiknkdeil.........
Ingi     Lqrllkwlp....ryrstpsrLSIFSDSLSMltalqtgplavtdpilrrlwrll.................
CAMV     Ikkfsiy.........ltpvhFLIRTDNTHFksfvnlnykgdsklgrnir.....................
17.6     Tktfrhy.........llgrhFEISSDHQPLswlyrmkdpnskltrwr.......................
MAUP     Flek..............lreINFALDKVDVteidsk lsrlmkfsvsaaydevgtlalkslfkfrnseres
HBV      Rsrs...............gaNIIGTDNSVVlsrkytsfpwllgcaanwilrgtsfvyvpsa.........
Copia    VrealwlkflltsiniklenpIKIYEDNQGCisiannpschkrakhidiky....................
E.coli   Lealk............ehceVILSTDSQYVrqgitqwihnwkkrgwktadkkpvknvd............

        .......................................xxxxxxxxx.................
HTLV-II  .............pllqgktiylhhvrshtnlpdpistfNEYTDSLILapl..............
SRV-I    ............liynrsipfyighvrahsglpgpiahgNQKADLATKtvasn............
RSV      ..............sqrsamaavlhvrshsevpgfftegNDVADSQATfqay.............
HIV-II   ..................emikkeaiyvawvpahkgiggNQEVDHLVSqgirqvl..........
MoMLV    .........allkalflpkrlsiihcpghqkghsaeargNRMADQAARkaaitetpdtstll...
Ingi     ................lqvqrrkirirlqfvfdhcgvkrNEVCDEMAKkaadlpql.........
CAMV     ....................wqawlshysfdvehikgtdNHFADFLSRefnkvns..........
17.6     ......................vklsefdfdikyikgkeNCVADALSRikleety..........
MAUP     ikasfkqlrengkiaefsearrlwfeilklirldlfnasSLACDDLLShlqdrrsi.........
HBV      .........lnpaddpsrgrlglsrpllrlpfrpttgrtSLYADSPSVpshlpdrvh........
Copia    ...................hfareqvqnnvicleyipteNQLADIFTKplpaarfve........
E.coli   ............lwqrldaalgqhqikwewvkghaghpeNERCDELARaaamnptledtgyqvev

Figure IV.4: Meta-MEME alignment of the RH domains of the RNA-
directed DNA polymerase. The pre-de�ned motif regions are indicated by under-
lining. Motifs discovered by MEME and included in the model are in capital letters.
Amino acids in the inter-motif regions are in lowercase and are unaligned.
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1 2 3 4 5 Total
META-MEME 12 11 11* 11*' 12* 57
HMMER 11 12*' 11* 10*' 11*' 55
AMULT 12 12 12 12 12 60
ASSEMBLE 12 11 12 12 12 59
CLUSTAL V 12 11 12 12 12 59
DFALIGN 12 12 12 12 12 60
GENALIGN 11*' 12 12 10' 11 56
MULTAL 12 11 12 12 12 59
MACAW 9 11 9 8 8 45
PIMA 12 12 12 12 12 60
PRALIGN 8 8* 9* 8* 10 43

Table IV.2: Comparison of multiple alignment methods on the globin fam-
ily. Each column contains, for one pre-de�ned motif region, the number of motif
occurrences properly aligned by each method. An asterisk (*) indicates that the mo-
tif was correctly aligned in two or more misaligned subsets of the test sequences. A
dagger (y) indicates that a gap was inserted into the motif. Data from all but the
�rst two rows of this table are from [92]

1 2 3 4 5 6 7 8 Total
META-MEME 12 11 10 12 12 12 12 11 92
HMMER 12 12* 12* 12 12 12 12 12 96
AMULT 12 10 11 12 12 12 12 12 93
ASSEMBLE 11 7 10 12 12 12 12 12* 87
CLUSTALV 12 11 11* 12 12 12 12 12* 94
DFALIGN 12 12 12 12 12 12 12 12 96
GENALIGN 12' 9* 10 12 12 12 12* 11* 90
MULTAL 12 9* 10* 12 12 12* 12 12 91
MACAW 8 0 9 12 12 10 12 0 63
PIMA 12 11 11 12 12 12 12 12 94
PRALIGN 12 10* 6* 4 9* 9* 4 4 58

Table IV.3: Comparison of multiple alignment methods on the kinase family.
See caption on p. 86.
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1 2 3 Total
META-MEME 12 4*' 9* 25
HMMER 11 8 6* 25
AMULT 11 7 10 28
ASSEMBLE | | | 0
CLUSTALV 12 9* 6* 27
DFALIGN 12 12* 12 36
GENALIGN 11 8*' 7* 26
MULTAL 10 7* 9* 26
MACAW 12 4 8 24
PIMA 12 5* 5* 22
PRALIGN 8* 4* 8* 20

Table IV.4: Comparison of multiple alignment methods on the proteases.
See caption on p. 86. A dash (|) indicates that the method failed to produce an
alignment.

1 2 3 4 Total
META-MEME 11 9 11 12 43
HMMER 11 10* 5*' 7* 33
AMULT 11 9* 8* 7* 35
ASSEMBLE | | | | 0
CLUSTALV 12 9 9* 9* 39
DFALIGN 12 12 10 12 46
GENALIGN 12*' 7 8*' 9*' 36
MULTAL 11* 11* 9* 10 41
MACAW 7 5 7 3 22
PIMA 10 9 8* 11* 38
PRALIGN 9 8* 6* 3 26

Table IV.5: Comparison of multiple alignment methods on the RH domains.
See caption on p. 86. A dash (|) indicates that the method failed to produce an
alignment.
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Globins Kinases Proteases RHs Average
DFALIGN 60 96 36 46 59.5
CLUSTALV 59 94 27 39 54.8
META-MEME 57 92 25 43 54.3
MULTAL 59 91 26 41 54.3
AMULT 60 93 28 35 54.0
PIMA 60 94 22 38 53.5
HMMER 55 96 25 33 52.3
GENALIGN 56 90 26 36 52.0
MACAW 45 63 24 22 38.5
PRALIGN 43 58 20 26 36.8
ASSEMBLE 59 87 0 0 36.5

Table IV.6: Summary of multiple alignment methods comparison. Each
column lists, for one family, the overall percentage of motifs that were correctly aligned
by each multiple alignment method. Methods are ranked according to the average
percentage of motifs correctly aligned, which is listed in the right-most column.

the cluster of scores around 54% indicates that Meta-MEME is a member of this high-

scoring group of alignment methods.

With respect to HMMER, Meta-MEME produces better alignments for two

of the four families and an equally good alignment for a third family. Only for the

kinases does HMMER produce a better alignment, and the di�erence in quality for

this family is small (four motif occurrences). The di�erence between Meta-MEME

and HMMER is greatest for the most di�cult family of the four, the RH domains.

Indeed, for this family, Meta-MEME performs second best overall, indicating that

Meta-MEME is particularly good at aligning highly divergent sequence sets.

Phylogenetic analysis

The tree shown in Figure IV.5 is identical to the widely accepted true tree

for this data set. Thus, Meta-MEME provides the only known method of �nding the

true phylogenetic relationships for this data set.
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Figure IV.5: The correct chordate phylogeny recovered by Meta-MEME.
This phylogeny is based upon a 49-motif alignment. It is the single most parsimonious
tree found by the protein parsimony program in Phylip [50].
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IV.A.4 Discussion

The �rst set of experiments reported here show that Meta-MEME produces

multiple alignments that are comparable in quality to the best alignments currently

available, and that are better than alignments produced by a non-motif based hidden

Markov modeling package.

The comparisons reported here are biased against Meta-MEME and HM-

MER in several ways. First, each of the multiple alignment methods tested by Mc-

Clure et al. was tested using a wide range of parameter settings. For each method, the

setting that yielded the best alignment was selected. In addition, the data sets were

sent to the authors of each multiple alignment software package, and the authors were

invited to use their own software to produce the best possible alignment. In contrast,

both Meta-MEME and HMMER were run with their default parameter settings. Both

methods could almost certainly perform better if their parameters were optimized for

these data sets. Finally, the DFALIGN method of Feng and Doolittle likely performs

best because its algorithm was modi�ed in order to cope with problems presented by

these particular data sets [90].

Given these considerations, Meta-MEME's performance is quite impressive.

That performance could likely be improved even further if the Meta-MEME models

were trained via expectation-maximization.

The phylogenetic tree presented in the second experiment suggests that

motif-based alignments are useful in inferring phylogenetic relationships. Clearly,

several important questions remain open, including the degree to which the results

are sensitive to various parameter settings, such as the number of motifs and the

selection of training sequences. In addition, any general claim that Meta-MEME

alignments provide the basis for superior phylogenetic inference must await testing

on additional data sets. Nonetheless, the fact that Meta-MEME alone �nds the true

tree for this data set is impressive. Note that this performance is not the result of data

snooping: the tree reported here is the �rst tree generated by Meta-MEME. None

of the parameter settings were varied in order to �nd this tree. The next step in



91

this research will be to perform sensitivity analysis, systematically varying the train-

ing sequences and the number of motifs to determine how frequently Meta-MEME

succeeds in recovering the true tree.

IV.B Homology detection using linear models

IV.B.1 Introduction

The experiments described in this section illustrate the e�ectiveness of mod-

eling protein families using motif-based linear hidden Markov models. We examine

two well-studied families, the short chain alcohol dehydrogenases and the 4Fe-4S

ferredoxins. Few members of the dehydrogenase family contain shu�ed or repeated

domains. Hence, a linear topology should be su�cient for modeling this family. Many

of the ferredoxins, on the other hand, contain repeated elements, making the linear

topology less appropriate for this family. In order to compare Meta-MEME's motif-

based strategy with the standard topology, we create Meta-MEME models in a format

readable by the standard HMM package HMMER [46]. This allows us to perform

database searches using the same searching software for both the HMMER and the

Meta-MEME models.

The results of these searches show that Meta-MEME outperforms the stan-

dard HMM on the homology detection task for both of the families and for all training

set sizes examined here. The di�erence in performance is particularly large for small

training sets.

IV.B.2 Methods

The �rst data set consists of a group of dehydrogenases that includes

mammalian 11�-hydroxysteroid and 17�-hydroxysteroid dehydrogenase and their ho-

mologs in the short chain alcohol dehydrogenase family. We chose this data set be-

cause it is large and phylogenetically diverse [108, 17, 18]. The thirty-eight sequences
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2BHD STREX 20-�-hydroxysteroid dehydrogenase
3BHD COMTE 3-�-hydroxysteroid dehydrogenase
ACT3 STRCO Putative ketoacyl reductase
ADH DROME Alcohol dehydrogenase
AP27 MOUSE Adipocyte P27 protein (AP27)
BA72 EUBSP 7-�-hydroxysteroid dehydrogenase
BDH HUMAN D-�-hydroxybutyrate dehydrogenase precursor
BEND ACICA Cis-1,2-dihydroxy-3,4-cyclohexadiene-1-carboxylate

dehydrogenase
BPHB PSEPS Biphenyl-2,3-dihydro-2,3-diol dehydrogenase
BUDC KLETE Acetoin (diacetyl) reductase
CSGA MYXXA C-Factor
DHB2 HUMAN Estradiol 17 �-dehydrogenase 2
DHB3 HUMAN Estradiol 17 �-dehydrogenase 3
DHCA HUMAN Carbonyl reductase (NADPH)
DHES HUMAN Estradiol 17 �-dehydrogenase
DHGB BACME Glucose 1-dehydrogenase B
DHII HUMAN Corticosteroid 11-�-dehydrogenase
DHMA FLAS1 N-acylmannosamine 1-dehydrogenase
ENTA ECOLI 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase
FABG ECOLI 3-oxoacyl-[acyl-carrier protein] reductase
FABI ECOLI Enoyl-[acyl-carrier-protein] reductase (NADH)
FIXR BRAJA FixR protein
FVT1 HUMAN Follicular variant translocation protein 1 precursor
GUTD ECOLI Sorbitol-6-phosphate 2-dehydrogenase
HDE CANTR Hydratase-dehydrogenase-epimerase (HDE)
HDHA ECOLI 7-�-hydroxysteroid dehydrogenase
HMTR LEIMA H region methotrexate resistance protein
LIGD PSEPA C �-dehydrogenase
MAS1 AGRRA Agropine synthesis reductase
NODG RHIME Nodulation protein G
PCR PEA Protochorophyllide reductase precursor
PGDH HUMAN 15-hydroxyprostaglandin dehydrogenase (NAD(+))
PHBB ZOORA Acetoacetyl-coa Reductase
RFBB NEIGO dTDP-glucose 4,6-dehydratase
RIDH KLEAE Ribitol 2-dehydrogenase
YINL LISMO Hypothetical 26.8 Kd protein in Inla 5'region (ORFA)
YRTP BACSU Hypothetical 25.3 Kd protein In Rtp 5'region (ORF238)
YURA MYXXA Hypothetical protein in Uraa 5'region (Fragment)

Table IV.7: SWISS-PROT identi�ers and descriptions of the 38 dehydroge-
nase training set.
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FER1 AZOVI FER2 RHOCA FER2 RHORU FER MYCSM
FER STRGR FER PSEPU FER PSEST FER THETH
FER CLOBU FER CLOPA FER CLOPE FER CLOSP
FER CLOTM FER CLOTS FER MEGEL FER PEPAS
FER BUTME FER CHLLT FER1 CHLLI FER2 CHLLI
FER METBA FER METTL FER THEAC FER2 DESDN
FER1 DESVM FER ENTHI FERX ANASP FERN AZOCH
FDXN RHILT FERN RHIME FERN BRAJA FER1 RHOCA
FER SULAC FER1 RHOPA FERN AZOVI FER3 ANAVA
FER3 RHOCA FER CLOTH FER DESGI FER1 DESDN
FER THELI FER THEMA FIXX RHILP FIXX RHILE
FIXX RHILT PSAC ANTSP PSAC CHLRE PSAC CUCSA
PSAC MAIZE PSAC MARPO PSAC PEA PSAC PINTH
PSAC TOBAC PSAC WHEAT PSAC CYAPA PSAC ANASP
PSAC FREDI PSAC SYNEN PSAC SYNP2 PSAC SYNP6
PSAX SYNY3 DHSB BACSU DHSB ECOLI FRDB ECOLI
FRDB PROVU YFRA PROVU FRDB WOLSU FDHB METFO
FIXG RHIME RDXA RHOSH PHFL DESVH PHFL DESVO
DMSB ECOLI DMSB HAEIN YFFE ECOLI FDNH ECOLI
FDXH HAEIN FDHB WOLSU HMC2 DESVH HMC6 DESVH

Table IV.8: SWISS-PROT identi�ers of the 4Fe-4S ferredoxins. See caption
for Table IV.9

used in the training set are listed in Table IV.7. Pairwise alignments of almost all of

these sequences are less than 30% identical after using gaps and insertions to maximize

identities. Many sequences are less than 20% identical after use of gaps and inser-

tions. These thirty-eight sequences represent a small portion of the approximately

650 known dehydrogenases in GenBank release 95 [55].

We also search for homologs of a set of 159 4Fe-4S ferredoxins [101]. These

sequences comprise all known 4Fe-4S ferredoxins in SWISS-PROT release 33 [13].

Family members were selected using PROSITE 13.1 [12]. Ten additional members

were added to the family by Michael Gribskov, based upon ROC analysis and sequence

comparisons. The SWISS-PROT identi�ers for all 159 sequences, as well as the

justi�cations for including the ten additional sequences, are given in Table IV.9.

Nested training sets were selected at random from all 159 sequences.
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GLPC ECOLI GLPC HAEIN HYCB ECOLI HYCF ECOLI
PHSB SALTY PSRB WOLSU NRFC ECOLI NRFC HAEIN
NAPF HAEIN NAPG ECOLI NAPG HAEIN NAPH ECOLI
YGL5 BACST YJES ECOLI YA43 HAEIN DHSB USTMA
DHSB SCHPO DHSB HUMAN DHSB RAT DHSB DROME
MBHT ECOLI PHF1 CLOPA ASRC SALTY NUIC MAIZE
NUIC ORYSA NUIC TOBAC NUIC WHEAT NUIC PLEBO
NUIM BOVIN NUIM RHOCA NQO9 PARDE NUOI ECOLI
YJJW ECOLI FER1 DESAF FIXX AZOCA FIXX BRAJA
NARH ECOLI NARY ECOLI NIFJ ANASP NIFJ KLEPN
FER METTE PSAC ODOSI YEIA ECOLI FER BACTH
DHSB CHOCR DHSB CYACA NARH BACSU YWJF BACSU
FER SACER FER CLOAC FER CLOST FER1 RHORU
FER CHRVI FER3 DESAF FERV AZOVI FER ALIAC
FER3 PLEBO FER2 DESVM FIXX RHIME PSAC EUGGR
PSAC SPIOL PSAC ANAVA PSAC SYNY3 FRDB HAEIN
FRHG METTH COOF RHORU FDOH ECOLI ASRA SALTY
HYDN ECOLI NAPF ECOLI NAPH HAEIN DHSB YEAST
DHSB ARATH NUIC MARPO NUIC SYNY3 DCMA METSO
ISP1 TRYBB YAAT ECOLI FER BACST

Table IV.9: SWISS-PROT IDs for the 159 4Fe-4S ferredoxins (continued).
Ten of the sequences listed here are not included in the PROSITE 13.1 listing for
this family. DHSB CHOCR, DHSB CYACA, FER METTE, and PSAC ODOSI are
included here based on homology to PROSITE annotated families in this group, and
ROC analysis. ISP1 TRYBB, excluded from this group by PROSITE, appears to be
closely related to NADH oxidoreductases in this group as shown by ROC and sequence
comparisons (NQQ9, NUIM, NUOI, HYCF, NUIC). NARH BACSU, NARH ECOLI
and NARY ECOLI, while showing lower ROC, have excellent 4Fe-4S sequences highly
similar to those in DMSB, PHSB, FDNH, HYCB, etc. YEIA ECOLI is a possible type
III ferredoxin and has a very strong ROC. YWJF BACSU is included in the positives
because of high ROC, signi�cant similarity to glycerol-3-phosphate dehydrogenase
subunits (GLPC) which are ferredoxins, and clear presence of two appropriate 4Fe-4S
binding sequences.
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Motifs are discovered in each family using MEME version 2.0 [6] with its

default parameters, as speci�ed on the web site [5]. Speci�cally, we use the ZOOPS

motif occurrence model, which stands for \zero or one occurrence per sequence." We

use Dirichlet mixtures for prior probabilities, modi�ed by the megaprior heuristic [9].

The minimum width of a motif is speci�ed as 12 (although the motifs returned may

be shorter than this, due to a shortening heuristic in MEME), and the maximum

width is 55.

Linear motif-based HMMs are constructed by Meta-MEME using motifs

selected by the majority occurrence heuristic (described in Section II.B). Each inter-

motif spacer is represented by a single state with a self-loop. The order and spacing

of motifs in the model is determined by the MAST motif occurrence diagram from

the database sequences that receives the lowest MAST e-value.

The standard linear HMMs used for comparison with Meta-MEME are

constructed using the default settings of the HMMER program hmmt, version 1.8.

The training algorithm begins with a uniform model with length equal to the av-

erage length of sequences in the training set. The model is trained via expectation-

maximization, using a simulated annealing protocol to avoid local optima. The initial

Boltzmann temperature is 5.0, with a temperature decrease of 5% at each iteration.

Numerous algorithms exist for searching a database using a hidden Markov

model. HMMER o�ers four such programs, which vary in the way they match se-

quences against models. The �rst, hmmsw, performs a local Smith/Waterman search

for matches of a partial sequence to a partial model; hmms matches a complete

model against complete sequences; hmmls matches a complete model against one or

more partial sequences; and hmmfs matches fragments of a model to multiple non-

overlapping partial sequences. Informal experiments with these programs yielded

consistently better results using hmmsw.

In the best case, a database search with an HMM would return sequence

scores which ranked all of the family members above all of the non-family members.

However, all of the HMMER programs su�er from the presence in the database of
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intermediate-scoring sequence fragments. When a sequence fragment exists in the

database, it will match only a portion of the model, giving a relatively low score.

Then, even though the fragment is a member of the family, it may be ranked among

the non-family members.

Because sequence fragments are a de�ciency of the database rather than of

the search method, and because many fragments are redundant with the whole se-

quences included in the database, we opted to �lter such fragments from the database.

Rather than use a �xed threshold for all models, we calculated from the canonical

motif signature the minimum length of a sequence containing two motifs and two

spacers. All sequences in the database shorter than this value are �ltered out. The

�ltered database is then used for both the Meta-MEME search and the standard

HMM search.

IV.B.3 Results

Short-chain alcohol dehydrogenases

Figure IV.6(a) shows that Meta-MEME outperforms standard linear HMMs

for most subsets of the dehydrogenase training set, with the most striking di�erence

between the two methods appearing for smaller data sets. Each series in the �gure

represents the average of ten successions of training and testing runs, using randomly

selected, nested subsets of the 38-sequence training set. Searches are evaluated accord-

ing to their ROC50 score (described in Section III.B). Error bars represent standard

error. For each subset of sequences, a standard and a motif-based HMM were built

and were used to search Genpept 95. Not only does Meta-MEME consistently score

better than the standard linear HMMs, the motif-based HMMs appear to be more

robust across di�erent random subsets, as evidenced by the relative smoothness of

the Meta-MEME curve.

Figure IV.7 shows an alignment of four di�erent motif-based HMMs, built

from nested subsets of the dehydrogenase training set. These motifs illustrate the
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Figure IV.6: Comparison of Meta-MEME and standard linear HMMs in
recognizing (a) short-chain alcohol dehydrogenases and (b) 4Fe-4S ferre-
doxins. Each point represents an average of ten separate runs, except for the ferre-
doxin runs using 16-sequence training sets, for which only three runs completed (see
the discussion below). Error bars represent standard error.
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38 sequences   9-[2]-64-[1]-12-[6]-17-[4]-9-[3]-73
16 sequences   5-[2]-61-[1]-42-[4]-12-[3a]-5-[3b]-33-[5]-13

8 sequences   11-[2]-65-[1]-64-[3a]-22-[3b]-26-[7]-28
4 sequences   13-[1]-18-[6]-37-[3a]-22-[3b]-41

38 ---------LVTGAASGIG----------------------------------------------------------
16 ****-----LVTGASRGIG****------------------------------------------------------

8 -----------TGASSGIG----------------------------------------------------------
4 ***********************************************************************------

38 ------VDVLVNNAG*------------EDWDRVIxVNLTGVF*-----------------GRIVNVSSVAG-----
16 -------DVLVNNAG****------------------------------------------GRIVNVSS--------

8 -------DVLVNNAG**------------------------------------------------------------
4 -------DALINNAG------------------VFHINVVGPIR---------------------------------

38 ----YSASKAAVxGLTRSLALELAPxGIRVNVVAPG-----------------------------------------
16 ----YSASKAALxGLTRSLALE-----IRVNAVAPGFVxTDM---------------------------------FL

8 ----YAASKAAL----------------------PGxIxTDM--------------------------IPIGRMGQP
4 ----YxMSKAAL----------------------PGWVxTDM-----------------------------------

38 --------------------------------
16 ASDEASYIT-------------**********

8 EEIA---------------------------*
4 ------**************************

Figure IV.7: Comparison of four motif-based HMMs built from a nested
series of random subsets of the 38-sequence dehydrogenase training set.
The canonical schema for each model is shown at the top, with the lengths of spacers
alternating with motif numbers in brackets. In the models, motifs are represented
by their consensus sequence. Hyphens (\-") represent the expected length of spacers
generated by insert nodes, and asterisks (\*") are gaps inserted into this diagram in
order to align the models.
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biological basis for the sensitivity of Meta-MEME. Motifs 1 and 2 are part of the

nucleotide cofactor binding site [30, 129, 130]; motif 3 is part of the catalytic site.

A protein sequence that had, for example, motifs 1 and 3 interchanged would not

have the same 3D structure and could not function as a steroid dehydrogenase. By

scoring protein similarity and dissimilarity on the basis of motif order and spac-

ing, Meta-MEME e�ectively models spatial information in the 3D structure of the

canonical dehydrogenase. This information di�erentiates homologs from unrelated

proteins which contain isolated fragments resembling sequences in the training set.

Comparison of protein 3D structures is the most sensitive method for determining

homology [37]. This explains Meta-MEME's excellent ability to recognize alcohol

dehydrogenase homologs as seen in Figure IV.6(a).

The motifs discovered using smaller training sets correspond strongly to the

original motifs found using the largest training set. In the �gure, motifs are numbered

consecutively according to the order in which they were discovered. Any motif from

one training set which overlaps with a motif from a previous training set is assigned

the same number as the �rst. Using the largest training set, MEME �nds �ve motifs

which appear in more than half of the training set. The third of these motifs, however,

is very long (32 residues); in subsequent analyses using smaller data sets, motif 3 gets

split into two halves (marked 3a and 3b). Furthermore, motif 5, which was discarded

because of the majority occurrence heuristic in the 38-sequence analysis, is found

and included in the HMM based upon sixteen sequences. Motif 6 is lost when the

training set is reduced from thirty-eight to sixteen sequences but is recovered when

the training set size reaches 4 sequences. Motifs 4 and 5 are lost between sixteen and

eight sequences, and motif 2 is lost when four sequences are used. Only one new motif

(marked 7) is introduced in the smaller training sets; other candidates are discarded

because of the majority occurrence heuristic.

The order and spacing of the motifs within the di�erent models is also con-

served. In all four models, the order of motifs is identical. Furthermore, spaces be-

tween motifs are consistent across the four models. In the �gure, hyphens represent
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spacer states in the model, whereas asterisks represent \gaps," which were inserted

into the �gure in order to align the motifs. Very few asterisks were required in or-

der to generate a perfect alignment. Only the last model, based upon four training

sequences, contains a signi�cant missing portion.

The motif-based HMMs are considerably smaller than their standard HMM

counterparts. For the dehydrogenase family, the average Meta-MEME model contains

58 states; the standard models average 264 states. Assuming six motifs per model,

the average Meta-MEME model therefore contains (19 � 58) + 6+ 1 = 1109 trainable

parameters. The standard HMM, by contrast, averages 25 � 264 = 6600 parameters.

The standard model is therefore 6.0 times as large as the motif-based model.

4Fe-4S ferredoxins

A similar set of experiments was conducted using the 4Fe-4S ferredoxin

data set. In addition to using a di�erent, considerably smaller family, the ferredoxin

searches were carried out on a di�erent database, SWISS-PROT 33 instead of Genpept

95. Nonetheless, Meta-MEME again consistently outperforms the standard HMMs,

as shown in Figure IV.6(b). The degree of separation between the two series is even

greater than for the dehydrogenases. The standard HMMs of the ferredoxin family

are on average 5.1 times as large as the average motif-based HMM.

Although Meta-MEME outperforms standard HMMs, both methods per-

form more poorly for ferredoxin data sets of size 16 than for smaller, 8- or 4-sequence

data sets. This anomaly results from the interaction of two of the heuristics described

above. For many of the 16-sequence data sets, the majority occurrence heuristic se-

lected a relatively large number of motifs. Unfortunately, it was often impossible for

MAST to locate a single sequence containing all of these motifs. Consequently, a

canonical motif occurrence schema was found for only three of the runs. As a result,

neither Meta-MEME nor HMMER completed the other runs, since the �ltering of the

database depends upon the canonical schema. This adverse interaction of heuristics

only occurred with the ferredoxin data set and only with training sets of size 16. A
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variant of our heuristics would overcome this problem; however, our emphasis in this

work is to demonstrate the general utility of motif-based HMMs. Rather than �ne-

tuning heuristics, future work will replace these heuristics by, for example, completely

connecting the motifs and learning the occurrence schema from the given data.

IV.B.4 Discussion

Results from Meta-MEME are encouraging. As expected, motif-based

HMMs discriminate better than their standard linear counterparts for the two pro-

tein families we investigated, yet due to their small size, motif-based HMMs require

fewer training sequences in order to be trained to precision. Furthermore, since HMM

search algorithms are generally linear in the size of the model, motif-based HMMs

can search a database 5-6 times faster than a standard model. By focusing its models

on highly conserved regions of the training set, Meta-MEME e�ectively ignores noisy

portions of the data, thereby allowing the software to recognize distant homologs.

Meta-MEME's performance may be a�ected by biases in the training set.

In the experiments reported here, the dehydrogenase training set was hand-selected

so as to fairly uniformly represent a particular protein family. However, in the ferre-

doxin experiments, randomly selected training sets containing several closely related

sequences may have biased some of the trained ferredoxin models. These biases may

explain the relatively large standard error bars in Figure IV.6(b). Such biases could

have been reduced by �rst removing highly similar sequences using a program such

as purge [97]. This approach is followed in subsequent experiments.
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IV.C A case study: short chain alcohol dehydro-

genases

IV.C.1 Introduction

In this section, we examine in detail Meta-MEME's ability to model a family

of short chain alcohol dehydrogenases [15, 109, 122, 84, 79, 16]. This family includes

11�-hydroxysteroid and 17�-hydroxysteroid dehydrogenase, enzymes that are impor-

tant in actions of steroids that a�ect blood pressure, reproduction and development

and also the growth of some cancers of breast and prostate. In addition to its med-

ical importance, we chose this family for testing our method because it is large and

phylogenetically diverse.

Using a dataset of thirty-seven dehydrogenases, Meta-MEME identi�es at

least 350 members of this family in Genpept 96 and clearly separates these sequences

from non-homologous proteins. In addition, we show that concatenated MEME motifs

can be used to construct reliable phylogenetic trees for distantly related sequences.

Concatenated motifs can be aligned unambiguously, unlike entire sequences. This

is an important consideration when constructing a multiple alignment of many dis-

tantly related sequences because the alignment may be degraded by mutations sug-

gested spuriously by ambiguities in assigning insertions and deletions. Others have

dealt with this problem and have constructed useful phylogenetic trees by ignoring

the highly divergent segments containing insertions and deletions [20, 86]. We �nd

that concatenated MEME motifs also yield useful trees, with the advantage that the

analysis is unbiased and automated.

IV.C.2 Methods

The training set of alcohol dehydrogenases consists of the thirty-eight se-

quences listed in Table IV.7, except for dTDP-Glucose 4,6-Dehydratase. Pairwise

alignments of almost all of these sequences are less than 30% identical after using
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gaps and insertions to maximize identities [109, 17, 18]. Many sequences are less

than 20% identical after use of gaps and insertions.

The six strongest motifs in the set of thirty-seven divergent dehydrogenase

sequences are determined using MEME version 2.0. MEME is run with the ZOOPS

model, with the minimummotif width set at 12 amino acids, and the Dirichlet mixture

prior [8, 60]. Next, Genpept release 96 is searched with all six motifs using MAST.

The motif occurrence diagram from the highest-scoring protein provides the frame-

work for a linear Meta-MEME model incorporating all six motifs. This motif-based

HMM is used by a modi�ed Smith-Waterman algorithm [46] to search Genpept 96

for homologs. The output score for each sequence is expressed as log-odds scores in

bits (i.e., log2).

In order to construct a phylogenetic tree, the sequences of the �rst six motifs

from the MEME analysis of each dehydrogenase homolog were collapsed into a single

string. These motif-only strings were analyzed using the protein parsimony analysis

program from the Phylip software package [50]. The analysis was repeated 30 times,

using at each iteration a random reordering of the sequences, and selecting the most

parsimonious tree from all iterations.

IV.C.3 Results

MEME analysis

Figure IV.8 displays the six motifs of the dehydrogenase dataset along with

the entropy plot, which is a measure of the information content at each position. The

motifs are mapped onto the primary sequence of 20�-hydroxysteroid dehydrogenase

in Figure IV.9. Also shown in Figure IV.9 is the secondary structure determined

from X-ray crystallographic analysis [56]. The secondary and tertiary structure of

this enzyme is very similar to homologs such as dihydropteridine reductase [127],

17�-hydroxysteroid dehydrogenase-type 1 [31], enoyl reductases [114, 24], and E. coli

7�-hydroxysteroid dehydrogenase [121] despite having pairwise sequence similarities
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MOTIF 1
         bits 6.8
              6.1
              5.4
              4.7
Information   4.1
content       3.4         *
(26.1 bits)   2.7    *   **
              2.0 *  * * ** *
              1.4 * ** ******
              0.7 ***********
              0.0 -----------

Multilevel        GRVDVLVNNAG
consensus           L I I
sequence

MOTIF 2
         bits 6.8
              6.1
              5.4
              4.7
Information   4.1
content       3.4
(25.1 bits)   2.7    **     *
              2.0   ***   ***
              1.4 ******  ***
              0.7 ***********
              0.0 -----------

Multilevel        ALVTGASSGIG
consensus         VII  GA  L
sequence                G

MOTIF 3
         bits 6.8
              6.1
              5.4
              4.7
Information   4.1 *
content       3.4 *   *
(31.3 bits)   2.7 *   *
              2.0 *  **     *
              1.4 * *****   **  **
              0.7 ******** *******
              0.0 ----------------

Multilevel        YSASKAAVxGLTRSLA
consensus            A FGL  FSK
sequence

MOTIF 4
         bits 6.8
              6.1
              5.4
              4.7
Information   4.1
content       3.4
(18.2 bits)   2.7        *
              2.0 * ***  *
              1.4 * ******
              0.7 ********
              0.0 --------

Multilevel        GRIVNVSS
consensus            I I
sequence

MOTIF 5
         bits 6.8
              6.1
              5.4
              4.7
Information   4.1
content       3.4
(28.1 bits)   2.7         *
              2.0  *      **   *
              1.4 ** ** * **   * *
              0.7 ***** **** * ***
              0.0 ----------------

Multilevel        GIRVNAVxPGxVxTDM
consensus          VT   I    I
sequence

MOTIF 6
         bits 6.8
              6.1
              5.4
              4.7
Information   4.1
content       3.4        *
(35.7 bits)   2.7        *
              2.0 *      *
              1.4 *     **  * *         *
              0.7 ********* ******* *** *
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Multilevel        WDRVIxVNLTGVFxLTRAVLPxM
consensus         F     I   S V G Q     L
sequence

Figure IV.8: Motifs from MEME analysis of short chain alcohol dehydroge-
nases. The entropy plot is a measure of the information content at each position of
the motif. The consensus sequence below the entropy plot shows sites where speci�c
amino acids are present with a probability of at least 20%.
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                 β-strand-A  Turn         α-helix-B
               ÃÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
  1 M N D L S G K T V I I T G G A R G L G A E A A R Q A V A A
                    2 2 2 2 2 2 2 2 2 2 2

      β-strand-B            α-helix-C
   ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´         ÃÄÄÄÄÄ
 30 G A R V V L A D V L D E E G A A T A R E L G D A A R Y Q H

   β-strand-C           α-helix-D                 β-strand-D
    ÄÄÄÄÄÄÄÄÄ´ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´   ÃÄÄÄÄÄÄÄÄÄÄÄÄÄ
 59 L D V T I E E D W Q R V V A Y A R E E F G S V D G L V N N
                                            1 1 1 1 1 1 1 1 1

     β-strand-D                        α-helix-E
    ÄÄÄÄÄÄÄÄÄÄÄ´           ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 88 A G I S T G M F L E T E S V E R F R K V V D I N L T G V F
    1 1                             6 6 6 6 6 6 6 6 6 6 6 6 6

        α-helix-E                  β-strand-E
    ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´         ÃÄÄÄÄÄÄÄÄÄÄÄÄÄ´
117 I G M K T V I P A M K D A G G G S I V N I S S A A G L M G
    6 6 6 6 6 6 6 6 6 6             4 4 4 4 4 4 4 4

                        α-helix-F
           ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
146 L A L T S S Y G A S K W G V R G L S K L A A V E L G T D R
                3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3             5

         β-strand-F
    ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
175 I R V N S V H P G M T Y T P M T A E T G I R Q G E G N Y P
    5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

                              α-helix-G
                         ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
204 N T P M G R V G N E P G E I A G A V V K L L S D T S S Y V

       β-strand-G
     ÃÄÄÄÄÄÄÄÄÄÄÄ´
233 T G A E L A V D G G W T T G P T V K Y V M G Q 255

• • •

Figure IV.9: Alignment of MEME motifs on Streptomyces hydrogenans 20�-
hydroxysteroid dehydrogenase. Each motif as determined by MEME is shown
below the sequence of S. hydrogenans 20�-hydroxysteroid dehydrogenase. The sec-
ondary structure was determined from the X-ray analysis of crystals of S. hydroge-
nans 20�-hydroxysteroid dehydrogenase [56], and has a similar fold to that of its
homologs [127, 31, 114, 24, 121]. The boxed segment at the beginning of motif 3
contains the conserved tyrosine and lysine residues at the catalytic site.
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Figure IV.10: Meta-MEME analysis of Genpept 96. The output histogram
has a minimum at 20 bits, demonstrating the selectivity of the HMM analysis. Se-
quences with negative scores are not shown. The peaks at 105 and 115 bits are due
to Drosophila alcohol dehydrogenase sequences.

of 15% to 22%. The six motifs map onto structurally important domains, some of

which have been shown to be functionally important by site-speci�c mutagenesis stud-

ies [100, 1, 34, 111, 131, 35] and structural analysis [126, 125]. Beginning at the amino

terminus, the order of the motifs is (2)-(1)-(6)-(4)-(3)-(5). Their combined length is

85 amino acids, and they span 183 residues of 20�-hydroxysteroid dehydrogenase.

Meta-MEME analysis

These six motifs were combined in their proper order into a single hidden Markov

model for analysis. This model was then used to search Genpept 96 for homologs.

Figure IV.10 shows the histogram of the output of this search, and Table IV.10 shows

selected sequences from the output. The distribution is bimodal with a clear minimum

at 20 bits, demonstrating excellent separation of dehydrogenase homologs from the

rest of the database.

The high scoring sequences contain the full 85 residues in the template,

which spans 180 to 188 amino acids in most of the proteins. This is consistent with

an absence of extra loops in these proteins and a common 3D structure. An in-

teresting exception is carbonyl reductase, in which the six motifs span 228 residues
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Score Seq Mod ID Species Description
178.7 8-188 1-85 145881 E. Coli 3-ketoacyl-acyl carrier

protein reductase
174.8 9-194 1-85 153142 S. coelicolor actIII protein
170.9 5-184 1-85 790552 R. meliloti acetoacetyl CoA

reductase
170.4 8-190 1-85 1203984 H. sapiens NAD+-dependent

15-hydroxyprostaglandin
dehydrogenase

170.2 9-189 1-85 46308 R. meliloti nodG gene product
169.3 6-186 1-85 1222069 H. in
uenzae 3-oxoacyl-[acyl-carrier

protein] reductase
149.4 10-191 1-85 309860 C. testosteroni �-hydroxysteroid

dehydrogenase
149.1 14-196 1-85 912437 E. coli 7�-hydroxysteroid

dehydrogenase
148.0 10-192 1-85 1419053 M. tuberculosis unknown
145.5 325-504 1-85 695398 C. tropicalis hydratase-dehydrogenase-

epimerase
133.1 6-193 1-85 975895 H. sapiens 17-�-hydroxysteroid

dehydrogenase
127.7 8-235 1-85 181037 H. sapiens carbonyl reductase
116.6 37-222 1-85 179475 H. sapiens 11-�-hydroxysteroid

dehydrogenase
115.4 32-213 1-85 1054531 B. taurus 11-cis-retinol

dehydrogenase
90.6 86-188 14-82 304662 D. immigrans alcohol dehydrogenase
65.8 118-244 12-85 957251 A. thaliana oxidoreductase

Table IV.10: Selected Meta-MEME output from from an analysis of Gen-
pept 96. The table (continued on the next two pages) shows some high scoring
sequences that contain all 85 residues in the six motifs. Column 1 gives the log-odds
score in bits. Columns 2 and 3 show the correspondence between amino acids in the
sequence and states in the model. The last three columns contain the Genpept ID,
species name and sequence description. Analysis of proteins with scores from 23.2 to
8.5 bits reveal that the �rst protein that is not a member of the short chain dehydro-
genase family is malate dehydrogenase with a score of 8.9 bits, followed by ribulose
bisphosphate carboxylase/oxygenase with a score of 8.5 bits. The sequences of several
homologs, such as halohydrin epoxidase [135] and the sugar epimerases [77, 85, 19],
have diverged from the signature motif used in PROSITE [12], which has made iden-
ti�cation of their ancestry di�cult.
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Score Seq Mod ID Species Description
23.2 138-195 46-85 46868 S. coelicolor ORF3 protein
21.3 32-203 2-58 861340 C. elegans similar to ribitol

dehydrogenase
19.7 15-101 1-22 603171 E. coli unknown
19.1 12-45 58-85 453866 A. thaliana tropinone reductase

homologue
18.8 8-18 1-11 145888 E. coli ORF3
18.5 4-41 54-85 699381 M. leprae glucose

1-dehydrogenase
18.0 3-157 1-60 473600 S. fradiae dTDP-glucose

dehydratase
17.7 1-33 59-85 1053075 P. mirabilis ORF1; similar

to E. coli EnvM
17.6 128-184 47-85 641817 Corynebact. sp. halohydrin epoxidase A
17.3 19-168 1-77 641819 Corynebact. sp. halohydrin epoxidase B
17.3 4-14 1-11 415277 E. coli unknown
16.7 1-13 73-85 887852 E. coli ORF f67p
16.0 1-26 66-85 1234827 L. pneumophila ORF1; similar EnvM
15.6 262-313 51-85 237650 B. napus enoyl-acyl carrier

protein reductase
15.3 85-149 27-67 1332595 Synecho. sp. dNDP-glucose

dehydratase
14.5 28-147 2-40 618456 A. parasiticus norsolornic acid
13.9 10-20 1-11 471145 S. paucimobilis ORFUP
13.7 1-13 73-85 1166429 C. elegans K08F4.9
13.4 217-298 25-85 1055124 C. elegans coded for by

cDNA yk62b4.3
13.0 98-173 27-67 1314581 Sphingo. S88 dTDP-D-glucose-4,6-

dehydratase

Table IV.11: Selected Meta-MEME output from from an analysis of Gen-
pept 96. See caption on p. 107
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Score Seq Mod ID Species Description
13.0 89-143 29-59 1359482 A. mediterranei dNDP-glucose

dehydratase
12.8 97-171 27-67 398120 X. campestris TDP-glucose

oxireductase
12.4 9-117 1-37 1143392 A. thaliana uridine diphosphate

glucose epimerase
12.2 113-186 50-85 203979 R. norvegicus dihydropteridine

reductase
12.2 116-189 50-85 181553 H. sapiens dihydropteridine

reductase
12.0 101-174 27-67 1001273 Synecho. sp. hypothetical protein
10.8 2-22 68-85 666992 D. mojavensis alcohol dehydrogenase
10.4 6-164 2-67 413996 B. subtilis ipa-72d gene product
10.3 25-200 1-19 506333 H. roretzi HrEpiB
9.9 8-116 1-37 1173555 P. sativum UDP-galactose-

4-epimerase
9.6 3-93 1-27 567874 S. erythraea thymidine diphospho-

glucose 4,6-dehydratase
9.6 1-15 71-85 516105 Synecho. sp. aklaviketone reductase
9.4 23-64 37-59 699306 M. leprae hypothetical protein
9.3 2-29 1-18 1294775 H. in
uenzae ADP-L-glycero-D-manno-

heptose-6-epimerase
8.9 3-111 1-41 1429254 B. subtilis UDP-glucose 4-epimerase
8.9 4-154 1-58 406095 N. meningitidis UDP-glucose 4-epimerase
8.9 3-62 1-15 294198 Photobact. sp. malate dehydrogenase
8.6 38-48 1-11 466869 M. leprae gpdB; B1496 F1 31
8.5 87-198 13-85 407314 M. tuberculosis inhA peptide (AA 1-269)
8.5 87-198 13-85 1155270 M. bovis enoyl ACP reductase
8.5 58-95 33-56 1381396 rhodophyte ribulose bisphosphate

BOm1 carboxylase/oxygenase
large subunit

Table IV.12: Selected Meta-MEME output from from an analysis of Gen-
pept 96. See caption on p. 107
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due to an insertion of 41 residues between motifs 4 and 2 [128]. This insertion does

not compromise the analysis. Meta-MEME output is useful in identifying the region

where a distantly homologous protein has diverged from the dataset. For example,

Drosophila immigrans alcohol dehydrogenase has a score of 90.6 bits based on residues

14-85 of the template. Evidently, the segment corresponding to motif 2 in this al-

cohol dehydrogenase has diverged from the dataset. A similar analysis holds for an

oxidoreductase (score of 65.7 bits) required for shoot apex development in Arabidopsis

thaliana.

We examined the sequences with scores below twenty bits using citations in

Entrez and SWISS-PROT and, in some cases, a BLAST search to determine which

sequences were homologous to short chain dehydrogenases. All sequences above 8.9

bits are homologs. The �rst non-homologous protein is malate dehydrogenase at 8.9

bits; the next is ribulose bisphosphate carboxylase/oxygenase at 8.5 bits.

Phylogeny

One consequence of the projects to sequence genomes in phylogenetically

diverse organisms is a wider use of phylogenetic analysis to assist in understand-

ing the evolution of structure and function. We were interested in how well the

motifs generated by MEME could be used for a phylogenetic analysis. We there-

fore combined the �rst six motifs for each protein into a single sequence, which by

virtue of the MEME analysis can be aligned with the other thirty-six proteins. Two

equally parsimonious phylogenies were discovered by Phylip [50]. One of these two

is shown in Figure IV.11; the other phylogeny was similar. Phylogenies using the

entire sequences of 11�-hydroxysteroid dehydrogenase-type 1, 17�-hydroxysteroid

dehydrogenase-types 1, 2, and 3, and �-hydroxybutyrate dehydrogenase [18], as well

as bacterial steroid dehydrogenases [17] have been determined previously [18] and are

in general agreement with that from the motifs. In particular, the type 1 11�- and

17�-hydroxysteroid dehydrogenases cluster together on a branch separate from 17�-

hydroxysteroid dehydrogenase-type 2, which clusters with �-hydroxybutyrate dehy-
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Figure IV.11: Phylogenetic analysis of the dehydrogenase dataset. The se-
quences of the �rst six motifs from the MEME analysis of each protein were col-
lapsed into a single sequence and analyzed by parsimony analysis [50]. The 11�-
hydroxysteroid and 17�-hydroxysteroid dehydrogenases-type 1 cluster together on a
branch separate from 17�-hydroxysteroid dehydrogenases-type 2 and 3, which are on
separate branches. The motif phylogeny is in agreement with a phylogenetic analysis
of the entire sequences of the steroid dehydrogenases [18].
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drogenase. On a separate branch is 17�-hydroxysteroid dehydrogenase-type 3. Thus,

the information in the eighty-�ve residues in the �rst six motifs gives a useful phy-

logeny for the steroid dehydrogenases.

IV.C.4 Discussion

There is a strong biological basis for the sensitivity of Meta-MEME. Motifs

1 and 2 are part of the nucleotide cofactor binding site [30, 129, 130]; motif 3 contains

the catalytic site. A protein sequence that had motifs 1 and 3 interchanged would not

have the same 3D structure and could not function the way the steroid dehydrogenases

do. By scoring protein similarity and dissimilarity on the basis of motif order and

spacing, the HMM method is using the spatial information in the 3D structure of the

canonical dehydrogenase to identify homologs from the noise of unrelated proteins

that have islands of amino acid sequence similarity to the dataset. Comparisons of

protein 3D structures is the most sensitive method for determining homology [37],

which we propose explains the excellent ability of HMM to separate homologs from

noise as seen in Figure IV.10.

In summary, Meta-MEME provides a sensitive and selective method for

homology searches to identify distantly related proteins. This facilitates collecting

large and diverse collections of homologous proteins for motif analysis for use in

elucidating the relationship between structure, function and evolution.

IV.D Modeling families containing repeated ele-

ments

IV.D.1 Introduction

Several mechanisms of molecular evolution can result in subsequences of

the chromosome being copied and reinserted once or multiple times into a single

gene. Some of these copying events result in proteins with small tandem repeats,
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such as are found in the ice-nucleating proteins [133, 64]; other proteins contain

repeated elements, such as zinc �ngers or kringle domains, located in varying positions

throughout the protein.

Meta-MEME is the only computational tool currently available that explic-

itly models these repeated elements. A motif-based hidden Markov model with a

completely connected topology can accurately characterize a protein family in which

single family members contain multiple occurrences of one or more motifs.

In the experiments reported here, we investigate Meta-MEME's ability to

model two well-known families that contain repeated subsequences: the 4Fe-4S ferre-

doxins and the kringle domain proteins. For these families, we �nd that Meta-

MEME's total probability log-odds scores are accurate, but the corresponding Viterbi

scores tend to underestimate the likelihood that a given sequence belongs to the fam-

ily in question. Training the Meta-MEME model results in improved characterization

of an independent test set of family members. However, using this trained model to

search a database of sequences for homologs results in slightly degraded performance

relative to that of the original, untrained model. A tentative explanation for these

results is given in Section IV.D.4.

IV.D.2 Methods

The 4Fe-4S ferredoxins are a primarily bacterial subfamily of the ferredoxin

family of iron-sulfur proteins [101]. The ferredoxins mediate electron transfer in a

wide variety of metabolic reactions. The 4Fe-4S group is characterized by a 26-amino-

acid domain containing four cysteine residues that bind to four iron and four sulfur

atoms. PROSITE version 13.1 lists 149 4Fe-4S ferredoxins. For these experiments,

ten additional sequences were added to this set, based upon independent analyses

carried out by Michael Gribskov. The resulting set of 4Fe-4S ferredoxins is given in

Table IV.9.

The second protein family we examine is de�ned by the kringle domain

signature [33]. The kringle domain is a triple-looped, disul�de cross-linked domain
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APOA HUMAN APOA MACMU FA12 BOVIN HGFA HUMAN
HGFL HUMAN HGFL MOUSE HGF RAT PLMN BOVIN
PLMN CANFA PLMN MACMU PLMN MOUSE PLMN PETMA
THRB BOVIN THRB HUMAN THRB MOUSE UROK CHICK
UROK HUMAN UROK MOUSE UROK RAT UROT HUMAN
UROT MOUSE URT2 DESRO URTB DESRO URTG DESRO
FA12 CAVPO FA12 HUMAN HGF HUMAN HGF MOUSE
PLMN HORSE PLMN HUMAN PLMN PIG PLMN RAT
THRB RAT UROK BOVIN UROK PAPCY UROK PIG
UROT RAT URT1 DESRO

Table IV.13: SWISS-PROT identi�ers for the 38 kringle domain proteins.

which repeats as many as 38 times in a single sequence. An exhaustive list of the

38 sequences in SWISS-PROT 33 containing kringle domains was created by Michael

Gribskov using Smith-Waterman searches with kringle regions from the sequences

PLMN HORSE and UROK CHICK. See Table IV.13 for the list of SWISS-PROT

identi�ers in this family.

As in previous experiments (see Section. III.B) binary sequence weighting is

employed to reduce redundancy within the protein families. After eliminating eight

sequence fragments from the set of 4Fe-4S ferredoxins, the purge program [87] is used

to eliminate highly similar sequences, using a similarity threshold of 200 bits. This

procedure results in a set of 70 divergent sequences. The kringle domain proteins are

more closely related to one another, so the weighting procedure reduces the original

set of 38 sequences to only �ve divergent sequences.

From each purged family, �ve series of nested training sets are randomly

selected. For the 4Fe-4S ferredoxins, these training sets are of sizes 2, 4, 8, 16 and

32 sequences, resulting in a total of 25 training sets. For the kringle proteins, the

training sets are of sizes 2 and 4, yielding only 10 distinct training sets. Finally, for

each series of nested training sets, an independent test set is constructed, consisting

of all sequences that do not appear in the training sets. For the 4Fe-4S ferredoxins,

these test sets are drawn from the set of 70 purged family members; for the kringle
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Motif discovery (MEME)
Number of motifs 6
Minimum motif width 12
Maximum motif width 55
Motif occurrence model TCM
Prior Mega-prior

Motif order and spacing (MAST)
Database training set
p-value threshold 0.0001

Model building (mhmm and mhmmt)
Number of motifs 6
Topology complete
States per spacer 1 (Viterbi) or 3 (total probability)
Spacer emission distribution Frequencies from NRDB
Training none, emissions, transitions or both
EM iterations 20

Homology detection (mhmms)
Scoring Viterbi or total probability log-odds
Background model Frequencies from NRDB
Explicit length modeling With trained models only

Table IV.14: Meta-MEME parameter settings. See text for a more complete
description.

domain proteins, the test sets are drawn from the entire set of 38 proteins.

For each training set, a completely connected motif-based hidden Markov

model is constructed. Six motifs are discovered by MEME using the most general

model of motif occurrences, which allows a motif to occur multiple times in a single se-

quence. Motifs lengths can range between 12 and 55 amino acids, and the probability

distributions at each position are estimated using Dirichlet mixture priors [32] modi-

�ed by the Mega-prior heuristic [9]. The motif-based HMM is constructed from all six

motifs, and motif occurrence information from a MAST analysis of the training set

is used to initialize the transition matrix in the HMM, as described in Section II.C.

All motif occurrences with p-values less than 0.0001 are included in this analysis.
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Each inter-motif spacer region is modeled with three tied HMM states, using emis-

sion probabilities taken from the NCBI non-redundant protein database [53]. These

parameters are summarized in Table IV.14.

Homology detection is performed on the SWISS-PROT database, using ei-

ther version 33 or version 28. Version 33 contains 52 205 sequences comprising 18.5

million amino acids, including 159 4Fe-4S ferredoxins and 38 kringle domain proteins;

version 28 contains 36 000 sequences, including 86 4Fe-4S ferredoxins and 30 kringle

domain proteins. Each sequence is scored using either the total probability log-odds

score or the Viterbi log-odds score. Models that have been trained include a Gaus-

sian model of sequence length, so the homology scoring for these models includes the

length component, as described in Section II.J.

Homology detection results from di�erent training sets are compared using

the ROC50 score [58]. This score, which was described in Section III.B, is the area

under a curve that plots, for various classi�cation thresholds, the true positives versus

the false positives, up to the �rst �fty false positives. ROC50 scores are normalized

to range from 0 to 1, with 1 corresponding to perfect separation of family members

from non-family members. When computing the ROC50 scores, sequences that are

members of the original training set are discarded.

The statistical signi�cance of di�erences in performance is measured by a

paired t test. In the results that follow, a di�erence is called signi�cant if it reaches

a 1% con�dence level, slightly signi�cant if it reaches a 5% con�dence level, and

not signi�cant if it fails to reach a 5% con�dence level. Unless otherwise stated,

the signi�cance tests are conducted using all training sets and so have 24 degrees of

freedom for the 4Fe-4S ferredoxins and 9 degrees of freedom for the kringle domain

proteins.

IV.D.3 Results

We �nd that Meta-MEME succeeds in accurately learning the features of

both the 4Fe-4S ferredoxin and kringle domain proteins, but that this learning does
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not necessarily lead to improved homology detection performance. We begin by ex-

amining the log-odds scoring of the 4Fe-4S ferredoxins and show that total probability

log-odds and Viterbi log-odds scores provide reasonable separation of family members

from non-family members, but that the total probability log-odds scores are more ac-

curate with respect to the theoretical classi�cation threshold described in Section II.I.

Next we show that training the model parameters results in improved total probabil-

ity log-odds scores of an independent test set of positive examples. However, using

the trained models to search the SWISS-PROT database for homologs results in de-

creased performance relative to the untrained model. Indeed, for the kringle domain

proteins, the performance of Meta-MEME is worse than that of MAST, which does

not exploit information about motif order and spacing.

Log-odds scores

Figure IV.12 illustrates the strong length dependence of the raw total prob-

ability and Viterbi scores returned by a hidden Markov model. The �gure was gener-

ated using a single HMM trained on 32 randomly selected 4Fe-4S ferredoxin sequences.

Each point in the �gure represents the score generated by one sequence in the SWISS-

PROT 28 database. Members of the 4Fe-4S ferredoxin family are marked with larger

points. The length dependence of the total probability scores is most evident. The

family and non-family members cluster so closely together that simply correcting for

the length dependence would fail to separate family members from non-family mem-

bers. The separation provided by Viterbi scoring is better but still not good. Note

also that all of the scores reported are less than zero, and that the Viterbi scores are

particularly low.

The scaling and separation of total probability scores improves considerably

after the scores have been converted to log-odds. Figure IV.13(a) shows the total

probability log-odds scores from the same model and database. Although a number of

clear false positive and false negative sequences appear, there is a separation between

family members and non-family members that was not apparent from the raw total
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Figure IV.12: Length dependence of HMM total probability and Viterbi
scores for the 4Fe-4S ferredoxins. Each point corresponds to one sequence in
the SWISS-PROT 28 database. Members of the 4Fe-4S ferredoxin family are marked
with larger points.
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Figure IV.13: Decreased length dependence and improved scaling of log-
odds scores. These data are similar to those in Figure IV.12, except that the
scores have been converted to log-odds using a uniform background model, as well as
foreground and background length models. The theoretical classi�cation threshold is
shown as a horizontal line at 8.71 bits.



120

probability scores. The curved baseline of the scores is a result of the Gaussian length

modeling. As shown previously in Figure II.15, this length modeling eliminates a

number of long false positive sequences, although it does introduce a false negative

sequence at length 1171. The theoretical classi�cation threshold for this family is

given by Equation II.28. The database contains 36 000 sequences, of which 116 belong

to this family, leading to a threshold of log2(36 000=116) = 8:28 bits. This threshold

is shown in the �gure, and leads to a classi�cation with 12 false negatives and 16 false

positives. The equivalence score [105], which is the classi�cation threshold yielding

an equal number of false positives and false negatives, falls at 9.49 bits and gives 13

false positives.

The scaling of Viterbi scores via the log-odds calculation is much less suc-

cessful than was the scaling of total probability scores. As shown in Figure IV.13(b),

no sequence receives a Viterbi log-odds score greater than zero, although these scores

are much greater than the raw scores shown in Figure IV.12(b). On the other hand,

the separation provided by the Viterbi log-odds scores is only slightly worse than that

provided by the total probability log-odds scores. The equivalence score of -27 bits

yields 11 false positives. This separation is also better than that of the raw Viterbi

scores, which, with a threshold of -71.1 bits, yield 33 false positives.

Training the HMM

Figure IV.14(a) veri�es that training a Meta-MEME model improves the

model's ability to characterize previously unseen family members. The �gure plots

the average total probability log-odds score of a series of independent sets of 38 4Fe-4S

ferredoxins as a function of training set size. Not surprisingly, the ability of the models

to characterize the test set increases as the training set size increases. Furthermore,

models that have been trained by Meta-MEME show improved characterization of

the test set relative to the untrained models. The bottom series in the �gure, la-

beled \None," represents the scores generated by HMMs built directly from MEME

motifs with no training by Meta-MEME. After training either the emission probabil-
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Figure IV.14: Characterization of 4Fe-4S ferredoxins after HMM training.
The �gure plots the average (a) total probability log-odds score and (b) Viterbi log-
odds score of a series of independent test sets of 38 4Fe-4S ferredoxins. Scores are
computed with respect to motif-based HMMs trained on nested ferredoxin training
sets of various sizes. Each point represents an average over �ve randomly selected
training sets, and error bars represent standard error. The series labels indicate which
parameters of the HMM were trained: both sets of probability distributions, emission
probabilities only, transition probabilities only, or no HMM training.
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ity distributions or the transition probability distributions, the scores of the test set

increase. This increase is even more pronounced when the two types of probability

distributions are trained at once. For training sets of size 32, all di�erences apparent

in Figure IV.14(a) are statistically signi�cant at the 1% con�dence level, according to

a paired t test with four degrees of freedom. Thus, during training the model acquires

features of the training set that characterize the family as a whole. Furthermore, the

bene�t provided by Meta-MEME training increases as the training set size increases.

Because the Baum-Welch training algorithmmaximizes the total probability

of the model, given the data, it is unsurprising that training causes an increase in the

total probability of the test set. Figure IV.14(b) shows, however, that this increase is

not accompanied by a corresponding increase in Viterbi score. The �gure plots average

Viterbi log-odds score for the same series of independent test sets used to generated

Figure IV.14(a). Training the transition probabilities, in particular, causes a decrease

in the probability of the Viterbi path: the scores generated by the transition-trained

models are signi�cantly lower than scores generated by any of the other types of

models. The other trained models score no better, and for some training set sizes

signi�cantly worse, than the untrained models.

For the kringle domain proteins, the same increase in total probability log-

odds scores after training is observed. In Figure IV.15(a), models of kringle domain

proteins are used to score independent test sets. Once again, training either set of

probability distributions results in improved total probability log-odds scores. The im-

provement is most striking, however, when both sets of distributions are trained. Un-

like for the 4Fe-4S ferredoxins, however, this improvement carries over to the Viterbi

log-odds scores. Figure IV.15(b) shows that the untrained models produce lower

Viterbi log-odds scores than do any of the trained models. The di�erence in perfor-

mance is signi�cant with respect to the models with trained transitions and slightly

signi�cant with respect to the other two types of trained models.

The increase in total probability log-odds scores after training can be ex-

plained in two ways: either the models are acquiring features of the family through
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Figure IV.15: Improved characterization of kringle domain proteins after
HMM training. The �gure plots the average (a) total probability log-odds and (b)
Viterbi log-odds score of a series of independent test sets of 34 kringle domain proteins.
Scores are computed by motif-based HMMs trained on nested training sets of various
sizes. Each point represents an average over �ve randomly selected training sets, and
error bars represent standard error. The series labels indicate which parameters of
the HMM were trained: both sets of probability distributions, emission probabilities
only, transition probabilities only, or no HMM training.
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Score None Emissions Transitions Both
Fer4 total 20.9 26.2 32.4 38.0
Non-fer4 total -6.4 -6.7 -19.7 -16.5
Di�erence total 27.3 32.9 52.1 54.5
Fer4 Viterbi -16.4 -13.6 -12.4 -8.7
Non-fer4 Viterbi -53.0 -52.4 -52.3 -46.4
Di�erence Viterbi 36.6 38.8 39.9 37.7

Table IV.15: Improvement of average scores assigned to family members
versus scores assigned to non-family members. The rows marked \Fer4" show
the average score assigned to members of the 4Fe-4S ferredoxin family; the \Non-
fer4" rows show average scores for all other sequences in SWISS-PROT version 28.
\Di�erence" rows contain the di�erence between the previous two rows. Scores labeled
\total" are total probability log-odds scores; scores labeled \Viterbi" are Viterbi log-
odds scores. All scores include an explicit length model and are generated by variously
trained versions of a single, motif-based HMM trained on the same set of 32 randomly
selected 4Fe-4S ferredoxins.

training, or the models are acquiring features of proteins in general. The latter case

would result in trained models that are \
atter" than the original models and hence

assign higher scores to all sequences. Clearly, such behavior is not desirable. In order

to show that this kind of 
attening is not occurring, we examine a particular model

(the same one used to generate Figures IV.12-IV.13), looking at the average score

that the model assigns to family members and non-family members in the database.

Table IV.15 summarizes the results. For both types of scores, the average score as-

signed to family members increases with model training; for non-family members, on

the other hand, this increase does not occur. Instead, in nearly every case, the average

score of non-family members remains approximately the same or decreases. For both

types of scores, the di�erence between family and non-family member average scores

is greater for trained models than for untrained models, indicating that training is

increasing the discriminative ability of the model.

Training may also cause the total probability scores to increase because the

models are learning features of a larger superfamily of proteins, of which the training

set represents only a small part. Such a hypothesis is reasonable, especially for large-
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Family Score None Emissions Transitions Both
4Fe-4S ferredoxin total 20.9 26.2 32.4 38.0
2Fe-2S ferredoxin total -4.0 -2.6 -15.5 -12.2
Adrenodoxin total -3.8 -3.7 -13.5 -12.0
Flavodoxin total -10.3 -10.9 -26.0 -21.7
Rubredoxin total -6.2 -6.2 -21.6 -18.3
Photosystem 1 total -18.0 -19.4 -24.8 -26.7
Photosystem 2 total -6.2 -5.9 -18.8 -15.2
4Fe-4S ferredoxin Viterbi -16.4 -13.6 -12.4 -8.7
2Fe-2S ferredoxin Viterbi -46.4 -37.9 -50.0 -43.8
Adrenodoxin Viterbi -46.5 -45.2 -45.3 -40.4
Flavodoxin Viterbi -57.6 -57.5 -58.7 -51.9
Rubredoxin Viterbi -51.4 -49.2 -56.0 -48.5
Photosystem 1 Viterbi -65.0 -63.8 -58.3 -59.6
Photosystem 2 Viterbi -54.4 -51.2 -51.6 -45.2

Table IV.16: Change in average scores of proteins families related to the
4Fe-4S ferredoxins. Lists of sequences for each family are taken from PROSITE
version 13.0. The two photosystem families represent two di�erent signature motifs.

scale features such as the order and spacing of motifs, since these features may be

conserved among very remotely related homologs. In order to determine whether

training is learning features of a larger set of proteins, we examine the average scores

of �ve families that are known to be related to the 4Fe-4S ferredoxins. These families

include the 2Fe-2S ferredoxins, the adrenodoxin subfamily of the 2Fe-FS ferredoxins,

two families that are functionally interchangable with ferredoxins (
avodoxins and

rubredoxins), and the photosystem I complex, which contains a 4Fe-4S iron-sulfur

center. Table IV.16 shows how the average score for each of these families changes

after training.

For each related family, completely training the model causes a decrease in

average total probability log-odds score and an increase in average Viterbi log-odds

score. This trend agrees with the data in Figure IV.14, which suggests that training

leads to improved characterization by total probability scores but not by Viterbi

scores. Overall, therefore, we expect that the homology detection performance of

trained models should increase relative to untrained models when total probability
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Figure IV.16: Homology detection performance on 4Fe-4S ferredoxins using
total probability log-odds scoring. The �gure plots ROC50 score as a function
of training set size for homology detection searches in the SWISS-PROT database,
version 33. Each point represents an average over �ve randomly selected training
sets, and error bars represent standard error. The three Meta-MEME series repre-
sent results from untrained models, models with trained transition probabilities, and
completely trained models (i.e., trained transition and emission probabilities).

log-odds scoring is employed, but that the converse will occur when Viterbi log-odds

scoring is used. In the following section, we examine this hypothesis.

Homology detection

Despite the apparent improvement in Meta-MEME's models after training,

as measured by total probability log-odds scores, the trained models fail to detect

homologs as well as the untrained models using either type of scoring. Figures IV.16

and IV.17 summarize the results of homology detection experiments using trained

and untrained Meta-MEME models. The variance in performance for the smallest

training sets is too large to allow di�erentiation between techniques. However, for

larger training sets, the untrained models outperform models in which the transition

probabilities have been trained, as well as models in which all of the parameters have

been trained. Using total probability log-odds scoring (Figure IV.16), this di�erence
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Figure IV.17: Homology detection performance on 4Fe-4S ferredoxins using
Viterbi log-odds scoring. The �gure plots ROC50 score as a function of training
set size for homology detection searches in the SWISS-PROT database, version 33.
Each point represents an average over �ve randomly selected training sets, and error
bars represent standard error.

in performance is slightly signi�cant using 4-sequence training sets and signi�cant

using 8-sequence training sets. The di�erences in performance between the two types

of trained models are not consistent and are not statistically signi�cant. Using Viterbi

log-odds scoring (Figure IV.17), the di�erence in performance between the trained

and untrained models, although consistently in favor of the untrained models, is not

statistically signi�cant, except when using training sets of size 8. Overall, it appears

that training the HMMs decreases the models' ability to discriminate between family

members and non-family members.

This decrease in performance is a result, in part, of the decreased discrim-

inative ability of the trained motifs. The motif models from a completely trained

Meta-MEME HMM were extracted and used as inputs to MAST. The MAST ROC50

score from the original motif models was 0.767. The score of the same models after

training by Meta-MEME is 0.541, considerably lower than the original score. This

indicates that the training algorithm results in motif models with decreased discrim-



128

inative capacity.

Figures IV.16 and IV.17 also illustrate the bene�t of Viterbi log-odds scoring

versus total probability log-odds scoring. The performance of untrained Meta-MEME

models using Viterbi scoring is slightly signi�cantly better than that given by total

probability scoring.

Finally, Figures IV.16 and IV.17 show that Meta-MEME fails to provide

improved homology detection performance relative to that of MAST. One of Meta-

MEME's primary goals is to exploit information about the order and spacing of

motifs within a family, thereby improving homology detection performance relative

to a tool such as MAST, which treats motifs independently. The �gures indicate

that this goal is not being attained. The di�erence in performance between Meta-

MEME's untrained models and MAST is not signi�cant when either type of log-odds

scoring is used. After Meta-MEME training, MAST outperforms Meta-MEME. Of

the three experiments involving trained HMMs in Figures IV.16 and IV.17, MAST

performs signi�cantly better than Meta-MEME using either type of scoring, although

the di�erence in performance for Viterbi scoring is only slightly signi�cant. Thus, for

the 4Fe-4S ferredoxins, Meta-MEME's homology detection performance is as good as

MAST's only when untrained Meta-MEME models are used.

Similar results are provided by the homology detection experiments using

the kringle domain proteins. Figure IV.18 shows that, as for the 4Fe-4S ferredoxins,

training the Meta-MEME models results in deterioration of the homology detection

performance, as measured by ROC50 scores. This deterioration is not signi�cant,

due to the small number of samples available. In addition, neither the trained nor

the untrained models performs as well as does MAST. MAST performs signi�cantly

better than the trained models and slightly signi�cantly better than the untrained

models.

A major di�culty involved in testing any homology detection program arises

in de�ning the gold standard list of family members. Precisely de�ning a particu-

lar protein family sometimes requires that fairly arbitrary decisions be made about
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Total Viterbi Length ID Description
166.27 -39.76 822 ANP NOTCO Antifreeze glycopeptide

polyprotein
66.63 2.81 194 FRXB PLEBO FRXB protein
57.70 -5.32 168 YOJG ECOLI Hypothetical
54.08 17.10 55 FER RHORU Ferredoxin
54.04 -10.24 193 NUYM SYNY3 NADH-plastoquinone oxido-

reductase subunit NDHI
54.03 -7.99 167 FRXB TOBAC FRXB protein
53.94 -16.08 252 YCR2 BACTK Hypothetical
46.37 -9.13 178 FRXB ORYSA FRXB protein
45.54 -10.49 183 FRXB MARPO FRXB protein
44.86 -10.97 176 FRXB WHEAT FRXB protein
35.39 -47.39 416 APEG XENLA APEG protein precursor

(fragment)
31.02 -49.67 865 CPN DROME Calphotin
30.70 -20.79 157 YOJB ECOLI Hypothetical
25.46 -40.94 287 YEJZ ECOLI Hypothetical
22.95 -45.12 420 ZG58 XENLA Gastrula zinc �nger (fragment)
22.49 -45.16 337 ZG26 XENLA Gastrula zinc �nger (fragment)
19.68 -20.27 66 FER PYRFU Ferredoxin
19.65 -43.95 543 SRTX ATREN Sarafotoxins precursor
17.58 -44.39 453 ZO6 XENLA Oocyte zinc �nger protein

(fragment)
16.29 -31.20 130 YOJA ECOLI Hypothetical

Table IV.17: False positive 4Fe-4S ferredoxin sequences using total probabil-
ity log-odds scoring. Listed are the twenty non-4Fe-4S ferredoxin sequences from
SWISS-PROT version 28 that receive the highest total probability log-odds scores
from a completely connected Meta-MEME model that has been completely trained
using a set of 32 randomly selected divergent sequences.
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Total Viterbi Length ID Description
54.08 17.10 55 FER RHORU Ferredoxin
66.63 2.81 194 FRXB PLEBO FRXB protein
57.70 -5.32 168 YOJG ECOLI Hypothetical
54.03 -7.99 167 FRXB TOBAC FRXB protein
46.37 -9.13 178 FRXB ORYSA FRXB protein
54.04 -10.24 193 NUYM SYNY3 NADH-plastoquinone oxido-

reductase subunit NDHI
45.54 -10.49 183 FRXB MARPO FRXB protein
44.86 -10.97 176 FRXB WHEAT FRXB protein
53.94 -16.08 252 YCR2 BACTK Hypothetical
19.68 -20.27 66 FER PYRFU Ferredoxin
30.70 -20.79 157 YOJB ECOLI Hypothetical
2.09 -22.10 93 GLHA MURCI Glycoprotein hormones � chain
1.77 -24.43 154 YR7E ECOLI Hypothetical
-1.94 -26.13 171 ATDA HUMAN Diamine acetyltransferase
1.39 -26.34 48 SIA2 SORBI Small protein inhibitor of

insect �-amylases 2
4.84 -26.40 540 KER2 CHICK C-ERBB proto-oncogene

tyrosine kinase
3.36 -26.47 60 CX1 NAJHA Cytotoxin 1 (toxin V-II-1)
15.67 -26.94 169 ZG62 XENLA Gastrula zinc �nger protein

(fragment)
2.92 -26.99 60 CX1 NAJNI Cytotoxin 1 (toxin V-II-1)
-3.25 -27.19 171 ATDA MESAU Diamine acetyltransferase

Table IV.18: False positive 4Fe-4S Ferredoxin sequences using Viterbi log-
odds scoring. Listed are the twenty non-4Fe-4S ferredoxin sequences from SWISS-
PROT version 28 that receive the highest Viterbi log-odds scores from a completely
connected Meta-MEME model that has been completely trained using a set of 32
randomly selected divergent sequences.
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Figure IV.18: Homology detection performance on kringle proteins using
total probability log-odds scoring. The �gure plots ROC50 score as a function
of training set size for homology detection searches in the SWISS-PROT database,
version 33. Each point represents an average over �ve randomly selected training
sets, and error bars represent standard error.

the boundaries of the family. In the case of the 4Fe-4S ferredoxins, the de�ning

characteristic|having a 4Fe-4S binding site|is clear; however, there is no guarantee

that the non-binding-site features of the 4Fe-4S ferredoxins will be equally clearly de-

lineated. Thus, the distance in feature space between some pairs of 4Fe-4S ferredoxins

may be greater than the corresponding di�erences between some pairs of 4Fe-4S ferre-

doxins and 2Fe-2S ferredoxins. Tables IV.17 and IV.18 list the twenty highest-scoring

false positive sequences from a single, completely trained 4Fe-4S ferredoxin model, as

measured by total probability log-odds scores and Viterbi log-odds scores. The two

lists of false positives overlap by ten sequences, many of which are clearly related to

the 4Fe-4S ferredoxins. For example, FER PYRFU is described as a 3Fe-4S ferre-

doxin [48]. Also, the FRXB proteins contain iron-sulfur centers similar to those of

'bacterial-type' 4Fe-4S ferredoxins [48]. Perhaps these sequence properly belong in the

4Fe-4S ferredoxin family, in which case the discrimination provided by Meta-MEME

is nearly perfect.
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IV.D.4 Discussion

The experiments described in this section explore Meta-MEME's ability to

model families containing repeated elements. The results show that Viterbi log-odds

scoring, although it does not scale well with respect to the theoretical classi�cation

threshold, provides improved discrimination relative to total probability log-odds scor-

ing. Unfortunately, this discrimination does not improve with training, most likely

because the expectation-maximization training algorithm maximizes the total prob-

ability rather than the Viterbi score.

The improper scaling of Viterbi log-odds scores can be explained by con-

sidering the scoring performed by the background model. These experiments clearly

show that log-odds scoring provides improved separation of family members from

non-family members relative to raw scores, especially for total probability scoring.

The log-odds scores are also fairly accurately distributed with respect to the theoreti-

cal classi�cation threshold, but this accuracy only holds for total probability scoring.

When Viterbi scoring is employed, the scores of family members are uniformly much

less than zero (on the order of -20 bits). This re
ects a huge di�erence in score,

indicating that the foreground model of the family is 220 times less likely to have

generated the sequence than the generic background model.

The foreground model is a motif-based HMM, consisting of transition proba-

bility distributions and emission probability distributions. The background model, in

contrast, only contains emission probability distributions. The probability associated

with a path of length n through this background model, therefore, is the product of

n individual emission probabilities. For the foreground model, if the path traverses

motifs of total length `, then the probability of the path is the product of n emission

probabilities as well as n�` transition probabilities. Therefore, even if the foreground

path is highly probable, the additional n � ` probabilities that are included in the

computation of this path's probability will decrease the magnitude of that probability.

In essence, the skewed Viterbi log-odds scores arise because of a di�erence in scaling

of the foreground model scores and the background model scores. This di�erence, in
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turn, arises because only the foreground model includes transition probabilities.

The skew is not as apparent for total probability scores because they are

greater than Viterbi scores. The total probability score is a sum of probabilities over

all paths through the model. This sum necessarily includes the Viterbi path, so the

total probability must be greater than or equal to the probability of the Viterbi path.

For the foreground model, many such paths are possible, so the total probability

is much greater than the probability of the Viterbi path. The background model,

however, has length equal to the given sequence. Hence, there exists only a single

path through the background model. Consequently, the Viterbi score and the total

probability score generated by the background model are equal. The skew appar-

ent in the Viterbi log-odds scores disappears when total probability log-odds scores

are used because, in the calculation of log-odds, the numerator of the fraction (the

foreground model score) has increased while the denominator (the background model

score) remains constant.

Despite this scaling problem, the experiments described here show that

Viterbi log-odds scoring provides improved discrimination, as measured by Meta-

MEME's performance on the homology detection task. The di�erence in performance

between Viterbi and total probability scoring re
ects the intuition that a well-trained

model should �nd a single, correct path corresponding to the evolutionary history

of the matched sequence. In much the same way that a multiple alignment re
ects

the evolutionary commonalities among a set of sequences, a Viterbi match between

a sequence and a model should indicate the sequence's history with respect to the

model. A total probability score, because it is the sum of a large number of paths,

does not admit of an evolutionary explanation in the same way that the Viterbi score

does.

These considerations suggest that the Baum-Welch algorithm may not be

the most appropriate training algorithm for protein modeling. The results given here

show that Baum-Welch training leads to a deterioration in the discriminative ability of

Meta-MEME's models. This deterioration shows that improving the total probability
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of the sequences, given the model, leads to a decrease in the probability of the most

likely path. If, however, the Viterbi score provides superior discrimination, then a

training algorithm that maximizes this score [22], rather than the total probability

score, would be more appropriate.

The experiments reported here have provided insight into Meta-MEME's

ability to model families with repeated elements. The results are somewhat encour-

aging, indicating that training improves the model's ability to characterize members

of the given family, as measured by total probability scores. However, this improve-

ment may come at the cost of decreasing the probability of the Viterbi path, and

hence in decreasing the discriminative power of the model. However the results are

interpreted, they are not necessarily generalizable because these experiments only ex-

amine two protein families. Accordingly, in the following, �nal experiment, a larger

collection of protein families is analyzed in order to determine Meta-MEME's overall

e�ectiveness at modeling protein families.

IV.E A comparison of homology detection meth-

ods

IV.E.1 Introduction

In this �nal set of experiments, we examine more fully Meta-MEME's ability

to detect homologs in a large sequence database. Using a set of 73 PROSITE families,

we �rst compare the performance of Meta-MEME's search tool with that of the

tool o�ered by HMMER, which was used in the �rst version of Meta-MEME (see

Section IV.B). We �nd that the two search tools o�er comparable levels of homology

detection performance, despite the relative simplicity of the Meta-MEME search tool

algorithm.

Second, we examine the two types of Meta-MEME model topologies|linear

and completely connected|as well as the two available scoring schemes|Viterbi log-



135

odds scoring and total probability log-odds scoring. The two topologies o�er com-

parable levels of homology detection performance; however, Viterbi log-odds scoring

yields signi�cantly better discrimination than total probability log-odds scoring.

Next, we train the Meta-MEME models using expectation-maximization

and apply the trained models to the homology detection task. The trained models

perform nearly identically to the untrained models, indicating that training has little

e�ect.

Finally, we compare Meta-MEME's performance with that of several other

homology detection methods, including standard hidden Markov modeling (HM-

MER), motif modeling (MEME and MAST), and the Family Pairwise Search (FPS)

algorithm described in Chapter III. Unfortunately, Meta-MEME fails to improve sig-

ni�cantly upon the performance of the motif modeling software MEME and MAST.

Furthermore, although both Meta-MEME and MAST perform signi�cantly better

than standard HMMs, none of these three methods performs as well as Family Pair-

wise Search.

IV.E.2 Methods

For all these experiments, the collection of 73 protein families [10] described

in Section III.B is used. These families were selected from the PROSITE database [12]

release 13.0 for their di�culty, based upon the number of false positives reported in

the PROSITE annotations. The PROSITE IDs and sizes of these families are listed

in Appendix A. The associated release of SWISS-PROT [13] (version 28) contains

36 000 sequences and nearly 12.5 million amino acids. As in previous experiments (see

Section III.B) binary sequence weighting is carried out with the purge program [87].

The sizes of the purged families are given in Appendix A.

For each family, one series of nested subsets is randomly selected, containing

2, 4, 8, 16 and 32 sequences, limited by the total number of divergent sequences in

the family. This results in 73 query sets of size 2, 57 sets of size 4, 35 of size 8, 16 of

size 16 and 3 query sets of size 32. In addition, for each family a single, independent
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Motif discovery (MEME)
Number of motifs 10
Minimum motif width 12
Maximum motif width 55
Motif occurrence model ZOOPS
Prior Mega-prior

Motif order and spacing (MAST)
Database SWISS-PROT 28
p-value threshold 0.0001

Model building (mhmm and mhmmt)
Number of motifs see text
Topology linear or complete
States per spacer 1 (Viterbi) or 3 (total probability)
Spacer emission distribution Frequencies from NRDB
Training none, emissions, transitions or both
EM iterations 20

Homology detection (mhmms)
Scoring Viterbi or total probability log-odds
Background model Frequencies from NRDB
Explicit length modeling With trained models only

Table IV.19: Meta-MEME parameter settings. See text for more complete
description.

test set is constructed, consisting of all family members not contained in the query

sets, with no purging.

For each training set, MEME discovers a set of motifs, and these motif mod-

els serve as the basis for several Meta-MEME HMMs. HMMs with a linear topology

are built using all motifs that appear with a MAST p-value less than 0.0001 in more

than half the training sequences, up to a maximum of ten motifs. This \majority

occurrence heuristic" eliminates from the model motifs that represent subfamilies of

the training set. For models with a completely connected topology, such subfamily

motifs are not necessarily detrimental, since sequences that don't include one or more

of the motifs can match to the model via an alternate path. Therefore, all of the �rst
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six motifs discovered by MEME are included in the completely connected models.

Two versions of each model are built, one with three states representing

each spacer, and one with a single state representing each spacer. The multi-state

spacers, as described in Section II.D, approximate a normal distribution of spacer

lengths by summing the exponential distributions from each state. However, because

the Viterbi algorithm considers only a single path through the model, this summing

does not occur during the computation of Viterbi scores. Therefore, the model with

three-state spacers is only used for computing total probability scores; single-state

models are used to compute Viterbi scores.

Finally, each model is trained in three di�erent ways: training the transition

probability distributions, the emission probability distributions, or both sets of dis-

tributions. Including the untrained models, this procedure results in a set of sixteen

models (two topologies, two spacer representations, and four types of training) for

each training set of sequences. These parameters are summarized in Table IV.19.

Meta-MEME's performance is compared with three other homology detec-

tion methods: HMMER [46], MAST [11] and the Family Pairwise Search (FPS) al-

gorithm described in Chapter III. For each training set, HMMER version 1.8 is used

to train a standard hidden Markov model via expectation-maximization coupled with

simulated annealing. The default geometric annealing schedule is used, and Dirichlet

mixture priors are used in order to allow the models to be trained with smaller train-

ing sets. Database searches are conducted using hmmsw, which implements a modi�ed

form of the Smith-Waterman algorithm to search for sequence-to-model matches,

allowing partial matches to either the sequence or the model. For each database se-

quence, the program returns a log-odds scores in bits. MAST searches are carried

out using the �rst six motifs discovered by MEME. Each motif model is used to score

each database sequence, and these scores are subsequently combined into an over-

all E-value for that sequence. The Family Pairwise Search algorithm uses gapped

BLAST [2] to compute a bit score for each sequence in the database with respect to

each training set sequence. The �nal score of the database sequence is the average of
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the individual training set scores.

Each homology detection experiment returns a score-labeled version of the

database. The database is then sorted according to these scores, and each sequence in

the sorted database is marked with a \1" or a \0," indicating whether that sequence

appears in the PROSITE listing for the current family. In order to test the ability of

the homology detection algorithms to generalize from the query set, all family mem-

bers that do not appear in the independent test set are eliminated from the sorted

list. The resulting, purged sequence of bits represents the homology detection algo-

rithm's ability to separate novel family members from non-family members. Perfect

performance corresponds to a series of 1s followed by a series of 0s.

This bit sequence is subjected to two forms of analysis. The �rst is a modi�ed

version of the Receiver Operating Characteristic, called ROC50 [58]. The ROC score is

the area under a curve that plots true positives versus false positives for varying score

thresholds. ROC analysis combines measures of a search's sensitivity and selectivity.

The ROC50 score is the area under the ROC curve, up to the �rst 50 false positives.

This value has the advantages of yielding a wider spread of values, of requiring less

storage space, and of corresponding to the typical biologist's willingness to sift through

only approximately �fty false positives. ROC50 scores are normalized to range from

0 to 1, with 1 corresponding to the most sensitive and selective search.

In addition to ROC50 analysis, each homology detection method is evalu-

ated using the normalized equivalence number [105]. The equivalence number is the

number of false positives given by a database search when the classi�cation threshold

is set so that the number of false positives equals the number of false negatives. To

compute the equivalence number from the sequence of bits described above, a mark

is moved along the sequence until the number of 0s to the left of the mark equals the

number of 1s to the right. Perfect separation corresponds to an equivalence number

of 0, and the maximum possible equivalence number is the size of the family. In the

results reported here, equivalence numbers are scaled to range from 0 to 1 by dividing

by the size of the family. This allows equivalence numbers from homology searches
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for variously sized families to be combined.

The statistical signi�cance of di�erences in performance is measured by a

paired t test. In the results that follow, a di�erence is called signi�cant if it reaches

a 1% con�dence level and not signi�cant if it fails to reach a 5% con�dence level.

Unless otherwise stated, the signi�cance tests are conducted using all 184 training

sets and so have 183 degrees of freedom.

IV.E.3 Results

The Meta-MEME search tool

The �rst version of Meta-MEME, described in Section IV.B, created linear,

motif-based hidden Markov models that can be represented as constrained versions

of the standard linear HMM topology (see Figure II.2). This topology allowed Meta-

MEME to create models in a format readable by the HMMER software [46], thereby

providing Meta-MEME with access to the suite of sophisticated search tools avail-

able in HMMER. These tools include, most importantly, the program hmmsw, which

implements a modi�ed version of the Smith-Waterman algorithm tailored to hidden

Markov models. Because the Smith-Waterman algorithm is a local search technique,

hmmsw can assign relatively high scores to sequence fragments, even if the fragment

matches only a portion of the hidden Markov model. This ability is very useful in

searching real protein databases, since such databases generally contain a large per-

centage of fragmentary sequences. Indeed, informal experiments with the four search

tools o�ered by HMMER consistently indicate that hmmsw o�ers the best homology

detection performance.

In creating Meta-MEME version 2.0, it was necessary to depart from the

HMMER HMM format in order to allow models with a completely connected topol-

ogy. Thus, for these models, Meta-MEME 2.0 loses the ability to use the HMMER

search tools. Meta-MEME's own search tool, mhmms, implements relatively simple

algorithms|the Viterbi algorithm or the forward algorithm (see Section II.I)|neither
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Figure IV.19: Relative performance of the Meta-MEME and HMMER
search tools. Figure (a) plots average ROC50 score as a function of training set
size for all 73 families in the study. Figure (b) plots average normalized e-number for
the same families. Error bars represent standard error.



141

of which explicitly attempts to account for sequence fragments in the database.

Figure IV.19 shows that the change from hmmsw to mhmms does not signi�-

cantly impact Meta-MEME's performance. The �gure uses both the ROC50 metric

and the normalized equivalence number to compare the homology detection perfor-

mance of hmmsw with that of the Meta-MEME search tool mhmms. For each series the

same set of untrained, linear, motif-based hidden Markov models is employed. Using

either metric, neither search tool consistently outperforms the other, although both

metrics assign mhmms a small but statistically signi�cant improvement over hmmsw.

The statistical signi�cances of the di�erences between homology detection methods

for these and the following experiments is summarized in Tables IV.20-IV.22. The

current results indicate that the Meta-MEME search tool is only slightly more e�ec-

tive than the HMMER search tool in locating homologous sequences.

Model topologies and scoring schemes

Having established the e�ectiveness of mhmms, we next compare the perfor-

mance of the two model topologies o�ered by Meta-MEME. Figure IV.20 compares

the performance of linear and completely connected HMMs using Viterbi log-odds

scoring and total probability log-odds scoring. No clear trend emerges. For Viterbi

log-odds scoring, although the linear models provide a slight but signi�cant perfor-

mance advantage, as measured by either ROC50 or by normalized equivalence number,

this advantage is not consistent across various training set sizes. Similarly, the corre-

sponding di�erence for total probability log-odds scoring is also signi�cant, with the

completely connected topology performing better than the linear topology. However,

the bulk of these di�erences results from the poor performance of the linear models

at a training set size of two sequences. If these training sets are not considered, then

the di�erence in performance between linear and completely connected models is no

longer signi�cant for either type of scoring or for either performance metric.

As discussed in Section III.C, the shape of the learning curves in Figure IV.20

is distorted by the relatively large number of small training sets. Figure IV.21 corrects
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Figure IV.20: Relative homology detection performance of completely con-
nected and linear HMMs using Viterbi and total probability scoring. Fig-
ure (a) plots average ROC50 score as a function of training set size for all 73 families
in the study. Figure (b) plots average normalized e-number for the same families.
Error bars represent standard error.
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Figure IV.21: Relative homology detection performance of completely con-
nected and linear HMMs on large families. Figure (a) plots average ROC50

score as a function of training set size for the thirteen families containing between
16 and 31 divergent members. Figure (b) plots average normalized e-number for the
same families. Error bars represent standard error.
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this distortion by including only those families containing between 16 and 31 divergent

sequences. Thus, each point in Figure IV.21 represents an average over the same

number (13) of training sets. Here, the di�erence in performance between the two

topologies using Viterbi scoring is not signi�cant. Using total probability scoring,

both metrics report a slightly signi�cant improvement from the completely connected

topology.

There is reason to believe that the completely connected topology may not

be appropriate for modeling every protein family. The increased number of parame-

ters in a completely connected model represents a cost that is only worthwhile if it is

paid back via improved modeling ability. For a family in which all of the motifs al-

ways appear in the same order, the additional parameters in the completely connected

topology do not buy improved modeling ability. Perhaps, then, the improved perfor-

mance of the completely connected topology will only be evident if we look at families

containing repeated elements. Figure IV.22 shows this hypothesis to be false, at least

for these 73 families. The �gure plots homology detection performance as a function

of training set size for the 21 families whose PROSITE documentation indicates that

they contain proteins with repeated elements. The results are even less di�erentiated

than the results when all 73 families are considered: using either type of scoring, no

signi�cant di�erence between the performances of the two topologies appears. Thus,

even for families containing repeated elements, the completely connected topology

does not appear to o�er a signi�cant advantage in detecting homologs.

The data in Figure IV.20 can also be used to compare the performance

of Viterbi log-odds scoring and total probability log-odds scoring. For both model

topologies, Viterbi log-odds scoring performs signi�cantly better than total proba-

bility log-odds. The mean di�erence in ROC50 score is 0.11 for linear models and

0.03 for completely connected models. The corresponding equivalence number mean

di�erences are -0.09 and -0.03.1 These di�erences are notably larger than the small

1Recall that the best possible ROC50 score is 1, whereas the best normalized equivalence number
is 0. Hence a positive mean di�erence of ROC50 and a negative mean di�erence of normalized
equivalence number both indicate improved performance.
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Figure IV.22: Relative homology detection performance of completely con-
nected and linear HMMs on families containing repeated elements. Fig-
ure (a) plots average ROC50 score as a function of training set size for the 21 families
whose sequences contain repeated elements. Figure (b) plots average normalized e-
number for the same families. Error bars represent standard standard error.
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di�erence induced by di�erent model topologies, indicating that the type of scoring

used employed is a much more important factor than the model topology.

Model training

Next we consider the e�ect of training upon the homology detection perfor-

mance of Meta-MEME models. Figures IV.23-IV.24 show that training the transition

probabilities in the models has little e�ect on their performance. Indeed, this is the

only set of homology detection results for which the analyses by ROC50 score and by

normalized equivalence numbers di�er: according to ROC50 scores, the trained models

are slightly better than the untrained models; the converse is true when normalized

equivalence numbers are considered. When only the larger families are considered

(Figure IV.24), the di�erence between trained and untrained model performance is

uniformly in favor of the untrained models, but this di�erence is not statistically sig-

ni�cant. Thus, training the transitions in the HMM has little e�ect on the model's

homology detection performance.

Comparison with FPS, MEME and HMMER

Finally, we compare Meta-MEME's homology detection performance with

that of three other homology detection methods. In Chapter III, we compared three

techniques: the standard hidden Markov model package, HMMER, the motif-based

modeling and searching tools MEME and MAST, and the BLAST-based Family Pair-

wise Search algorithm. The results, as shown in Figure IV.25, clearly rank these three

techniques, with HMMER performing the worst and FPS performing the best overall.

Using the trained linear model as a representative example of Meta-MEME's perfor-

mance places it in the middle of this ranking, since Meta-MEME's performance is

only very slightly (but still signi�cantly) di�erent from that of MAST.

Because of the large number of homology detection experiments performed

here, every comparison of techniques yields statistically signi�cant di�erences in per-

formance, even when that di�erence is very small. These statistical signi�cances are
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Figure IV.23: Relative homology detection performance of untrained and
trained linear HMMs. Figure (a) plots average ROC50 score as a function of
training set size for all 73 families. Figure (b) plots average normalized e-number for
the same families. Error bars represent standard standard error.
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Figure IV.24: Relative homology detection performance of untrained and
trained linear HMMs on large families. Figure (a) plots average ROC50 score
as a function of training set size for all the thirteen families containing between 16
and 31 divergent sequences. Figure (b) plots average normalized e-number for the
same families. All homology detection was performed using Viterbi log-odds scores.
Error bars represent standard standard error.
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Figure IV.25: Relative homology detection performance of FPS, HMMER,
MAST and Meta-MEME. Figure (a) plots average ROC50 score as a function of
training set size for all 73 families. Figure (b) plots average normalized e-number for
the same families. Error bars represent standard standard error.
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Figure IV.26: Relative homology detection performance of FPS, HMMER,
MAST and Meta-MEME on large families. Figure (a) plots average ROC50

score as a function of training set size for all the thirteen families containing between
16 and 31 divergent sequences. Figure (b) plots average normalized e-number for the
same families. Error bars represent standard standard error.
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Method
1 BLAST FPS bits ave
2 HMMER
3 MAST
4 Meta-MEME hmmsw
5 linear Meta-MEME viterbi none
6 linear Meta-MEME viterbi trans
7 linear Meta-MEME total none
8 complete Meta-MEME viterbi none
9 complete Meta-MEME total none

1 2 3 4 5 6 7 8 9
1 | 0.26 0.13 0.15 0.13 0.14 0.24 0.14 0.18
2 -0.26 | -0.13 -0.10 -0.12 -0.11 -0.01 -0.11 -0.08
3 -0.13 0.13 | 0.03 0.01 0.01 0.12 0.02 0.05
4 -0.15 0.10 -0.03 | -0.02 -0.01 0.09 -0.01 0.02
5 -0.13 0.12 -0.01 0.02 | 0.01 0.11 0.01 0.05
6 -0.14 0.11 -0.01 0.01 -0.01 | 0.10 0.00 0.04
7 -0.24 0.01 -0.12 -0.09 -0.11 -0.10 | -0.10 -0.07
8 -0.14 0.11 -0.02 0.01 -0.01 -0.00 0.10 | 0.03
9 -0.18 0.08 -0.05 -0.02 -0.05 -0.04 0.07 -0.03 |

Table IV.20: Di�erences in homology performance, as measured by ROC50.
Performance results of the nine di�erent homology detection methods examined in this
section, including six variants of the Meta-MEME algorithm, are summarized here. A
positive value in a particular row and column indicates that the method corresponding
to that row performs signi�cantly better than the method corresponding to that
column, as measured by a paired t test of ROC50 scores with 183 degrees of freedom,
and vice versa. The magnitude of the value is the mean di�erence between the two
techniques' average ROC50 scores. All di�erences are signi�cant at the 1% con�dence
level. Meta-MEME experiments are listed according to model topology (linear vs.
completely connected), type of scoring (Viterbi log-odds vs. total probability log-
odds), and type of model training (none vs. trained transition probabilities).
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1 2 3 4 5 6 7 8 9
1 | -0.23 -0.11 -0.14 -0.12 -0.12 -0.22 -0.13 -0.16
2 0.23 | 0.12 0.09 0.11 0.11 0.01 0.10 0.07
3 0.11 -0.12 | -0.03 -0.01 -0.01 -0.11 -0.02 -0.05
4 0.14 -0.09 0.03 | 0.01 0.02 -0.08 0.01 -0.02
5 0.12 -0.11 0.01 -0.01 | 0.00 -0.09 -0.01 -0.04
6 0.12 -0.11 0.01 -0.02 -0.00 | -0.10 -0.01 -0.04
7 0.22 -0.01 0.11 0.08 0.09 0.10 | 0.09 0.06
8 0.13 -0.10 0.02 -0.01 0.01 0.01 -0.09 | -0.03
9 0.16 -0.07 0.05 0.02 0.04 0.04 -0.06 0.03 |

Table IV.21: Di�erences in homology performance, as measured by normal-
ized equivalence number. See caption for Table IV.20. Note that, because the
range of normalized equivalence numbers is reversed with respect to ROC50 scores,
a positive mean di�erence here indicates a decrease in performance, rather than an
improvement.

Method Mean di�erence
E ROC50

1 BLAST FPS -0.11 0.13
2 MAST -0.01 0.00
3 linear Meta-MEME viterbi none -0.00 0.01
4 linear Meta-MEME viterbi trans -0.00 0.00
5 complete Meta-MEME viterbi none -0.01 0.01
6 Meta-MEME hmmsw -0.02 0.03
7 complete Meta-MEME total none -0.05 0.06
8 linear Meta-MEME total none -0.01 0.07
9 HMMER

Table IV.22: Total ordering on performance of homology detection meth-
ods, as measured by ROC50 and normalized equivalence numbers. The last
two columns give the mean di�erence between the performance of the method on the
current row and the method on the following row, according to the normalized equiv-
alence number and the ROC50 score. For an explanation of the di�erent methods,
see caption to Table IV.20. The ordering of \linear Meta-MEME viterbi none" and
\linear Meta-MEME viterbi trans" implied by the normalized equivalence number is
the reverse of what is shown above.
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Family Nw MAST Meta-MEME Di�erence
PS00190 73 0.048 0.743 0.694791
PS00402 19 0.662 0.814 0.152174
PS00339 19 0.401 0.550 0.149091
PS00343 16 0.858 0.953 0.095555
PS00038 26 0.952 0.958 0.005136
PS00678 17 0.980 0.984 0.004000
PS00095 16 0.999 0.999 0.000000
PS00659 19 1.000 1.000 0.000000
PS00340 16 0.995 0.994 -0.000952
PS00061 24 0.943 0.937 -0.006060
PS00211 38 0.971 0.958 -0.012522
PS00639 19 0.887 0.848 -0.038696
PS00640 19 0.887 0.848 -0.038696
PS00030 24 0.968 0.913 -0.055349
PS00198 53 0.928 0.792 -0.135644
PS00092 28 0.861 0.438 -0.423158

Table IV.23: Performance comparison of MAST and Meta-MEME using
sixteen-sequence training sets. Listed are the sixteen families containing at least
sixteen divergent sequences. The columns labeled \MAST" and \Meta-MEME" con-
tain ROC50 scores. The Meta-MEME scores are for untrained, linear models using
Viterbi log-odds scoring. Nw is the number of sequences in the family after binary
sequence weighting. The �nal column contains the di�erence between the two ROC50

values. The families are ranked by this value.

summarized in Table IV.20 and IV.21. For both of the performance metrics, these

data imply a total ordering on the nine homology detection methods examined in

this chapter. Overall, these total orderings are in almost complete agreement and

are given in Table IV.22. They place Meta-MEME's performance below that of both

FPS and MAST, but above the performance of HMMER.

In general, the di�erence in performance between MAST and Meta-MEME

is small, and for a number of families Meta-MEME succeeds in providing superior

discrimination. Table IV.23 compares MAST and Meta-MEME ROC50 scores for

the sixteen families that contain sixteen or more divergent sequences. Meta-MEME

out-performs MAST on eight of these families.

In any evaluation of homology detection methods, the problem of unanno-
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Score ID Description
22.75 MTSM SERMA Modi�cation methylase SMAI
17.82 MTC1 CITFR Modi�cation methylase CFRBI
16.42 MTB2 BACAM Modi�cation methylase BAMHII
15.80 MTHZ METTF Modi�cation methylase MTHZI
15.29 MTC9 CITFR Modi�cation methylase CFR9I
14.91 MTX1 XANCC Modi�cation methylase XCYI
0.04 MTP2 PROVU Modi�cation methylase PVU II
-0.29 MSP ASCLU Major sperm protein
-0.29 MSP1 ASCSU Major sperm protein, isoform �
-1.13 YNI1 METTL Hypothetical protein

Table IV.24: Meta-MEME false positive sequences from the N-6 adenine-
speci�c DNA methylases. The table lists the Viterbi log-odds scores, IDs and
descriptions of the �rst twelve false positive sequences generated by Meta-MEME
using an untrained, linear model from a set of sixteen sequences. The family is
PS00092 (see Table IV.23).

tated family members arises. Table IV.24 lists the �rst twelve false positives from

family PS00092, the family for which Meta-MEME's performance was poorest relative

to MAST's. The table includes eight sequences labeled as modi�cation methylases.

These same eight sequences also appear near the top of the list of false positives cre-

ated by MAST. Since this family consists of N-6 adenine-speci�c DNA methylases,

and since most of the family members are annotated as modi�cation methylases, it

is likely that these eight sequences belong in the family. Accordingly, the other four

Meta-MEME experiments listed in Table IV.20 yield, for this family, ROC50 scores of

0.73, 0.78, 0.85 and 0.86, much greater than the 0.44 shown in Table IV.23. Thus, for

this family, the large di�erence in ROC50 value may result from the noise introduced

by these unannotated family members.

IV.E.4 Discussion

In the experiments reported here, we have examined Meta-MEME's per-

formance on the homology detection task, while varying characteristics such as the

search algorithm, model topology, score computation, and training algorithm. Over-
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all, Meta-MEME's performance is very stable: relatively large algorithmic changes

produce only small di�erences in performance. This stability requires further expla-

nation.

The small change in performance a�orded by the more complex search algo-

rithm implemented in the HMMER search tool hmmsw is somewhat surprising. Unfor-

tunately, although the hmmsw algorithm is described [47] as a hidden Markov model

implementation of Smith-Waterman local alignment, the details of the algorithm are

unpublished. As a local search algorithm, hmmsw allows a subsequence of the database

sequence to match a subsequence of the states in the linear HMM. This ability should

allow for matches to sequence fragments as well as incomplete homologies, in which

a single domain in a multi-domain protein is homologous to the training set. The

relatively good performance of mhmms, which makes no attempt to explicitly allow for

such matches, indicates either a de�ciency in hmmsw or that sequence fragments and

incomplete homologies do not cause problems for a global alignment algorithm such

as the Viterbi or forward algorithms.

The experiments reported here show that Viterbi log-odds scoring provides

better homology detection performance than does total probability log-odds scoring.

As discussed in Section IV.D.4, this di�erence in performance most likely arises be-

cause the Viterbi path of a family member corresponds to the actual evolutionary

history of that sequence. The total probability, on the other hand, does not have

a straightforward interpretation in terms of the evolutionary model implicit in the

HMM topology.

The dependence of performance upon the type of scoring employed explains

why training the HMMs has little e�ect on the discriminative ability of the models.

The Baum-Welch training algorithmmaximizes the total probability of the sequences,

given the model. We would expect, therefore, that Meta-MEME's performance on the

homology detection task using total probability scoring would improve after training.

However, since we have already shown that Viterbi scoring provides better discrimina-

tion overall, the experiments reported here employed Viterbi scoring with the trained
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models. The di�erence in performance after training was relatively small because the

training algorithm does not explicitly maximize the Viterbi score.

One of Meta-MEME's primary goals is to model sequences containing re-

peated or shu�ed elements. This goal is accomplished using models with a completely

connected topology. The results described above, however, indicate that completely

connected models do not characterize families containing repeated elements any bet-

ter than do models with a linear topology. This failure to improve upon the linear

topology may be explained in two ways. First, the failure may result from the cost

of training the additional parameters in the completely connected topology. Sec-

ond, the failure may arise because of non-Markov properties at the motif level. For

example, a family may contain exactly four copies of a single motif in every family

member. A motif-based HMM, because it is Markov, cannot keep track of the number

of occurrences of a given motif.

Overall, Meta-MEME fails to improve upon MAST's homology detection

performance. Meta-MEME operates under the assumption that information about

the order and spacing of motifs within a family can provide important homology de-

tection information. Meta-MEME's failure to improve upon MAST does not indicate

that this assumption is false. Rather, the failure of Meta-MEME's training to signif-

icantly improve the homology detection performance of the motif-based HMMs sug-

gests the need for a better training algorithm. An improved version of Meta-MEME

based upon a training algorithm that maximizes the Viterbi scores of the training

sequences will more fully exploit meta-information about the order and spacing of

motifs within a protein family.

The text of Section IV.B, in part, is a reprint of the material as it appears in

Computer Applications in the Biosciences [62]. The dissertation author was the primary

author, and the co-authors listed in this publication directed and supervised the research

which forms the basis for this chapter.

The text of Section IV.C, in part, is a reprint of the material as it appears in
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Biochemical and Biophysical Research Communications [61]. The dissertation author was

the primary author, and the co-authors listed in this publication directed and supervised

the research which forms the basis for this chapter.
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Chapter V

Conclusion

Technological advances in the second half of the twentieth century have

been dominated by two �elds: computer science and molecular biology. The genome

sequencing projects currently underway represent the �rst major convergence of these

two �elds and have led to the birth of the new subdiscipline, bioinformatics. Thirteen

completed genomes are publicly available on the web [124] as of May, 1998. In the

post-genomic era, when complete genomes are known for many species and even for

many individual organisms within a species, the volume of sequence data available

will require increasingly sophisticated computational analyses.

The �eld of arti�cial intelligence has traditionally been home to some of

the hardest problems in computer science. Over the past forty years, the public's

perception of the �eld has oscillated: optimism in the early 60s about problems such

as speech recognition, planning and natural language understanding diminished as

the complexity of those problems became more apparent. A similar wave of optimism

in the late 70s was quelled in the mid-80s with the widely publicized \failure" of AI.

In the past two years, one of AI's �rst major successes has reached the shelves of

nearly every computer store. A useful, speaker-dependent speech recognition system

can be purchased for less than $100 and used with relatively low error rates to take

dictation. Every commercially available speech recognition system on the market

today uses hidden Markov modeling as the basis for its signal processing.
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Although HMMs were developed in the late 1960s, their probabilistic in-

terpretation coincides with the current trend in AI toward Bayesian reasoning [66].

Traditional statistics avoided the Bayesian formalism primarily because computing

the complete joint probability distribution is so computationally expensive. During

the past decade, however, advances in computational power and in probability theory

have led to the �rst working Bayesian inference and learning engines. One AI system

based upon the Bayesian formalism diagnoses lymph-node diseases more accurately

than some of the world's leading pathologists [65].

This dissertation applies these proven, state-of-the-art statistical techniques

from AI to one of science's most important problems, that of discovering the func-

tional meaning of the genome. The transfer of technology from speech recognition

to protein modeling is initially unintuitive. The correspondence between the two

\hidden" processes|the production of speech in the vocal tract and the evolution of

biomolecules|is not immediately evident. Nonetheless, the mapping from proteins

onto HMMs is e�ective and illustrates the general power of these statistical models.

As a computer science dissertation addressing a biological problem, this work

necessarily crosses the borders between disciplines. Undoubtedly, the computational

analyses reported here are more sophisticated than the relatively straightforward

biological insights o�ered. Nonetheless, this work has important implications for the

way biologists view proteins. Meta-MEME's assumption that proteins can best be

modelled as a collection of motifs with a speci�ed order and spacing is belied by

the excellent performance of the Family Pairwise Search algorithm. The improved

performance o�ered by FPS indicates that important functional information resides

in the spacer regions between motifs. On the other hand, the improvement of FPS's

performance when motif models are incorporated shows that statistical modeling

of the kind employed by Meta-MEME can provide an advantage over non-model-

based algorithms. The challenge for any Bayesian reasoning system is to balance

the complexity of the model employed against the amount of knowledge|both prior

knowledge and data|available to be modeled. A more accurate protein family model
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will likely be motif-based, but less strongly than Meta-MEME, a Bayesian counterpart

to the hybrid motif model/spacer sequence approach adopted by cobbled FPS.

The Meta-MEME software toolkit is a work in progress. The experiments

reported in Chapter IV point toward several improvements. Chief among these is the

inclusion of a Viterbi-based training algorithm [21, 94]. Currently, a prototype Meta-

MEME web server is being developed at the San Diego Supercomputer Center [63].

This server will make available Meta-MEME's modeling, alignment and homology

detection capabilities to the larger biological community. Meta-MEME will succeed

only if its analytical power is available, interpretable and usable by molecular biolo-

gists. The web server will guarantee availability and will elicit feedback from biologists

about the usability and usefulness of the results that Meta-MEME produces.

In the long run, Meta-MEME's usefulness will continue only as long as its

models can be employed in solving the new problems facing molecular biology in the

post-genomic era. As technology and our understanding of the genome advance, em-

phasis will shift from interpreting the function of speci�c proteins to understanding

the complex mechanisms by which groups of proteins interact with and regulate one

another. The Bayesian formalism represents an advantage when new problems arise,

since the laws of probability provide a theoretical foundation within which to combine

diverse sources of knowledge. Meta-MEME combines multiple motif models into a

single model of a protein. In the future, multiple protein models of the type em-

ployed by Meta-MEME may well form the basis of still larger models of multi-protein

interactions.
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Appendix A

73 PROSITE families

ID Family n nw R
PS00030 Eukaryotic putative RNA-binding region RNP-1 59 24 Y
PS00037 Myb DNA-binding domain 1 18 4 Y
PS00038 Myc-type, `helix-loop-helix' dimerization domain 90 26 N
PS00043 Bacterial regulatory proteins, gntR 10 8 N
PS00060 Iron-containing alcohol dehydrogenases 2 7 3 N
PS00061 Short-chain alcohol dehydrogenase 82 24 Y
PS00070 Aldehyde dehydrogenases cysteine active site 34 8 N
PS00075 Dihydrofolate reductase 33 14 N
PS00077 Cytochrome c oxidase subunit I,

copper B binding region 53 2 N
PS00079 Multicopper oxidases 1 12 7 Y
PS00092 N-6 Adenine-speci�c DNA methylases 35 28 Y
PS00095 C-5 cytosine-speci�c DNA methylases C-terminal 33 16 N
PS00099 Thiolases active site 14 3 N
PS00118 Phospholipase A2 histidine active site 110 9 N
PS00120 Lipases, serine active site 36 14 N
PS00133 Zinc carboxypeptidases, zinc-binding region 2 19 5 N
PS00141 Eukaryotic and viral aspartyl proteases active site 50 13 Y
PS00144 Asparaginase / glutaminase active site 1 8 3 N
PS00180 Glutamine synthetase 1 55 7 N
PS00185 Isopenicillin N synthetase 1 10 2 N
PS00188 Biotin-requiring enzymes attachment site 15 8 N
PS00190 Cytochrome c family heme-binding site 223 73 Y
PS00194 Thioredoxin family active site 48 15 Y
PS00198 4Fe-4S ferredoxins, iron-sulfur binding region 109 53 Y
PS00209 Arthropod hemocyanins / insect LSPs 1 14 4 N
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ID Family n nw R
PS00211 ABC transporters 119 38 Y
PS00215 Mitochondrial energy transfer proteins 39 12 Y
PS00217 Sugar transport proteins 2 46 14 N
PS00225 Crystallins beta and gamma `Greek key' motif 47 6 Y
PS00281 Bowman-Birk serine protease inhibitors 22 9 Y
PS00283 Soybean trypsin inhibitor (Kunitz)

protease inhibitors 30 13 N
PS00287 Cysteine proteases inhibitors 32 11 Y
PS00301 GTP-binding elongation factors 110 8 N
PS00338 Somatotropin, prolactin and related hormones 2 86 12 N
PS00339 Aminoacyl-transfer RNA synthetases class-II 2 38 19 N
PS00340 Growth factor and cytokines receptors 2 37 16 N
PS00343 Gram-positive cocci surface proteins

`anchoring' hexapeptide 25 16 N
PS00372 PTS EIIA domains phosphorylation site 2 7 4 N
PS00399 ATP-citrate lyase and succinyl-CoA

ligases active site 4 2 N
PS00401 Prokaryotic sulfate-binding proteins 1 5 2 N
PS00402 Binding-protein-dependent transport systems

inner membrane component sign 39 19 N
PS00422 Granins 1 12 3 N
PS00435 Peroxidases proximal heme-ligand 41 8 N
PS00436 Peroxidases active site 40 8 N
PS00490 Prokaryotic molybdopterin oxidoreductases 2 9 6 N
PS00548 Ribosomal protein S3 1 18 3 N
PS00589 PTS HPR component serine phosphorylation site 10 5 Y
PS00599 Aminotransferases class-II

pyridoxal-phosphate attachment site 21 8 N
PS00606 Beta-ketoacyl synthases active site 17 4 Y
PS00624 GMC oxidoreductases 2 9 5 N
PS00626 Regulator of chromosome condensation (RCC1) 2 6 2 Y
PS00637 CXXCXGXG dnaJ domain 9 5 N
PS00639 Eukaryotic thiol (cysteine) proteases

histidine active site 62 19 N
PS00640 Eukaryotic thiol (cysteine) proteases

asparagine active site 62 19 N
PS00643 Respiratory-chain NADH dehydrogenase

75 Kd subunit 3 5 2 N
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ID Family n nw R
PS00656 Glycosyl hydrolases family 6 2 5 4 N
PS00659 Glycosyl hydrolases family 5 40 19 N
PS00675 Sigma-54 interaction domain ATP-binding region A 36 6 N
PS00676 Sigma-54 interaction domain ATP-binding region B 36 6 N
PS00678 Beta-transducin family Trp-Asp repeats 26 17 Y
PS00687 Aldehyde dehydrogenases glutamic acid active site 33 7 N
PS00697 ATP-dependent DNA ligase AMP-binding site 11 6 N
PS00700 Ribosomal protein L6 2 13 4 N
PS00716 Sigma-70 factors 2 36 8 N
PS00741 Guanine-nucleotide dissociation stimulators CDC24 6 5 N
PS00760 Signal peptidases I lysine active site 8 5 N
PS00761 Signal peptidases I 3 8 5 N
PS00831 Ribosomal protein L27 6 3 N
PS00850 Glycine radical 4 3 N
PS00867 Carbamoyl-phosphate synthase subdomain 2 20 3 Y
PS00881 Protein splicing 3 3 Y
PS00904 Protein prenyltransferases alpha subunit 4 3 Y
PS00933 FGGY family of carbohydrate kinases 1 11 5 N

PROSITE IDs of the 73 families used in Chapter III and in Section IV.E.

n is the total number of sequences in the family, and nw is the number of sequences re-

maining after binary sequence weighting. The �nal column (R) indicates whether the

family contains repeated elements. Two families from the original set of 75 [10] were

discarded because they contain a single sequence after binary sequence weighting.
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