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Abstract

In this paper we present a method for classifying
proteins into families using sparse Markov trans-
ducers (SMTs). Sparse Markov transducers, sim-
ilar to probabilistic suÆx trees, estimate a prob-
ability distribution conditioned on an input se-
quence. SMTs generalize probabilistic suÆx trees
by allowing for wild-cards in the conditioning se-
quences. Because substitutions of amino acids are
common in protein families, incorporating wild-
cards into the model signi�cantly improves clas-
si�cation performance. We present two models
for building protein family classi�ers using SMTs.
We also present eÆcient data structures to im-
prove the memory usage of the models. We eval-
uate SMTs by building protein family classi�ers
using the Pfam database and compare our results
to previously published results.

Introduction

As databases of proteins classi�ed into families become
increasingly available, and as the number of sequenced
proteins grows exponentially, techniques to automat-
ically classify unknown proteins into families become
more important.
Many approaches have been presented for protein

classi�cation. Initially the approaches examined pair-
wise similarity (Waterman, Joyce, & Eggert 1991;
Altschul et al. 1990). Other approaches to protein clas-
si�cation are based on creating pro�les for protein fam-
ilies (Gribskov, L�uthy, & Eisenberg 1990), those based
on consensus patterns using motifs (Bairoch 1995;
Attwood et al. 1998) and HMM-based (hidden Markov
model) approaches (Krogh et al. 1994; Eddy 1995;
Baldi et al. 1994).
Recently, probabilistic suÆx trees (PSTs) have been

applied to protein family classi�cation. A PST is a
model that predicts the next symbol in a sequence based
on the previous symbols (see for instance (Willems,
Shtarkov, & Tjalkens 1995; Ron, Singer, & Tishby 1996;
Helmbold & Shapire 1997)). These techniques have
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been shown to be e�ective in classifying protein do-
mains and motifs into their appropriate family (Bejer-
ano & Yona 1999; Apostolico & Bejerano 2000). This
approach is based on the presence of common short
sequences throughout the protein family. These com-
mon short sequences, or motifs (Bairoch 1995), are well
understood biologically and can be used e�ectively in
protein classi�cation (Bailey & Gribskov 1998). These
common sequences allow us to build a probability dis-
tribution for an element in the protein sequence using
the neighboring elements in the sequence. A PST esti-
mates the conditional probability of each element using
the suÆx of the input sequence, which is then used to
measure how well an unknown sequence �ts into that
family.

One drawback of probabilistic suÆx trees is that
they rely on exact matches to the conditional se-
quences. However, in protein sequences of the same
family, substitutions of single amino acids in a se-
quence are extremely common. For example, two subse-
quences taken from the 3-hydroxyacyl-CoA dehydroge-
nase protein family, V AV IGSGT and V GV LGLGT ,
are clearly very similar. However, they only have at
most two consecutive matching symbols. If we allowed
matching gaps or wild-cards (denoted by �), we notice
that they match very closely: V �V �G�GT . We would
therefore expect that probabilistic suÆx trees would
perform better if they were able to condition the prob-
abilities on sequences containing wild-cards, i.e. they
can ignore or skip some of the symbols in the input
sequence.

In this paper we present sparse Markov transducers
(SMTs), a generalization of probabilistic suÆx trees
which can condition the probability model over a se-
quence that contains wild-cards as described above.
Sparse Markov transducers build on previous work
on mixtures of probabilistic transducers presented in
(Willems, Shtarkov, & Tjalkens 1995; Singer 1997;
Pereira & Singer 1999). Speci�cally, they allow the
incorporation of wild-cards into the model. They also
provide a simple generalization from a prediction model
to a transducer model which probabilistically maps any
sequence of input symbols to a corresponding output
symbol. In a transducer, the input symbol alphabet



and output symbol alphabet can be di�erent.
We present two methods of building protein family

classi�ers using sparse Markov transducers. The �rst
method builds a prediction model that approximates a
probability distribution over a single amino acid condi-
tioned on the sequence of neighboring amino acids. The
second method approximates a probability distribution
over the protein families conditional on sequences of
amino acids. In the second method we de�ne a map-
ping from amino acid sequences to protein families. The
two models are used to classify unknown proteins into
their appropriate families.
We perform experiments over the Pfam database

(Sonnhammer, Eddy, & Durbin 1997) of protein fam-
ilies and build a model for each protein family in the
database. We compare our method to the Bejerano and
Yona (1999) method by comparing the results of our
method over the same data to their published results.
The typical problem with probabilistic modeling

methods is that the models they generate tend to
be space ineÆcient. Apostolico and Bejerano (2000)
present an eÆcient implementation of their PST
method. We present an eÆcient implementation for
sparse Markov transducers incorporating eÆcient data
structures that use lazy evaluation to signi�cantly re-
duce the memory usage, allowing better models to �t
into memory. We show how the eÆcient data structures
allow us to compute better performing models, which
would be impossible to compute otherwise.
The organization of the paper is as follows. We �rst

present the formalism of sparse Markov transducers.
Then we describe how we use sparse Markov transduc-
ers to build models of protein families. Finally, we dis-
cuss our classi�cation results over the Pfam database.
Since many of the details of the sparse Markov trans-
ducers are technical in nature, within the paper we
present an outline of the approach with the mathemat-
ical details reserved for the appendix.

Sparse Markov Transducers

Sparse Markov transducers estimate a probability dis-
tribution of an output symbol (amino acid) conditioned
on a sequence of input symbols (sequence of neighbor-
ing amino acids). In our application, we are interested
in the probability distribution of a single amino acid
(output symbols) conditioned on the surrounding amino
acids (input sequence). We are interested in the case
where the underlying distribution is conditioned on se-
quences that contain wild-cards (such as in the case of
protein families). We refer to this case as estimating
over sparse sequences.
To model the probability distribution we use Markov

transducers. A Markov transducer is de�ned to be
a probability distribution over output symbols condi-
tional over a �nite set of input symbols. A Markov
transducer of order L is the conditional probability dis-
tribution of the form:

P (YtjXtXt�1Xt�2Xt�3:::Xt�(L�1)) (1)

where Xk are random variables over an input alpha-
bet �in and Yk is a random variable over an output
alphabet �out. In this probability distribution the out-
put symbol Yk is conditional on the L previous input
symbols. If Yt = Xt+1, then the model is a prediction
model 1. In our application, (1) de�nes the probability
distribution conditioned on the context or sequence of
neighboring amino acids. In the �rst model (a predic-
tion model), the probability distribution is over amino
acids, while in the second model, the probability distri-
bution is over protein families.
In practice, the probability distribution is condi-

tioned on some of the inputs and not the others. We
wish to represent a part of the conditional sequence
as wild-cards in the probability model. We denote a
wild-card with the symbol �, which represents a place-
holder for an arbitrary input symbol. Similarly, for no-
tational convenience, we use �n to represent n consecu-
tive wild-cards and �0 as a placeholder representing no
wild-cards. We use sparse Markov transducers to model
this type of distribution. A sparse Markov transducer
is a conditional probability of the form:

P (Ytj�
n1Xt1�

n2Xt2 :::�
nkXtk) (2)

where ti = t � (
Pi

j=1 nj) � (i � 1). Note in passing, a
Markov transducer is a special case of a sparse Markov
transducer where ni = 0 for all i. The goal of our al-
gorithm is to estimate a conditional probability of this
form based on a set of input sequences and their cor-
responding outputs. However, our task is complicated
because of two factors. First, we do not know which
positions in the conditional sequence should be wild-
cards. Second, the positions of the wild-cards change
depending on the context, or the speci�c inputs. This
means that the positions of the wild-cards depend on
the actual amino acids in the conditional sequence.
We present two approaches for SMT-based protein

classi�cation. The �rst approach is a prediction model
where for each family we estimate a distribution of an
amino acid conditioned on its neighboring sequence of
amino acids. When modeling prediction probabilities
the input and output alphabets are set to be the same.
In the second approach we build a single model for
the entire database which maps a sequence of amino
acids to the name of the protein family from which the
sequence originated. This model estimates the distri-
bution over protein family names conditioned on a se-
quence of amino acids. In this model the input alphabet
is the set of amino acids and the output alphabet is the
set of protein family names.
In brief our approach is as follows. We de�ne a type

of prediction suÆx tree called a sparse prediction tree

1In order to model \look ahead", we can map every ele-
ment xt to xt+�t where �t is a constant value which refers
to the number of input symbols that are \looked ahead".
Thus in this case the conditioning sequence of random vari-
ables would be Xt+�txt+�t�1Xt+�t�2:::. The output, Yt,
remains unchanged.



which is representationally equivalent to sparse Markov
transducers. These trees probabilistically map input
strings to a probability distribution over the output
symbols. The topology of a tree encodes the positions of
the wild-cards in the conditioning sequence of the prob-
ability distribution. We estimate the probability distri-
butions of these trees from the set of examples. Since a
priori we do not know the positions of the wild-cards,
we do not know the best tree topology. To handle this,
we use a mixture (weighted sum) of trees and update
the weights of the tree weights based on their perfor-
mance over the set of examples. We update the trees so
that the better performing trees get larger weights while
the worse performing trees get smaller weights. Thus
the data is used to choose the positions of the wild-
cards in the conditioning sequences. In the appendix we
present an algorithm for updating the mixture weights
and estimating the sparse Markov transducer eÆciently.
The algorithm allows for the exact computation of the
mixture weights for an exponential number of trees.

Sparse Markov Trees

To model sparse Markov transducers, we use a type of
prediction suÆx tree called a sparse prediction tree. A
sparse prediction tree is a rooted tree where each node
is either a leaf node or contains one branch labeled with
�n for n � 0 that forks into a branch for each element
in �in (each amino acid). Each leaf node of the tree
is associated with a probability distribution over the
output alphabet, �out (amino acids). Figure 1 shows a
sparse Markov tree. In this tree, leaf nodes, u1; :::u7,
each are associated with a probability distribution. The
path from the root node to a leaf node represents the
conditioning sequence in the probability distribution.
We label each node using the path from the root of the
tree to the node. Because the path contains the wild-
card symbol �, there are multiple strings over �in that
are mapped to a node. A tree induces a probability
distribution over output symbols by following an input
string from the root node to a leaf node skipping a sym-
bol in the input string for each � along the path. The
probability distribution induced by an input sequence
is the probability associated with the leaf node that cor-
responds to the input sequence. As described later, the
tree is trained with a dataset of input sequences xt and
their corresponding output symbols yt.
For example, in Figure 1 the sets of input strings

that correspond to each of the two highlighted nodes
are u2 = �1A�2C and u5 = �1C�3C. In our applica-
tion the two nodes would correspond to any amino acid
sequences �A��C and �C���C where � denotes a wild-
card. The node labeled u2 in the �gure corresponds
to many sequences including AACCC and BAACC.
Similarly for the node labeled u5 in the �gure corre-
sponds to the sequences ACAAAC and CCADCC.
Also CCADCCCA corresponds to u5 because the be-
ginning of the sequence corresponds to u5. The proba-
bility corresponding to an input sequence is the prob-
ability contained in the leaf node corresponding to the

u 2 u5u1 u3 u4 u6

u7

φ

A

φ

CA

φ

A

C D

D C D

1

2 3

Figure 1. A general sparse Markov tree. For space
considerations we do not draw branches for all 20 amino
acids.

sequence.
The sparse prediction tree maps sequences to a prob-

ability distribution over the output symbols as follows.
For a sequence, xt, we determine the unique leaf node,
u, that corresponds to the sequence. The probability
over the output symbols is the probability distribution
associated with the leaf node.
To summarize, a sparse Markov tree, T , can be used

as a conditional probability distribution over output
symbols. For a training example pair containing an
output symbol yt and an input sequence xt, we can de-
termine the conditional probability for the example, de-
noted PT (ytjx

t). As described above, we �rst determine
the node u which corresponds to the input sequence xt.
Once that node is determined, we use the probability
distribution over output symbols associated with that
node. The prediction of the tree for the example is then:

PT (ytjx
t) = PT (ytju) (3)

The equivalence between sparse Markov transducers
and sparse prediction trees is shown in the appendix.

Training a Prediction Tree

A prediction tree is trained from a set of training ex-
amples consisting of an output symbols and the corre-
sponding sequences of input symbols. In our applica-
tion, the training set is either a set of amino acids and
their corresponding contexts (neighboring sequence of
amino acids) or a set of protein family names and se-
quences of amino acids from that family. The input
symbols are used to identify which leaf node is associ-
ated with that training example. The output symbol is
then used to update the count of the appropriate pre-
dictor.
The predictor kept counts of each output symbol

(amino acid) seen by that predictor. We smooth each
count by adding a constant value to the count of each
output symbol. The predictor's estimate of the proba-
bility for a given output is the smoothed count for the
output divided by the total count in the predictor.



This method of smoothing is motivated by Bayesian
statistics using the Dirichlet distribution which is
the conjugate family for the multinomial distribution.
However, the discussion of Dirichlet priors is beyond the
scope of this paper. Further information on the Dirich-
let family can be found in (DeGroot 1970). Dirichlet
priors have been shown to be e�ective in protein family
modeling (Brown et al. 1995; Sjolander et al. 1996).
For example, consider the prediction tree in Figure

1. We �rst initialize all of the predictors (in leaf nodes
u1; :::; u7) to the initial count values. If for example,
the �rst element of training data is the output A and
the input sequence ADCAAACDADCDA, we would
�rst identify the leaf node that corresponds to the se-
quence. In this case the leaf node would be u7. We
then update the predictor in u7 with the output A by
adding 1 to the count of A in u7. Similarly, if the next
output is C and input sequence is DACDADDDCCA,
we would update the predictor in u1 with the output
C. If the next output is D and the input sequence is
CAAAACAD, we would update u1 with the output D.
After training on these three examples, we can use

the tree to output a prediction for an input sequence
by using the probability distribution of the node corre-
sponding to the input sequence. For example, assuming
the initial count is 0, the prediction of the the input se-
quence AACCAAA which correspond to the node u1
would give an output probability where the probability
for C is :5 and the probability of D is :5.

Mixture of Sparse Prediction Trees

In the general case, we do not know a priori where
to put the wild-cards in the conditioning sequence of
the probability distribution because we do not know
on which input symbols the probability distribution is
conditional. Thus we do not know which tree topology
can best estimate the distribution. Intuitively, we want
to use the training data in order to learn which tree
predicts most accurately.
We use a Bayesian mixture approach for the problem.

Instead of using a single tree as a predictor, we use a
mixture technique which employs a weighted sum of
trees as our predictor. We then use a Bayesian update
procedure to update the weight of each tree based on
its performance on each element of the dataset.
We use a Bayesian mixture for two reasons. The mix-

ture model provides a richer representation than a sin-
gle model. Second, the model is built online so that it
can be improved on-the-y with more data, without re-
quiring the re-training of the model. This means that as
more and more proteins get classi�ed into families, the
models can be updated without re-training the model
over the up to date database.
Our algorithm is as follows. We initialize the weights

in the mixture to the prior probabilities of the trees.
Then we update the weight of each tree for each input
string in the dataset based on how well the tree per-
formed on predicting the output. At the end of this
process, we have a weighted sum of trees in which the

best performing trees in the set of all trees have the
highest weights.
Speci�cally, we assign a weight, wt

T
, to each tree in

the mixture after processing training example t. The
prediction of the mixture after training example t is the
weighted sum of all the predictions of the trees divided
by the sum of all weights:

P t(Y jXt) =

P
T
wt

T
PT (Y jXt)
P

T
wt

T

(4)

where PT (Y jXt) is the prediction of tree T for input
sequence Xt.
The prior probability of a tree w1

T
, is de�ned by the

topology of the tree. Intuitively, the more complicated
the topology of the tree the smaller its prior probabil-
ity. An e�ective method to set the prior probabilities is
described in the appendix.

General Update Algorithm

We use a Bayesian update rule to update the weights
of the mixture for each training example. The prior
weight of the tree is w1

T
. The mixture weights are up-

dated according to the evidence which is simply the
probability of an output yt given the input sequence
xt, PT (ytjxt). The prediction is obtained by updating
the tree with the training example and then computing
the prediction of the training example. Intuitively, this
gives a measure of how well the tree performed on the
given example. The unnormalized mixture weights are
updated using the following rule:

wt+1

T
= wt

T
PT (ytjx

t) (5)

Thus the weigh of a tree is the prior weight times the
evidence for each training example:

wt+1

T
= w1

T

tY

i=1

PT (yijx
i) (6)

After training example t we update the weights for
every tree T . Since the number of possible trees are ex-
ponential in terms of the maximum allowed tree depth,
this update algorithm requires exponential time.
We present (in the appendix) an update algorithm

that computes the exact mixture weights. The eÆcient
algorithm stores and updates weights in the nodes of
the tree and uses those weights to compute the mixture
of sparse Markov trees. The algorithm for node weight
updates does not require exponential time.

Implementation of SMTs

The SMTs can be implemented very eÆciently in both
time and space.
There are two important parameters for the exper-

iments that de�ne the types of trees in the mixture:
MAX DEPTH, the maximum depth of the tree and
MAX PHI, the maximumnumber of wild-cards at every
node (consecutive wild-cards). The depth of a node in
the tree is de�ned to be the length of the input sequence



that reaches the node. The maximum number of wild-
cards de�nes the highest power of � on a branch leaving
a node. If MAX PHI = 0, there are no wild-cards in
the model. Both of these variables a�ect the number of
trees in the mixture which increases the running time
of the SMTs and increases the number of total nodes.

Even with small values of MAX DEPTH and
MAX PHI, the number of trees can be very large.
For example, there are ten trees in the mixture if
MAX DEPTH= 2 and MAX PHI= 1 as shown in Fig-
ure 2.

A

φ0

C D

φ0

CA D

A

φ0

C D

φ0

CA D

A

φ0

C D

φ0

CA D

A

φ0

C DA

φ0

C D

φ0

CA D

A

φ0

C D A

φ0

C D

φ0

CA D

A

φ0

C D A

φ0

C D

φ0

CA D

A

φ0

C DA

φ0

C D A

φ0

C D

φ0

CA D

A

φ0

C D

A

φ

C D

1

Figure 2. The ten trees in the mixture if
MAX DEPTH= 2 and MAX PHI= 1. One of the trees
consists of only the root node.

We can store the set of all trees in the mixture much
more eÆciently using a template tree. This is a single
tree that stores the entire mixture. The template tree
is similar to a sparse prediction tree except that from
each node it has a branch for every possible number of
wild-cards at that point in the sequence. A template
tree for the trees in the mixture of Figure 2 is shown in
Figure 3.

Even in the template tree, the maximum number of
nodes in the model is also very large. In Figure 3 there
are 16 nodes. However, not every node needs to be
stored. We only store these nodes which are reached
during training. For example, if the training examples
contain the input sequences, AA,AC and CD, only nine
nodes need to be stored in the tree as shown in Figure
4. This is implemented by starting the algorithm with
just a root node and adding elements to the tree as they
are reached by examples.

A

φ0

C DA

φ0

C D A

φ0

C D

φ0 φ1

CA D A C D

Figure 3. The template tree for the mixture if
MAX DEPTH= 2 and MAX PHI= 1. For space con-
siderations we do not draw branches for all 20 amino
acids.

φ0

DA

φ0

C

φ0 φ1

CA A C D

Figure 4. The template tree of Figure 3 after processing
input sequences AA, AC and CD.

EÆcient Data Structures

Even with only storing the nodes reached by input se-
quence in the data, the template tree can still grow ex-
ponentially fast. With MAX PHI > 0 the tree branches
at each node with every input. Intuitively this rep-
resents that fact that there is an exponential number
of possible positions of the wild-cards in the input se-
quence. Table 1 shows the number of nodes in a tree
with various values of MAX DEPTH and MAX PHI
after an empty tree was updated with a single example.
Because performance of the SMT typically improves

with higher MAX PHI nd MAX DEPTH, the memory
usage becomes a bottleneck because it restricts these
parameters to values that will allow the tree to �t in
memory.
Our solution is to use lazy evaluation to provide more

eÆcient data structures with respect to memory. The
intuitive idea is that instead of storing all of the nodes
created by a training example, we store the tails of the
training example (sequence) and recompute the part of



MAX MAX PHI
DEPTH 0 1 2 3

1 2 2 2 2
2 3 4 4 4
3 4 7 8 8
4 5 12 15 16
5 6 20 28 31
6 7 33 52 60
7 8 54 96 116
8 9 88 177 224
9 10 143 326 432
10 11 232 600 833

Table 1: Number of nodes after a single training ex-
ample without eÆcient data structures. The number of
nodes generated per examples increases exponentially
with MAX PHI.

the tree on demand when necessary. There is an inher-
ent computational cost to this data structure because
in many cases the training examples need to be recom-
puted on demand. Intuitively, we want the parts of the
tree that are used often to be stored explicitly as nodes,
while the parts of the tree that are not used often to be
stored as sequences. The data structure is designed to
perform exactly the same computation of the SMTs but
with a signi�cant savings in memory usage. We would
like to note in passing that there are other approaches
that eÆciently implement prediction for a single tree
(Apostolico & Bejerano 2000).
The data structure de�nes a new way to store the

template tree. In this model the children of nodes in
the template tree are either nodes or sequences. Figure
5 gives examples of the data structure. A parameter
to the data structure, EXPAND SEQUENCE COUNT
de�nes the maximum number of sequences that can be
stored on the branch of a node.
Let us look at an example where we are comput-

ing a SMT with MAX DEPTH= 7 and MAX PHI=
1 with the following 5 input sequences (and cor-
responding output in parentheses): ACDACAC(A),
DACADAC(C), DACAAAC(D), ACACDAC(A)
and ADCADAC(D). Without the eÆcient data struc-
ture the tree contains 241 nodes and takes 31 kilobytes
to store. The eÆcient template tree is shown in Fig-
ure 5a. The eÆcient data structure contains only 1
node and 10 sequences and takes 1 kilobyte to store.
If the EXPAND SEQUENCE COUNT= 4 each node
branch can store up to 3 sequences before it expands
the sequences into a node. In the example shown in
Figure 5a, because there are already 3 sequences in the
branch labeled �0A, any new sequence starting with A
will force that branch to expand into a node. If we add
the input sequence ACDACAC(D) we get the tree in
Figure 5b.
The classi�cation performance of SMTs tends to

improve with larger values of MAX DEPTH and

MAX PHI, as we will show in the results section. The
eÆcient data structures are important because they al-
low us to compute SMTs with higher values of these
parameters.

Methodology

Our methodology draws from similar experiments con-
ducted by Bejerano and Yona (1999), in which PSTs
were applied to the problem of protein family classi�-
cation in the Pfam database.
We evaluate two types of protein classi�ers based on

SMTs and evaluate them by comparing to the published
results in (Bejerano & Yona 1999). The �rst model is
a prediction model for each protein family where wild-
cards are incorporated in the model. We refer to these
models as SMT prediction models. The second model
is a single SMT-based classi�er trained over the entire
database that maps sequences to protein family names.
We refer to the second model as the SMT classi�er
model.
We perform experiments over one protein family to

examine the time-space-performance tradeo�s with var-
ious restrictions on the topology of the sparse Markov
trees (MAX DEPTH, MAX PHI). We also examine the
time-space tradeo�s using the eÆcient data structures.
In our experiments, we did not perform any tuning

of the parameters.

Data

The data examined comes from the Pfam database.
We perform our experiments over two versions of the
database. To compare our results to the Bejerano and
Yona (1999) method we use the release version 1.0. We
also compute our models over the latest version of the
database, release version 5.2 and results are available
online. The data consists of single domain protein se-
quences classi�ed into 175 protein families. There are a
total of 15610 single domain protein sequences contain-
ing a total 3560959 residues.
The sequences for each family were split into train-

ing and test data with a ratio of 4:1. For example,
the 7 transmembrane receptor family contains a total of
530 protein sequences. The training set contains 424 of
the sequences and the test set contains 106 sequences.
The 424 sequences of the training set give 108858 sub-
sequences that are used to train the model.

Building SMT Prediction Models

A sliding window of size eleven was used over each se-
quence to obtain a set of subsequences of size eleven,
a1; :::; a11. Using sparse Markov transducers we built a
model that predicted the middle symbol a6 using the
neighboring symbols. The conditional sequence inter-
laces the �ve next symbols with the �ve previous sym-
bols. Speci�cally, in each training example for the se-
quence, the output symbol is a6 and the input symbols
are a5a7a4a8a3a9a2a10a1a11.
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Figure 5. EÆcient Data Structures for SMTs. The boxes represent input sequences with their corresponding out-
put. (a) The tree with EXPAND SEQUENCE COUNT= 4 after input sequences ACDACAC(A), DACADAC(C),
DACAAAC(D), ACACDAC(A) and ADCADAC(D). (b) The tree after input sequence ACDACAC(D) is added.
Note that a node has been expanded because of the addition of the input.

A model for each family is built by training over all of
the training examples obtained using this method from
the amino acid sequences in the family. The param-
eters used for building the SMT prediction model are
MAX DEPTH= 7 and MAX PHI= 1.

Classi�cation of a Sequence using a SMT
Prediction Model

We use the family models to compute the likelihood
of an unknown sequence �tting into the protein family.
First we convert the amino acids in the sequences into
training examples by the method above. The SMT then
computes the probability for each training example. We
then compute the length normalized sum of log prob-
abilities for the sequence by dividing the sum by the
number of residues in a sequence. This is the likelihood
for the sequence to �t into the protein family.
A sequence is classi�ed into a family by computing

the likelihood of the �t for each of the 175 models. Us-
ing these likelihoods we can classify a sequence into a
family by determining the most likely family for the
sequence.

Building the SMT Classi�er Model

The second model we use to classify protein families
estimates the probability over protein families given a
sequence of amino acids.
This model is motivated by biological considerations.

Since the protein families are characterized by sim-
ilar short sequences (motifs) we can map these se-
quences directly to the protein family that they orig-
inated in. This type of model has been proposed for
HMMs (Krogh et al. 1994).
Each training example for the SMT Classi�er model

contains an input sequence which is an amino acid se-
quence from a protein family and an output symbol
which is the protein family name.
For example, the 3-hydroxyacyl-CoA dehydrogenase

family contains in one of the proteins a subsequence
V AV IGSGT . The training example for the SMT
would be the sequence of amino acids (V AV IGSGT )
as the input sequence and the name of the protein as
the output symbol (3-hydroxyacyl-CoA dehydrogenase).
The training set for the SMT classi�er model is the

collection of the training sets for each family in the
entire Pfam database. We use a sliding window of
10 amino acids, a1; :::; a10. In the training example,
the output symbol is the name of the protein family.
The sequence of input symbols is the 10 amino acids
a1; :::; a10. Intuitively, this model maps a sequence in
a protein family to the name of the family from where
the sequence originated.
The parameters used for building the model are

MAX DEPTH= 5 and MAX PHI= 1. It took several
minutes to train the model and is 300 megabytes in size.

Classi�cation of a Sequence using an SMT
Classi�er

A protein sequence is classi�ed into a protein family us-
ing the complete Pfam model as follows. We use a slid-
ing window of 10 amino acids to compute the set of sub-
strings of the sequence. Each position of the sequence
gives us a probability over the 175 families measuring
how likely the substring originated from each family. To
compute the likelihoods of the entire protein sequence
�tting into a family, we compute the length normalized
sum of log likelihood of subsequences �tting into the
family.



Results

We compare the performance of the two models ex-
amined to the published results for PSTs (Bejerano &
Yona 1999). We train the models over the training set
and we evaluate performance of the model in classify-
ing proteins on the entire database. To evaluate the
performance of a model, we use two measures to eval-
uate the model predicting a given family. To compare
with published results we use the equivalence score mea-
sure, which is the number of sequences missed when
the threshold is set so that the number of false nega-
tives is equal to the number of false positives (Pearson
1995). We then compute the percentage of sequences
from the family recovered by the model and compare
this to published results (Bejerano & Yona 1999). We
also compute the ROC50 score (Gribskov & Robinson
1996). The ROC50 score is the normalized area under
the curve that plots true positives versus false positives
up to 50 false positives.
We evaluated the performance of each model on each

protein family separately. We use the model to attempt
to distinguish between protein sequences belonging to a
family and protein sequences belonging to all other fam-
ilies. Table 3 gives the equivalence scores for the �rst
50 families in the Pfam database version 1.0 and com-
pares then to previously published results. A complete
set of results for the newest database is available online
at http://www.cs.columbia.edu/compbio/smt/.
We compute a two-tailed signed rank test to compare

the classi�ers (Salzberg 1997). The two-tailed signed
rank test assigns a p-value to the null hypothesis that
the means of the two classi�ers are not equal. As clearly
shown in Table 3, the SMT models outperform the PST
models. The best performing model is the SMT Clas-
si�er, followed by the SMT Prediction model followed
by the PST Prediction model. The signed rank test
p-values for the signi�cance between the classi�ers are
all < 1%. One explanation to why the SMT Classi-
�er model performed better than the SMT Prediction
model is that it is a discriminative model instead of a
purely generative model.
We also examined the e�ect of di�erent parameters

on the performance of the model. We examined one of
the larger families, ABC transporters, containing 330
sequences. Table 2 shows performance of the SMT fam-
ily model for classifying elements into the ABC trans-
porters family as well as the time and space cost of
training the model using the two data structures with
various settings of the parameters. The eÆcient data
structures allow models with larger parameter values to
be computed.

Discussion

We have presented two methods for protein classi�ca-
tion using sparse Markov transducers (SMTs). The
sparse Markov transducers are a generalization of prob-
abilistic suÆx trees. The motivation for the sparse
Markov transducers is the presence of common short

MAX MAX ROC50 Normal EÆcient

DEPTH PHI Score Time Space Time Space

5 0 .89 1.87 8.6 2.83 2.0

5 1 .90 6.41 30.5 10.57 10.2

5 2 .90 8.55 36.7 13.42 13.6

5 3 .90 9.13 38.8 14.79 14.3

7 0 .89 2.77 17.5 4.22 2.5

7 1 .90 21.78 167.7 37.02 23.3

7 2 .92 37.69 278.1 65.99 49.8

7 3 .92 45.58 321.1 77.47 62.3

9 0 .89 3.69 26.8 6.2 2.9

9 1 .91 - - 102.35 36.0

9 2 .94 - - 238.92 108.2

9 3 .93 - - 324.69 163.7

Table 2: Time-Space-Performance tradeo�s for the
SMT family model trained on the ABC transporters
family which contained a total of 330 sequences. Time
is measured in seconds and space is measured in
megabytes. The normal and eÆcient columns refer to
the use of the eÆcient sequence-based data structures.
Because of memory limitations, without using the ef-
�cient data structures, many of the models with high
values of the parameter values were impossible to com-
pute (indicated with {).

sequences in protein families. Since substitutions of
amino acids are very common in proteins, the mod-
els perform more e�ectively if we model common short
subsequences that contain wild-cards. However, it is
not clear where to place the wild-cards in the sub-
sequences. The optimal placement of the wild-cards
within an amino acid sequence depends on the context
or neighboring amino acids. We use a mixture tech-
nique to learn from the data the which placements of
wild-cards perform best. We present two models that
incorporate SMTs to build a protein classi�er. Both of
the models out-perform the baseline PST model that
does not use wild-cards.
However, the inclusion of wild-cards requires a signif-

icant increase in the memory usage of the model. These
models can quickly exhaust the available memory. We
present eÆcient data structures that allow for computa-
tion of models with wild-cards that otherwise would not
be possible. As can be seen in Table 2, without eÆcient
data structures, it would be impossible to compute the
models for any but the smallest parameter settings.
The method was evaluated using the Pfam database.

The database is biased because it is generated by semi-
automatic methods. However, because previous work
on PST applied to protein classi�cation used the Pfam
database, we used the database for evaluation to com-
pare methods. A better database for evaluation of the
model is the SCOP database, which is based on struc-
ture of proteins (Murzin et al. 1995). Future work
involves comparing this method to other protein classi-
�cation methods on the SCOP database. The method
can be evaluated against state of the art methods in
protein classi�cation such as the Fisher kernel method
(Jaakkola, Diekhans, & Haussler 1999b) and the latest
Sam-T HMM methods (Karplus, Barrett, & Hughey
1998).
The methods presented rely on very little biological



intuition. Future work involves incorporating biologi-
cal information into the model such as Dirichlet mix-
ture priors which can incorporate informationabout the
amino acids. (Brown et al. 1995; Sjolander et al. 1996).
Jaakkola shows that combining a generative and dis-

criminative model (such as a support vector machine)
can improve performance (Jaakkola, Diekhans, & Haus-
sler 1999a). Another direction for future work involves
using this model as a discriminative method that uses
both positive and negative examples in training.

Appendix:

Equivalence of sparse Markov chains

and sparse prediction trees

Each sparse Markov transducer can be represented by
a prediction tree. The paths of the tree correspond to
the conditional inputs of the sparse Markov transducer.
Each sparse Markov transducer of the form in (2) can
be represented with a sparse prediction tree as shown
in Figure 6.

φ
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Figure 6. A Sparse Markov Tree

Notice that in this tree each of the �n have the same
value of n at each depth in the tree. The trees that
represent conditional probabilities of the form of (2)
have this property. In fact, sparse Markov trees can
represent a wider class of probability distributions, one
that depend on the speci�c context of the inputs as
shown in Figure 1.
More formally, a �xed order sparse Markov trans-

ducer de�ned by a probability distribution of the form:

P (Ytj�
n1Xt�n1�

n2Xt�n1�n2�1:::�
njXt�(L�1)) (7)

can be represented by a sparse Markov tree constructed
as follows. We start with just the root node. We add a
branch with �n1 and then from this branch a node for
every element in �in. Then from each of these nodes,
we add a branch with �n2 and then another node for
every element in �in. We repeat this process, and in
the last step we add a branch with �nj and a node
for every element in �in. We make these nodes leaf

nodes. For each leaf node, u, we associate the prob-
ability distribution P (Y ju) determined by the sparse
Markov transducer. The probabilistic mapping of this
tree is equivalent to the probabilistic mapping of the
sparse Markov transducer.

Prior Probability of a Tree
The initial mixture weights correspond to the prior
probabilities of the trees. We de�ne a randomized pro-
cess that generates sparse prediction trees. The prior
probability of a speci�c tree is the probability of gener-
ating that tree.
We de�ne the stochastic process that generates the

trees as follows. We start with a single root node. Based
on the outcome of a probability distribution over non
negative integers, P�(n 2 N), we either make this node
a leaf node if n = 0, or add a branch labeled �n�1 and
a node for every symbol in �in if n > 0. For each of
these new nodes, we repeat the process recursively. We
refer to this probability distribution as the generative
probability distribution. Intuitively, this probabilistic
event determines how far forward we look for the next
input. If the outcome of the probabilistic event is 0,
then we do not condition on any more inputs. If the
value is 1, we condition on the next input. If the value
is n > 0, then we skip (or mark as wild-cards) the next
n� 1 inputs and condition on the nth input.
The generative probability distribution P�() is de-

pendent on the current node, u. We will denote this
dependence as Pu

� (). For each node u:

1X

i=0

Pu
� (i) = 1 (8)

For each node in a tree u, we denote the outcome of this
probabilistic event as u� which represents the � value

of that node i.e. the number of �'s +1 on the branch
leaving the node. If a node is a leaf, u� of that node is
de�ned to be 0.
For a tree T we de�ne by LT to be the set of leaves of

that tree. We also de�ne NT to be the set of nodes of
the tree. Similarly, we de�ne NTu and LTu to be the set
of nodes and leaf nodes respectively of a subtree rooted
at node u.
The prior probability of a tree can easily be com-

puted using the generative probability distribution at
each node and the � value of each node. For a tree, T ,
the prior probability of tree, w1

T is then:

w1
T =
Y

u2NT

Pu
� (u�) (9)

where u� is the � value of the node u and Pu
� is the

generative probability distribution at the node.
For example, if P�(n) = 4�n

10 for 0 � n � 3 and
P�(n) = 0 otherwise, Figure 7 shows the generative
probability at each node. In this example, the genera-
tive probability does not depend on the speci�c node u.
The probability of the tree would be the product of the
generative probability at the nodes which is :004096.
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Figure 7. A sparse Markov tree with its generative
probabilities.

The initial mixture weights are de�ned to be these
prior probabilities, w1T .
The generative probability distribution P�() can

be used to de�ne the parameters MAX PHI and
MAX DEPTH. For example, for a node u with
depth(u) =MAX DEPTH, the node must be a leaf
node, thus P�(0) = 1.

Weight Update Algorithm

Updating the weights for each tree at every time t is
expensive. The update algorithm can be made more ef-
�cient if weights are assigned to individual nodes of the
template tree which can be updated in a more eÆcient
manner. The mixture weights are then calculated using
the node weights.
For each node u we de�ne a weight at time t as fol-

lows:
w1(u) = 1 (10)

and
wt+1(u) = wt(u)P (ytju) (11)

when xt 2 u and otherwise wt+1(u) = wt(u).
Using these weights we can represent the mixture

weights.

wt
T = w1T

Y
1�i<t

PT (yijx
i) =

 Y
u2NT

Pu
� (u�)

! Y
e2LT

wt(e)

!

(12)
In order to make predictions using the mixture (equa-

tion (4)), we must keep track of the sum of all the tree
weights at time t,

P
T wt

T . An eÆcient way to do this
is to keep the sum of all subtree weights for each node.
We de�ne wt(u) to be the sum of all subtrees rooted at
node u:

wt(u) =
X
Tu

0
@
0
@ Y
e2NTu

P e
�(e�)

1
A
0
@ Y
v2LTu

wt(v)

1
A
1
A =

X
Tu

wt
Tu

(13)

We can use these subtree weights to compute the sum
of all tree weights,

P
T wt

T at time t. Note that the sum
of all subtrees rooted at the root node is the sum of all
subtrees in the prediction tree:

wt(�) =
X
T

  Y
u2NT

Pu
� (u�)

! Y
v2LT

wt(v)

!!

=
X
T

wt
T (14)

In order to eÆciently update the subtree weights we
use the following Lemma.

Lemma 1 The following equation holds:

wt(u) = Pu
� (0)w

t(u) +
1X
i=1

Pu
� (i)

Y
�2�in

wt(u�i�1�)

(15)

Proof: We can decompose the summation over all sub-
trees rooted at u based on the � value of the root node
u. If the � value is 0, there is a single tree with only
one leaf node which consists of single node u. In this
case the subtree weight is:Y

e2NTu

P e
�(e�)

Y
e2LTu

wt(e) = Pu
� (0)w

t(u) (16)

Let us assume that the � value of the node u is i > 0.
In this case, a subtree Tu rooted at u is a combination
of the node u and a subtree rooted u�i�1� for each
� 2 �in. We denote these subtrees Tu�i�1�. The set of
leaf nodes of the subtree rooted at u will be the union
of the leaf nodes of these subtrees. Similarly, the set
of nodes of Tu will be the union of the set of nodes of
these subtrees and the node u itself. Using this fact we
can represent for such Tu:

wt
Tu

= Pu
� (i)

Y
�2�in

wt
T
u�i�1�

(17)

Let k = j�inj. Using the above equation:

wt(u) = P�(0)w
t(u)

+
1X
i=1

X
T
u�i�1�1

:::
X

T
u�i�1�k

P�(i)w
t
T
u�i�1�1

:::wt
T
u�i�1�k

= P�(0)w
t(u) +

1X
i=1

P�(i)
Y

�2�in

X
T
u�i�1�

wt
u�i�1�

(18)

Thus

wt(u) = Pu
� (0)w

t(u) +
1X
i=1

Pu
� (i)

Y
�2�in

wt(u�i�1�)

(19)



EÆcient Weight Update Rules

To update the weights of the nodes we use the following
rules. We �rst initialize w1(u) = 1 for 8u and w1(u) for
8u.
For wt(u) if xt 2 u:

wt+1(u) = wt(u)P (ytju) (20)

and otherwise:

wt+1(u) = wt(u) (21)

For wt(u) if xt 2 u:

wt+1(u) = Pu
� (0)w

t+1(u)

+
1X

i=1

Pu
� (i)
Y

�2�in

wt+1(u�i�1�)

(22)

and otherwise:

wt+1(u) = wt(u) (23)

Notice that each input string xt corresponds to many
nodes u because of the � symbols in the path of u.

Prediction

We can use node weights for eÆciently computing the
prediction of the mixture. For any ŷ 2 �out, the prob-
ability of prediction of ŷ at time t is:

P (ŷjxt) =

P
T w

t
TPT (ŷjx

t)P
T w

t
T

(24)

If we set yt = ŷ, then we have

P (ŷjxt) =

P
T w

t
TPT (ytjx

t)P
T w

t
T

=

P
T w

t+1
TP

T w
t
T

=
wt+1(�)

wt(�)
(25)

Thus the prediction of the SMT for an input sequence
and output symbol is the ratio of the weight of the root
node if the input sequence and output symbol are used
to update the tree to the original weight.
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