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Abstract

Perhaps the most common question that a microarray
study can ask is, “Between two given biological conditions,
which genes exhibit changed expression levels?”” Existing
methods for answering this question either generate a com-
parative measure based upon a static model, or take an in-
direct approach, first estimating absolute expression levels
and then comparing the estimated levels to one another.

We present a method for detecting changes in gene
expression between two samples based on data from
Affymetrix GeneChips. Using a library of over 200,000
known cases of differential expression, we create a learned
comparative expression measure (LCEM) based on clas-
sification of probe-level data patterns as changed or un-
changed. LCEM uses perfect match probe data only; mis-
match probe values did not prove to be useful in this con-
text. LCEM is particularly powerful in the case of small mi-
croarry studies, in which a regression-based method such as
RMA cannot generalize, and in detecting small expression
changes. At the levels of selectivity that are typical in mi-
croarray analysis, the LCEM shows a lower false discovery
rate than either MAS5 or RMA trained from a single chip.
When many chips are available to RMA, LCEM performs
better on two out of the three data sets, and nearly as well
on the third. Performance of the MAS5 log ratio statistic
was notably bad on all datasets.

Supplement: http://nobl e. gs. washi ngt on.

edu/ proj/lcem
Key words: microarrays, gene expression, support vec-
tor machine

1 Introduction

The most common use for DNA microarrays is to find
genes with changed expression between two samples. For
example, one might look for genes that are expressed more
highly in cancerous versus healthy lung tissue, or for genes
with different expression in neurons grown in a petri dish
versus a 3D matrix.

Typically, the comparison of expression levels is car-
ried out in two steps: the absolute expression level is es-
timated, and these levels are then compared using differ-
ences or ratios. Many methods exist for estimating expres-
sion levels (5; 14; 16). Using such a method, differentially
expressed genes can then be identified by comparing the
estimated expression levels in two samples. This is, how-
ever, an indirect approach. By analogy, to test if one item is
heavier than another we could weigh each individually, but
might prefer to place them on opposite sides of a balance
and see which way it tips. Directly comparative methods,
such as the MASS log ratio and change p-value, are usu-
ally based on static models such as rank test, t-tests, and
ANOVA (3; 15; 18; 4). In some cases these comparative
methods are better at discriminating genes with changed ex-
pression from genes with unchanged expression. Dynamic
expression models are generally better for quantitating the
level of change.
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Figure 1. Schematic of the LCEM algorithm: The training set consists of vectors of pefect-match
measurements (represented as horizontal lines) from two chips (X and Y) per gene. The vectorization
procedure converts the raw expression measurements into 48 dimensional vectors of normalized
order statistics, as described in the text. An SVM then learns to discriminate between the differentially

expressed and non-differentially expressed genes.

The learned comparative expression measure (LCEM) is,
to our knowledge, the first application of machine learn-
ing to probe-level analysis of high-density oligonucleotide
arrays. The LCEM algorithm builds an implicit non-
parametric model based upon a training set of perfect-match
probe set pairs. Each probe set pair is derived from the same
gene measured under two different conditions. These train-
ing set pairs must be labeled a priori as exhibiting changed
or unchanged expression. Using this training data, plus a
test group of probe set pairs for which the expression status
is unknown, the algorithm proceeds in two stages, summa-
rized in Figure 1. First, each probe set pair in the training
set is converted to a vector representation using sorted per-
fect match probe values. Second, a support vector machine
(SVM) classifier (22; 7) learns to discriminate between the
vectors corresponding to changed and unchanged gene ex-
pression. The resulting SVM can be used to predict the ex-
pression change associated with probe set pairs in the test
set.

A significant contribution of our work is a method
for extracting examples of small but certain gene ex-
pression changes from mixtures of samples (described
in Section 3.1). We apply this method to the Gene
Logic dilution data set (http://ww. genel ogi c.
coni nedi a/ studi es/di l ution.cfm. Previous
comparative studies of differential expression measures
(6; 15; 12) rely only on data derived from spike-in style data
sets, which have a number of limitations. Spike-In stud-
ies typically contain examples of only two fold and larger
expression changes and use only 10 to 42 spiked-in tran-
scripts, limiting the diversity represented of data patterns
represented. The examples we draw from the dilution data
set are of much smaller fold changes, many in the range be-
tween 1.1 and 2 fold, and are drawn from 2,942 different

human genes. In contrast, most fold changes in the spike-in
data sets are 10-100 times higher. These borderline exam-
ples provide valuable training data and account for the high
accuracy of the LCEM. With over 220,000 positive and 1.2
million negative examples of differential expression, this
data provides a realistic and rigorous test set for evaluating
the performance of differential expression measures.

We perform comparative experiments with three di-
verse data sets: the GeneLogic dilution study mentioned
above, and spike-in studies performed by GeneLogic and
Affymetrix. We compare the LCEM to two Affymetrix
static models, the log ratio (LR) and the change p-value
(Pval), as well as to RMA trained from a single chip and
trained from all available data. Our results indicate that,
at levels of selectivity that are typical in microarray analy-
sis, the LCEM shows a lower false discovery rate than ei-
ther MAS5 or RMA trained from a single chip. Even when
many chips are available, LCEM performs better than RMA
on two out of the three data sets, and nearly as well on the
third. LCEM performs particularly well on the examples
drawn from the dilution study, indicating a strong ability
to detect small expression changes. LCEM’s good perfor-
mance across these three data sets shows that the method
generalizes across different chip architectures with different
numbers of probes per gene. LCEM shows good quantita-
tive as well as discriminative performance. On the dilution
examples the correlation between LCEM and RMA is 0.976
on genes for which there is a change in expression, showing
that LCEM quantitates changes about as well as RMA. This
is not because LCEM and RMA always agree: the correla-
tion is -0.028 for cases with no change in gene expression.

Below, we describe the LCEM method in detail, fol-
lowed by a description of our experimental design, results
and discussion.



2 Algorithm

The LCEM algorithm, depicted in Figure 1, consists of
two steps: a vectorization step, in which labeled probe set
pairs are converted to an order-statistic based vector repre-
sentation, and support vector machine training and classifi-
cation step. This section describes these two steps in detail.

The goal of the vectorization step is to produce a data
representation that generalizes across different probe sets
and chip architectures. Before vectorization, the data set
is background corrected and normalized according to the
method of (13) using the R (11) package Bioconductor (9).
Each data vector consists of three parts. Data points 1 thru
16 correspond to perfect-match probe values on chip A, data
points 17 thru 32 correspond to perfect-match probe values
on chip B, and data points 33 thru 48 are ratios between cor-
responding perfect-match probe values, values from chip A
over values from chip B. All data point are log-transformed
to stabilize variance, and data in each of the three parts is
sorted in increasing order. In cases where more or fewer
than 16 perfect-match probe values are available, the sorted
probe values are linearly interpolated after sorting to pro-
duce 16 datapoints. We chose to include both absolute and
ratio data so that the learning machine would be able to dis-
tinguish between cases with lower and higher overall ex-
pression and treat them correspondingly types.

The second step of LCEM involves training an SVM to
discriminate between “changed” and “unchanged” genes.
We use the SVM implemented in the R package e1071 (8),
with a radial basis kernel function K (X,Y) = exp(y||X —
Y|/2), v = 0.001 and a soft margin (C' = 10). In order
to assign an expression value to each test set example, each
probe set pair in the test set is first vectorized, as described
above. The SVM then assigns to the vector a discriminant
value that is proportional to the vector’s distance from the
separating hyperplane.

As constructed, the LCEM only measures upward
changes. In order to measure downward changes, we re-
verse the data vectors and run LCEM again. A combined
comparative expression measure can then be obtained by
taking the max of the forward and reverse LCEM and mul-
tiplying by the sign of the difference. Although it is theo-
retically possible a data vector could be classified as both
changed-up and changed-down using this scheme, Figure 2
shows that in practice no data vectors generated such con-
tradictions. It is possible that both the forward and reversed
LCEM could be slightly negative, indicating no change in
either direction.

3 Methods

LCEM is a learned measure of comparative expression.
Because a learned method can be only as good as the data
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Figure 2. Consistency of LCEM: This figure
shows forward and reversed LCEM measures
which correspond to measurements of up-
ward and downward changes. The upward
and downward measurements are consistent
with each other, as

on which it is trained, we required a large set of high qual-
ity example microarray data. Data for both known cases of
differential expression, and also known cases of unchanged
expression were needed. Furthermore, for a discrimina-
tory learning machine such as a SVM to work well, exam-
ples close to the boundary between changed and unchanged
must be found.

Section 3.1 describes in detail a method to generate such
close-call examples from an existing microarray dataset.
Section 3.2 describes our method of comparison to existing
micorarray expression measures.

3.1 Datasets

We used a subset of the GenelLogic dilution data set
(ww. genel ogi c. com) to train the LCEM, and we
tested the generalization of the method on the rest of the
dilution data set, as well as on two independent spike-in
data sets (Table 1). The GeneLogic dilution data set pro-
vides a rich source of small but reliable fold changes which
are not available in the spike-in studies (see online supple-
ment). Thus, the dilution data set is of paramount impor-
tance to our work.

The dilution data set was created with two distinct
biological samples mixed at various dilution levels and
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Figure 3. Creation of the dilution data set: (A) This plot summarizes the design of the Gene Logic
dilution study. Each point represents five technical replicates with the given liver and CNS sample
concentrations. Circled points are used in our study. (B) Construction of training examples starts
with 75 pairwise comparisons of 100% liver to 100% CNS samples. These comparisons use the six
circled samples along the z and y axes. Genes for which all 75 comparisons agree are taken as
changed. (C-E) Relatively large expression differences, detected in (B), between the pure samples
a and e imply correspondingly smaller differences when mixed samples 3, v, and § are considered.
A hypothetical example of a gene with a two fold difference between samples a and ¢, shown in
(C), must imply the much smaller differences shown in (E) because of the relationship between the
dilution mixtures (D). Thus a two-fold change, which is potentially easy to detect, can be used to find
examples of 1.25 and 1.14 fold changes that would have been impossible to detect directly.



Table 1. Characteristics of the three data sets:
The table lists the total number of positive and
negative examples in each data set.

Data set Use Positive  Negatives
GeneLogic dilution train 5,000 5,000
GeneLogic dilution test 215,650 1,257,500
GenelLogic spike-in test 70 832,590
Affymetrix latin square  test 4104 2,176,400

hybridized in five technical replicates to a total of 75
HG_U95Av2 GeneChips. A graphical summary of the fif-
teen dilutions is shown in Figure 3(A), with the nine sam-
ples used in our study circled. For the purposes of our study,
the details of the liver and CNS samples are unimportant.
We care only that they are significantly different biologi-
cally so that there are many differences in gene expression
between them. Using these two very different samples, we
find examples of small expression changes by first select-
ing genes which have changed expression between the liver
and CNS samples. Second, we draw examples of the genes’
probe patterns from mixtures of the two samples. Expres-
sion differences in the mixtures go in the same direction as
the differences between the pure samples but must have re-
duced magnitude, providing more subtle examples.

In the first step toward generating the dilution examples,
genes with different expression levels are identified via 75
pairwise comparisons between pure liver and CNS samples.
The 75 comparisons come from three sets of five versus
five: one set at 20 ug total sample, one set at 10 ug total
sample, and one at 7.5 pg total sample, as illustrated in Fig-
ure 3(B). The Affymetrix Microarray Suite 5.0 change p-
value statistic was used to perform the comparisons. Genes
for which all 75 comparisons showed a change Pval above
0.9 (decreased expression) or below 0.1 (increased expres-
sion) were selected as differentially expressed. Though 0.1
and 0.9 are not very high confidence levels for individual
comparisons, our requirement for 75-way unanimous agree-
ment makes selecting an unchanged gene this way very un-
likely. Interpreting p-values literally and assuming samples
are independent, the chance of selecting an unchanged gene
is 1in 1075, Of the 12,650 total genes on the HG_U95Av2
chip, 2,942 were selected as changed in this way.

Once a set of genes is determined to have changed ex-
pression between the liver and CNS samples with very high
confidence, we can infer that there must be smaller ex-
pression differences between mixtures of these samples.
Let samples «, 3, v, d, and € have CNS/liver mixtures of
0%/100%, 25%/75%, 50%/50%, 75%/25%, 100%/0% re-
spectively, as shown in Figure 3(A). If we know that there
exists a difference in expression for a particular gene be-

tween samples « and e, then we can be equally sure that
samples « and 3, § and ¢, or any other combination also
have different expression for that gene. However, the ex-
pression differences between mixtures will be lower than
corresponding expression differences between pure sam-
ples. Figure 3(C-E) illustrates this principle, showing how
a gene which has a 2 fold expression difference between «
and e would have a 1.25 fold difference between o and 3
and a 1.14 fold difference between § and e. Using this tech-
nique, we can use a set of large, high confidence expres-
sion changes to create a library of much smaller expression
changes of which we can be equally confident.

This data set of subtle expression changes, along with
no-change examples, is used to train the LCEM. Exam-
ples of unchanged expression patterns were obtained within
the five replicates of each dilution level. Each replicate
measures exactly the same sample, so data for a pair of
replicates must represent unchanged expression. A total of
5,000 of these unchanged examples were chosen uniformly
at random. These, together with the 5,000 randomly chosen
changed examples, form the training set for LCEM. The
remaining 215,650 changed and 1,257,500 unchanged ex-
amples were used for testing.

In addition to testing on the dilution examples, we
tested the quality of the LCEM on two independent
spike-in data sets, the Affymetrix HG_U133A “latin
square” data set (ww. af f ymet ri x. com support/
t echni cal / sanpl e_dat a/ dat aset s. af f x), and
the GenelLogic spike-in data set (www. genel ogi c.
coni nedi a/ st udi es). These data sets were generated
by adding, or “spiking in,” a set of genetic transcripts at var-
ious known concentrations to a uniform background con-
taining some typical sample of genomic transcripts. The
background is added in the same concentration to all chips,
while the concentrations of the spike-in transcripts are var-
ied in a known way. The Affymetrix spike-in data set con-
tains 42 HG_U133A chips and has 42 spike-in transcripts.
The GenelLogic spike-in data set contains 94 HG_U95A
chips and 12 spike-in transcripts. Of the two spike-in data
sets, we draw examples mainly from the newer and more
comprehensive Affymetrix data set; only 12 of the Gene
Logic spike-in chips are used. Extracting changed and un-
changed examples from the spike-in data sets is straightfor-
ward: unchanged examples are taken from the background,
and changed examples are taken from the spike-in genes.
We can be certain these examples are truthful ones, pro-
vided that the samples were prepared properly.

3.2 Comparison methods

We compare the LCEM to two state-of-the-art microar-
ray expression analysis methods: the regression based
Robust Multi-chip Average (RMA) (12) and Affymetrix



Microarray Suite 5.0, (MAS5) (2). Most analysis of
Affymetrix chips is done with one of these two methods. A
third popular method, dChip (16; 17) was not considered in
our study. Our model problem is small, two to six chip mi-
croarray studies, and dChip performs best on large datasets
where probe effects can be effectively modeled.

The MAS 5.0 software produces two comparative ex-
pression statistics: a change p-value (Pval) based on non-
parametric signed rank tests, and a signal log ratio (LR),
which is a robust average ratio incorporating both perfect-
match values and differences between perfect-match and
mismatch values. The Pval and LR computations are con-
voluted and some steps are unpublished (2; 3). Briefly, the
Pval is based on multiple Wilcoxon signed rank tests be-
tween probe sets using several types of normalization and
mismatch correction. The Pval is a summary of the result-
ing set of rank test p-values and is reported as a multiple of
10—, which can limit resolution at high levels of selectivity.
The LR is a one-step tukey biweight mean log of mismatch
corrected probe values. The mismatch correction is done
by subtracting either mismatch probe values or an average
of mismatch probe values if the mismatch is higher than the
perfect match. The LR is reported as a multiple of 0.1. In
our experiments, the Pval and LR statistics were computed
with MAS 5.0 using default parameter settings (1) with nor-
malization on all probe pairs. Normalization settings have
no bearing on the Pval, for which a different set of nor-
malization routines are used. Though Affymetrix is phas-
ing out MASS in favor of their newer Gene Chip Operating
Software (GCOS), the statistical algorithms used to gener-
ate expression measurements remain the same in GCOS (3).

RMA expression measurements were computed using
the Bioconductor library (9) for the R language (11). RMA
performs a robust regression across background corrected
and normalized (5) perfect match data for all available
chips. For probe i of gene & on chip 7, the following model
is fit: loga(PM{) = o) + B + € where of*) is a
probe effect, ,B](.k) is the log- expression value for gene k,

and eg.“) is the minimized error term. Mismatch probe val-
ues are ignored. This model computes absolute expression
measurements which we then use to compute differential
expression by taking differences between RMA statistics on
pairs of chips. The authors of RMA present many compar-
ative tests done this way (6) RMA performs best when run
on many chips, while LCEM and MASS are based on pairs
of chips. We thus test RMA in two different ways in or-
der to provide a fair comparison. First, we run RMA on
all chips available in the data set in aggregate: 42, 25, and
12 chips for the Affymetrix spike-in, dilution and GeneL-
ogic spike-in data sets, respectively. Second, we normal-
ize and background correct all of the data and then run the
RMA probe summarization on individual chips. Because

the datasets we consider contain many more chips than a
typical microarray experiment, a fair assessment of RMA’s
performance lies somewhere in between its performance on
individual chips and its performance on all chips in a data
set.

The performance of a given method is evaluated using
a receiver operating characteristic (ROC) curve (10). For
each of our data sets, the true expression status (“changed”
or “unchanged™) is known for each probe set pair. An ex-
pression analysis method produces as output a ranking of
genes, from genes that exhibit extremely large changes in
expression down to genes that show no change at all. Set-
ting a decision threshold at any location in this ranked list
produces a list of true positives, false positives, true neg-
atives and false negatives. The ROC curve is generated
by varying the decision threshold along the ranked list and
plotting the percent of true positives as a function of per-
cent of false positives. The ROC score is the area under this
curve. A perfect method will rank all of the positives above
the negatives and receive a score of 1; a random ranking
will receive a score close to 0.5.

In practice, most users of microarray technology are not
interested in the performance of a given method beyond a
relatively small number of false positives. Therefore, we
also plot ROCp curves, which are simply ROC curves up to
a fraction of false positives P. We set the threshold P equal
to the fraction of false positives attained using MAS5 as the
manufacturer recommends, using both a p-value threshold
of 0.003 and a log ratio threshold of 1. Although 0.003
is a fairly low p-value, for the large sets of genes tested
in a microarray experiment, this is not a particularly strict
threshold. The fraction false positives obtained this way
are 0.00172, 0.00124, and 0.000566 for the dilution, latin
square, and spike-in examples respectively.

4 Reaults

Our results show that the LCEM provides high quality
expression change measurements across three different data
sets (Figures 4 and 5). In Figure 4, LCEM shows overall
ROC scores similar or better than RMA and MAS5 except
for RMA2 on the latin square data set. More detail can be
seen in the ROC plots in Figure 5. LCEM performs par-
ticularly well in comparison to the other methods on the
dilution examples, showing uniformly more true positives
than any other method at any threshold. RMA,> and MAS
Pval are marginally better overall on the latin square set, but
LCEM performs better than MAS Pval at typical thresholds.
LCEM is marginally best overall for the spike-in set, and is
clearly best at typical thresholds. One striking result is the
poor performance of the MASS5 LR, especially at the typical
thresholds shown on the bottom of Figure 5.

For comparing expression levels, the dilution examples
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Figure 5. Comparison of MAS5, RMA and LCEM on three different data sets: Each curve plots the
fraction of true positives as a function of false positives for varying classification thresholds. Curves
labeled “ROC” include all false positives, whereas curves marked “ROC*” include only false positives
up to a threshold determined by a MAS5 p-value of 0.003 and MASS log ratio of 1. Thus the ROC*
curves show performance at typical threshold settings. In each plot, the five series correspond to
the learned comparative expression measure (LCEM), Microarray Analysis Suite 5.0 log ratio (MAS
LR) and p-value statistics (MAS Pval), the Robust Multi-chip Average run on all N chips in the data
set (RMA_N) and on individual chips (RMA). The data set from which each curve was generated is
listed above each plot.



Table 2. True positive / false positive trade-offs for three data sets: Each row in the table lists the
number of false positives which must be suffered in order to find a given number of true positives
using five different comparative expression measures across three different data sets. These num-
bers are based on a hypothetical data set that contains 100 changed genes in a background of 10,000
unchanged genes and has expression patterns like those in the dilution, latin square and spike-in
data sets, respectively. The five measures used are LCEM, the MASS5 p-value (PV) and log ratio (LR),
and RMA on all N chips (RMA_N) and on individual chips (RMA).

Dilution data set false positives Latin square data set false positives Spike-in data set false positives
TP | LCEM Pval LR RMA25 RMA1 LCEM Pval LR RMA 42 RMA4 LCEM Pval LR RMA12 RMA;
10 0 2 344 1 2 0 0 0 0 0 0 0 0 0
20 1 3 770 1 20 0 0 0 0 0 0 0 0 0
30 1 3 1123 2 123 0 2 0 0 0 0 0 0 0
40 3 5 1545 12 371 1 13 0 0 0 0 0 0 0
50 14 16 1984 59 797 1 64 0 0 0 0 67 0 0
60 70 85 2479 211 1478 1 196 0 0 0 0 306 0 0
70 259 400 3137 623 2502 1 428 0 1 0 0 755 0 15
80 870 1481 4183 1622 4089 1 812 0 15 0 0 1515 0 264
9 | 2809 5135 6439 4125 6580 15 16 1428 4 428 304 374 2735 514 1744
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val . val ..
RVA[ 0758 ] RVA[ 0152 ] cantly less than the ROC scores of 0.970 and 0.949 for the
Rwa2s[ 0889 ] RMA_25 0365 latin square and spike-in sets (Figure 4). Similarly, ROC
el J el om scores over typical thresholds average 0.276 for the dilution
°c s s s ° s e set, 0.744 for the latin square set, and 0.620 for the spike-in
Latin Square Dataset R s Raaset set. On these challenging examples of small fold changes
wastRl 55—  wasir[ o350 ] LCEM clearly outperfor.ms the other _expression measures,
MAS Pval 0.981 | mas Pyal 0849 | expecially MAS LR, which performs little better than a ran-
RIA 0967 | rwa 0744 ' dom classifier at higher selectivities.
RMA_42 0.982 ] RMA_42 0.898 |
eenl___tow ] eml___om ] On the latin square examples, RMA 4, performs better
° o s s e ° o 2 7 F than all other methods. This is not surprising, because
Spikein Dataset oS  a es RMA, has access to all 42 chips in the dgta set, givin_g
wste[ o] vas L[ T2 ] a large advantage over the o'Fher methods. This advantage is
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Figure 4. ROC Values for MAS, RMA and
LCEM on three different data sets: Each fig-
ure plots the areas under the ROC curves in
Figure 5. Values are shown for the learned
comparative expression measure (LCEM), Mi-
croarray Analysis Suite 5.0 log ratio (MAS
LR) and p-value statistics (MAS Pval), the Ro-
bust Multi-chip Average run on all N chip in
the data set (RMA_N) and on individual chips
(RMA).

are the same on all 42 chips are particularly easy for the
regression-based method to determine as uniform. LCEM
may have performed less well on this data set because our
training set of dilution examples contains mainly examples
of small and medium changes of 1.1-4 fold, whereas the
smallest fold changes in the latin square set are 2 fold and
the mean fold change over 200 fold. Furthermore, the chips
used in the latin square study typically contain 11 probes
per gene, whereas our training data contained 16—20 probes
per gene.

In the latin square data set results shown in Figures 5
and Figure 4, data from a set of 56 genes were removed.
These genes (listed in the online supplement) were part of
the background, and thus were among the examples of un-
changed expression. MAS5, RMA and LCEM all judged



some examples of these genes as highly changed, to the
point where overall results on the dataset were affected. Be-
cause these outliers were observed independently with two
different software packages (MAS 5.0 and R/Bioconductor)
it seems likely they are a feature of the dataset, possibly due
to nonspecific hybridization. Of the methods considered
here, performance of RMA was effected most and LCEM
least (see online supplement), providing some indication
that LCEM is robust to unusual data patterns.

To provide a more intuitive interpretation of these results
as they could apply to practical microarray analysis, a ta-
ble of true positive / false positive tradeoffs is presented in
Table 2. Values in the table are scaled to represent an exper-
iment in which there are 100 genes with changed expression
between two samples and 10,000 genes with unchanged ex-
pression between the samples. The number of false pos-
itives which must be suffered in order to find 10 through
90 true positives is shown. True positive / false positive
tradeoffs on the dilution examples clearly show the strength
of LCEM. In every case LCEM generates fewer false pos-
itives than any other method, with the single exception of
a tie with RMA5 for 1 false positive in 20 true positives.
For high selectivity cases of 10-30 true positives, RMA,j is
second best while MAS5 Pval is second best for 40 or more
true positives. Overall, MAS LR and RMA; show very poor
performance, in most cases generating more than 10 times
as many false positives as LCEM and in some cases 100 or
even 1000 times more false positives. False positive rates
on the latin square examples are very low using any mea-
sure other than MAS5 LR. RMA 4, is uniformly best overall
on this data, which is unsurprising, as noted above. For 60
or fewer false positives RMA; performs well, generating no
false positives for some cases where LCEM and MASS5 Pval
generate 1 false positive. For 80 and above true positives,
LCEM and MASS5 Pval are very close and are both much
better than RMA,;. On the spike-in examples, all methods
except LR generate very few false positives. LCEM is best
overall by at least 23%. These true positive / false positive
tradeoffs show that RMA performs well at higher levels of
selectivity, MAS Pval performs well at lower levels of se-
lectivity, LCEM performs well at all levels of selectivity,
and MAS LR performs universally badly.

One striking feature of the MAS5 Pval results is the lin-
early sloped region at the left of the ROC curves for the
dilution and spike-in examples (Figure 5). The reason for
this shape is that many samples, including some false pos-
itives, are given a Pval of 0. ROCs are computed such that
ties are broken randomly, yielding a roughly straight line for
regions of equal measure. In the spike-in examples, about
80% of the 70 positive examples have a Pval of 0. In the
dilution examples, the slope of the region with Pval 0 is
lower then the following portion of the ROC, indicating that
a MASS5 Pval of O is less likely to indicate a true change than

a slightly higher Pval.

Figure 6 shows how LCEM values correlate with MAS
LR and RMA. Data shown is from a real world micorarray
study used in a screen of genes regulated by cMyc (20) in a
rat model. The portion of this data set used consists of six
Affymetrix RGU_34A chips. Three biological replicates of
two samples were performed, and the data shown are from
all nine possible pairwise comparisons between two groups
of three chips. The striped pattern in the Figure 6(A) is due
to rounding performed by MAS5. The most striking feature
in this plot is the cross pattern. This pattern indicates the
presence of many genes which the LR measures as highly
changed but which LCEM measures as unchanged. Because
the MAS LR generates 10-100 times more false positives
than LCEM, most of these points are probably false pos-
itives. The MAS LR has a clear bias towards false posi-
tives at low expression levels (see online supplement). This
effect is presumably due to mismatch correction, in which
mismatch signals, after processing to avoid negative expres-
sion, are subtracted from perfect match signals. If gene ex-
pression is low, then perfect match and mismatch signal will
be highly random with similar mean. The corrected values
will thus be fairly uniformly distributed close to zero. The
MAS LR is a log ratio of two such quantities, which will be
highly variable even if the original signals are the same.

Figure 6(B) plots LCEM versus RMA. The plot shows
that the metrics generally agree with one another, with most
points occuring on a diagonal line. Qualitatively, RMA ap-
pears to emphasize small differences near zero. When the
two methods strongly disagree, LCEM tends to be more
conservative. The correlation between RMA and LCEM
on the dilution examples is 0.976 for changed examples and
-0.0284 on unchanged examples. Thus, when genes have
changed expression RMA and LCEM agree very well on
how changed they are, but on unchanged examples LCEM
and RMA show little overall agreement or disagreement.

In order to gain insight into what information LCEM
was using as compared to RMA, we studied case examples
for which the two methods disagreed. Four types of data
patterns were examined: changed examples which RMA
predicts correctly and LCEM incorrectly, changed exam-
ples which LCEM classifies correctly and RMA incorrectly,
unchanged examples which LCEM classifies correctly and
RMA incorrectly, and unchanged examples which RMA
predicts correctly and LCEM incorretcly. See the online
supplement for examples from these four groups. We make
two main observations about these data patterns. First,
LCEM makes more use of information from the highest
and lowest 25% of probe values than RMA. In both true
and false cases where LCEM predicted changes and RMA
did not, probe values in the top of each set showed signifi-
cant differences, while the middle 50% of probe values were
similar. Second, LCEM measurements were more conser-
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Figure 6. Scatterplot of LCEM vs. RMA and
MASS Statistics: Each figure plots LCEM val-
ues versus the corresponding MASS5 log ratio,
MASS5 p-value and RMA values. Data shown
is from an independent data set (20). Many
genes for which LCEM is low show strong in-
dications of change under the MASS5 log ratio.

vative on genes with lower absolute expression. In many
cases where RMA predicted changed expression, correctly
or incorrectly, and LCEM did not, half or more probe val-
ues were very close to background. There is no bias against
low expressors in LCEM, as LCEM and RMA show similar
differential expression vs. average expression (see online
supplement).

5 Discussion

The Learned Comparative Expression Measure is a pow-
erful approach for evaluating gene expression changes in an
Affymetrix GeneChip experiment. From a user’s perspec-
tive, LCEM’s primary benefits, as inferred from the experi-
ments reported here, are four-fold. First, the method works
on any Affymetrix data set without requiring re-training.
Second, the method works well with data from a small num-
ber of GeneChips. Third, LCEM provides excellent ability
to discriminate between genes with changed vs. unchanged
expression at both higher and lower levels of selectivity.
Fourth, LCEM blends discriminative ability and accurate
quantitation of expression changes in a single statistic.

LCEM performs comparisons between two GeneChips.
We choose to focus on two-chip comparisons for a number
of reasons. First, to allow direct comparison with MASS5,
which operates only on pairs of chips. Second, the major-
ity of comparative microarray experiments involve a small
number of chips due to cost. Third, two-chip comparison
can easily be scaled up to any number of chips by perform-
ing all pairwise comparisons between experiment and con-

trol groups. And fourth, replicates in small comparative ex-
periments are usually biological rather than technical. Bi-
ological replicates come from different biological samples;
thus, equal expression levels between replicates cannot be
assumed. In this case, the utility of a multi-chip probe level
model is questionable.

Although machine learning techniques, and in particular
SVMs, have been used extensively to analyze microarray
data, to our knowledge LCEM s the first method to suc-
cessfully apply machine learning techniques to probe-level
microarray analysis. Any learning approach to this prob-
lem benefits from the large amount of available microar-
ray data. Indeed, the success of the LCEM depended in
part upon the availability of the GeneLogic dilution data
set. The examples extracted from this data set were con-
structed from real biological samples, emphasizing small
fold changes over large ones, and provide over 220,000 ex-
amples of changed gene expression. In comparison, spike-
in data sets are constructed with a limited number of artifi-
cial samples, and can provide comparatively few examples
of changed expression. Without the dilution examples, a
machine learning approach to this problem would likely not
have been successful.

An obvious extension to the LCEM would be to include
in each vector a representation of the mismatch probe data.
We tried several variants of this idea: order statistics of mis-
match probe values, mismatch values ordered by the value
of their corresponding perfect match probes, order statistics
of perfect match minus mismatch values, and order statis-
tics of perfect match minus mismatch values truncated to
0. Both log values and log ratios between chips were con-
sidered. In all cases where mismatch-derived data was pre-
sented to the learning algorithm, the resulting performance
was equal to or worse than when only perfect match data
was considered. This effect was observed whether mis-
match derived data was presented instead of or in addition
to perfect match data. We were thus unable to fruitfully
make use of the mismatch probe data.

An alternative approach to the LCEM would be to train
using regression, rather than a classifier. The regression ap-
proach is appealing, because one of our goals is to quantitate
expression changes. However, we chose SVM classifica-
tion over regression for two reasons. First, we had difficulty
quantitating the degree of change in training examples. Our
data extraction method allowed us to identify challenging
examples of changed genes with high confidence, but esti-
mates of fold change could not be obtained without heavy
reliance on uncertain expression measures. Second, we
found that the regression approach performed badly at dis-
criminating between changed and unchanged genes. Given
the high correlation between LCEM and RMA on genes
with expression changes, it seems that a regression based
approach is not required to provide good quantitation of ex-



pression changes.

Finally, one could imagine using alternative classifica-
tion algorithms or alternative SVM kernel functions in train-
ing the LCEM. Although, by performing some careful algo-
rithm and model selection, it might be possible to improve
the performance of the LCEM, we do not expect such an
improvement to be large. In practice, the SVM produces
state-of-the-art classification performance across a wide va-
riety of problem domains (19).

This paper represents a proof-of-concept for the LCEM.
Our next step is to improve its usability by mapping the
SVM outputs to probabilities using a sigmoid curve fit (21).
This is a straightforward, widely used method that would
yield, for each gene, a probability of changed expression,
allowing the users to better set thresholds. In future work,
we also plan to make a user-friendly version of the software
available for download.
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