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Electron-transfer dissociation (ETD) induces fragmentation along the peptide backbone by transferring
an electron from a radical anion to a protonated peptide. In contrast with collision-induced dissociation,
side chains and modifications such as phosphorylation are left intact through the ETD process. Because
the precursor charge state is an important input to MS/MS sequence database search tools, the ability
to accurately determine the precursor charge is helpful for the identification process. Furthermore,
because ETD can be applied to large, highly charged peptides, the need for accurate precursor charge
state determination is magnified. Otherwise, each spectrum must be searched repeatedly using a large
range of possible precursor charge states. To address this problem, we have developed an ETD charge
state prediction tool based on support vector machine classifiers that is demonstrated to exhibit superior
classification accuracy while minimizing the overall number of predicted charge states. The tool is
freely available, open source, cross platform compatible, and demonstrated to perform well when
compared with an existing charge state prediction tool. The program is available from http://
code.google.com/p/etdz/.
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Introduction

Electron-transfer dissociation (ETD) is a relatively new
technique for analyzing peptides and proteins by tandem mass
spectrometry. ETD induces fragmentation of positively charged
peptides or proteins by transferring electrons to them. As an
ion fragmentation technology, ETD has gained popularity
particularly based on its ability to preserve labile post-
translational modifications during the dissociation process.' ©
ETD is also able to dissociate large peptides and whole proteins,
thus providing a nice complement to collision-induced dis-
sociation (CID) for general proteomics analysis.

Although commercially available instruments now exist that
can measure the precursor mass and charge state accurately
for ETD tandem mass spectra,’ there still exists a class of
instruments, specifically the Thermo Scientific LTQ-ETD, for
which the charge states of the ETD spectra cannot be ascer-
tained from the isotope distribution of the precursor ion. And
because the precursor charge is a required parameter used by
database search tools, it is important to determine ETD charge
states; the absence of this information would require that all
precursor charge states be analyzed. This issue is magnified
for ETD data compared to typical tryptic CID data, as ETD

* To whom correspondence should be addressed. E-mail: engj@uw.edu.
" Department of Biochemistry.

¥ Department of Genome Sciences.

S Department of Electrical Engineering.

'Department of Computer Science and Engineering.

5438 Journal of Proteome Research 2070, 9, 5438-5444
Published on Web 08/23/2010

samples are treated with a protease, such as Lys-C, with the
specific intent of generating larger peptides that have a higher
charge state distribution. And searching the large number of
all possible charge states is both computationally expensive and
presents unnecessary complications for downstream analysis.

To address this problem, we present an ETD charge state
prediction tool that was developed using support vector
machine (SVM) classifiers.®® The specific goal of this tool is to
maximize correct charge state determinations, thereby mini-
mizing unnecessary sequence database searches due to spuri-
ous or unknown precursor charge states for a given spectrum.
It should be noted that several tools, such as Charger'® and
the Charge Prediction Machine (CPM),"! have been developed
previously to address this specific problem. Charger, a com-
mercial software tool from Thermo Scientific, performs spectral
autocorrelations to identify complementary ions that sum to
the precursor mass thus elucidating the precursor charge.
Charger falls back to linear discriminant analysis when the
charge state cannot be determined by the spectral processing.
CPM is a classifier based on Bayesian decision theory and,
unlike Charger, is freely available for academic users. CPM is
written in C# and is available as a Windows executable that
can be run on the Linux command line through the Mono
project.'? Because Charger is a commercial tool that we do not
have access to, we evaluate our ETD precursor charge state
classification performance relative to CPM. In summary, we
demonstrate a novel implementation of an electron transfer
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dissociation charge prediction tool that shows favorable per-
formance compared to an existing published tool. It is freely
available to both academic and commercial groups and
importantly is open source with a liberal license.

Materials and Methods

Data. To develop a charge state prediction tool for LTQ-ETD
tandem mass spectra (MS/MS), the first requirement is to
acquire a set of ETD MS/MS spectra where the precursor charge
states are known. From this set we extract relevant features
and train a classifier. MS/MS spectra from the Orbitrap-LTQ-
ETD make good surrogates for LTQ-ETD data. The actual MS/
MS scans are acquired in the same ion trap mass analyzer,
having the same characteristics as LTQ-ETD MS/MS data, but
the precursor scans are acquired at high resolution and mass
accuracy in the Orbitrap analyzer. The Orbitrap precursor scans
provide both an accurate precursor mass and charge state for
a majority of the MS/MS scans. From a collection of Orbitrap-
LTQ-ETD MS/MS spectra, we perform sequence database
searches to identify peptide sequences and filter the results to
isolate high confidence identifications with known precursor
charge states. From this set of identified spectra, we remove
redundancies to generate a unique set of peptides, where
“unique” is defined as having a unique peptide sequence,
modification state, and charge state combination. Finally, from
the list of unique identifications, we reserve a subset of the
data to serve as a test set for our classifier and use the
remaining data as the training set.

A collection of 71 Thermo Orbitrap-LTQ-ETD LC—MS/MS
runs of S. cerevisiae were acquired from the Coon Lab at the
University of Wisconsin.'®> These data were searched using
Mascot,'* X!ITandem,'® SEQUEST,'® and OMSSA'” to collate a
list of known identifications with known charge states. The data
were processed as follows. The raw data files were converted
to mzXML'® using the ReAdW program. The mzXML files were
directly searched with SEQUEST and X!Tandem. MGF files were
generated from the mzXMLs using MzXML2Search, and these
were searched by OMSSA and Mascot. Common search pa-
rameters include alkylated cysteines as a static modification,
oxidized methionine as a variable modification, ETD specific
c and z- ion fragmentation, Lys-C enzyme (full digestion for
Mascot and OMSSA, semi for X!Tandem and SEQUEST), and
yeast ORFs database from SGD' (including reverse decoy
sequences). For each search engine, search hits from all runs
were converted to the pepXML format,*® combined, and
processed through the PeptideProphet?! algorithm to compute
peptide level posterior error probability assignments. To gener-
ate a conservative and accurate set of known training and test
examples, a 0.95 minimum probability cutoff was applied to
the search results. This minimum probability cutoff corre-
sponds to a 0.6, 0.3, 0.3 and 0.3% PeptideProphet estimated
false discovery rate for Mascot, X!Tandem, SEQUEST, and
OMSSA, respectively. From the combined set of search results
from all four search engines that pass the probability cutoff, a
unique peptide set was extracted. As noted above, occurrences
of the same peptide with different charge and modification
states are treated as being unique. The result is a collection of
17 902 unique identifications used for analysis. A 20% subset
of these spectra, 3580 entries, was selected randomly and
reserved exclusively for testing. This test subset was selected
from the overall set such that the proportion of entries for each
charge state was maintained. The remaining 80% subset, 14 322
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Table 1. Summary of Orbitrap-LTQ-ETD Training and Test
Data Sets

charge combined training count test count
2+ 2685 2148 537
3+ 8261 6609 1652
4+ 4967 3974 993
5+ 1584 1267 317
6+ 346 277 69
7+ 59 47 12
Totals 17902 14322 3580

Table 2. Summary of LTQ-ETD Test Data Sets, Both Total and
Unique Peptides

charge test count nonunique test count unique
2+ 445 251
3+ 2840 910
4+ 1626 581
5+ 374 144
6+ 121 46
7+ 16 5
Totals 5422 1937

entries, was used for training. The summary of the Orbitrap-
LTQ-ETD training and test sets are shown in Table 1.

A second independent test data set of S. cerevisiae were
prepared and acquired on a Thermo LTQ-ETD XL as previously
described (see data set 2 in ref 22). Because the precursor
charge states of these tandem mass spectra were unknown,
confident identifications needed to be obtained first to assign
the correct precursor charge state to each spectrum. To obtain
the identifications, the data were searched with SEQUEST
using the same parameters as above. Each spectrum was
analyzed assuming multiple precursor charge states 2+ through
7+ and processed through the PeptideProphet algorithm. The
putative identifications were filtered by applying both 0.95
PeptideProphet probability and 0.05 SEQUEST E-value®® cut-
offs, which left no decoy matches passing the filter. After
filtering, there were 10 peptide spectrum matches (PSMs) of
the same spectrum interpreted as different charge states; a
majority of these cases identify the same sequence where the
smaller assumed charge state matches a subset of the identified
peptide from the larger assumed charge state. These 10 entries
were discarded to arrive at 5422 high confidence PSMs. From
this set of PSMs, a unique set of peptides (unique peptide,
modification, and charge state) were extracted from the full
set with the goal of removing repeat/redundant identifications
of the same peptide sequence. The full set of 5422 LTQ-ETD
spectra and the unique set of 1937 spectra compose the second
test set, summarized in Table 2.

Features. Each data point used to train or test a classifier
consists of a class label and several features. In our application,
the class labels are the precursor charge states and the features
are extracted from the set of confidently identified ETD tandem
mass spectra. As noted previously, significant diagnostic fea-
tures from these spectra are the intense charge reduced
precursor peaks. In contrast to the CPM tool, which sums and
normalizes charge reduced precursor intensities and represents
each as a single value for each assumed precursor, we extract
the individual intensities associated with each charge reduced
precursor and keep them as separate features. By extracting
and keeping these features separate, it is hypothesized that the
classifier will make use of the distribution of the intensities to
improve discrimination. Specifically, the individual charge
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Table 3. Twenty-seven Charge Reduced Precursor Features of
Which 18 Represent Unique m/z Values?

2+ 3+ 4+ 5+ 6+ 7+
24+ 3+++ A+ttt Sttt 6Httttt Tttt
2+ 3+++ Attt Stttte Bttt T
3+ 4tter bt 6btttes Tttt
Abees Bbdees Bbddees Tttt
5+---. 6++---. 7+++--.-
[ IR Tgfooons
Tdoeenes

“The following entries share the same charge reduced precursor m/z
values and are represented only once in the feature table. 2++ same as
3+++, 4++++, 5+++++, 6++++++, and 7+++++++. 2+ same as
4++-- and 6++++--. 3++- same as 6++++--. 3+ same as 6++-+--.

reduced precursor features are determined by taking the
maximum intensity value around each computed m/z. Each
charge reduced precursor intensity value is then normalized
to a percentage of the base peak. There are 27 total features
associated with charge reduced precursors for charge states 2+
through 7+, as shown in Table 3. However, 13 of the features
share some redundancy. For example, 2+- is the same mass-
to-charge (m/z) value as 4++-- and 6+++--- and would
extract the same feature value. Removing the redundancies
yields 18 unique charge reduced precursor features used for
the analysis.

Potential water (H,O) and ammonia (NH;3) neutral losses
from the charge reduced precursor peaks were also used as
input features. Similar to the charge reduced precursor features
above, we extracted intensities at the expected m/z for each
neutral loss feature, where a single maximum intensity value
encapsulates both water and ammonia loss. The neutral loss
intensities are also normalized to the base peak. The neutral
loss features share no common m/z, unlike the charge reduced
precursor features, so there are 27 neutral loss features. In total,
45 features (18 charge reduced precursor and 27 neutral loss)
were extracted from each spectrum and used for classification.
Please see Supporting Information for additional information
on the feature extraction program.

Classifier. We predict the charge state of a given spectrum
using a support vector machine (SVM) classifier. SVMs perform
classifications by constructing an N-dimensional hyperplane
that optimally separates data into two categories. The data
vectors near the hyperplane are termed the support vectors. If
the data are not linearly separable, then the original data are
transformed into a new, higher dimensional space using a
kernel function with the hope that the data are linearly
separable in that new space. SVMs have been used previously
to successfully predict charge state of CID LC—MS/MS spec-
tra.?*

The LIBSVM software package®® was employed for this work
and all analysis tools were written in Java. Both linear and radial
basis function (RBF) kernels were evaluated, and the RBF kernel
was selected for further investigation because of better clas-
sification performance. The accuracy of a trained SVM is
dependent on the selection of the model parameters. The RBF
kernel has two variables, C and gamma, that were optimized
for the problem at hand; this procedure is necessary to improve
the generalization versus overfitting behavior. The C is a cost
parameter that controls the trade-off between minimizing
training errors and maximizing the so-called “margin” between
the hyperplane and the training data. The parameter gamma
determines the RBF width. We used the LIBSVM tool grid.py
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to determine the optimal values for C and gamma for each
trained classifier (see Supplemental Table 1 for a summary of
these parameter values for each classifier, Supporting Informa-
tion). C and gamma values that gave the best 5-fold cross
validation accuracy on the training data were chosen for the
SVM models.

Because SVM is inherently a binary classification algorithm,
we generalize to support multiple classes by training multiple
one-vs-all classifiers. Each classifier determines whether a
particular spectrum belongs to a particular charge class or not.
Six different single charge classifiers were trained, one per
charge 2+ through 7+. In the case where none of the single
charge classifiers report a class, we fall back to using additional
SVMs. One SVM is trained with 2+ and 4+ charged spectra as
positive examples and all other spectra as negative examples
since these two charge states share a common charged reduced
precursor feature (as noted in the footnote associated with
Table 3). Another pairwise SVM is trained for charge pairs 3+
and 6+ as these two charge states share two common charge
reduced precursor features. A third pairwise SVM is trained for
charge pairs 5+ and 7+. Although the 5+/7+ charge states
share no features in common, they are grouped together in a
pairwise SVM as this classifier is also used to predict a four
charge outcome as noted below. Thus, in addition to the six
single charge SVMs, we trained three multiple charge SVMs to
classify charge states 2+/4+, 3+/6+, and 5+/7+. If none of
the single and pairwise charge SVMs confidently assigns a
charge state to the spectrum, then the classifier checks if the
alternate hypothesis of the 5+/7+ charge SVM passes the
classification threshold. If it does, then charges 2+, 3+, 4+,
and 6+ are reported because these represent the set of possible
charges as the alternate hypothesis to the 5+/7+ classifier.
Otherwise all six charge states are reported. The prediction work
flow is summarized in Figure 1.

The classifiers were trained using probability estimates. The
LIBSVM software estimates probabilities by fitting a sigmoid
function that maps SVM outputs to posterior probabilities
where the parameters of the sigmoid function are estimated
by minimizing the negative log-likelihood function using 5-fold
cross validation. A default probability cutoff of 0.98, which is a
user setting that can be changed, is applied to the predictions
used in the subsequent analysis. For each SVM model, charge
state predictions with a probability score greater than the
default cutoff are reported.

Results and Discussion

A correct precursor charge prediction is defined as the
correct precursor charge being present in the set of one or more
predicted charges for a spectrum. One could achieve ~100%
prediction accuracy by always returning all six charge states
for each query, but this comes at the expense of downstream
analysis where each spectrum would require six separate
database searches. So there is a trade-off between maximizing
the ability to correctly predict the precursor charge for a
spectrum (allowing multiple predictions) versus minimizing the
number of charge predictions returned by a classifier. In an
ideal scenario, one would correctly predict a single charge for
each query spectrum. However, in order to maximize actual
charge prediction sensitivity, multiple charge state predictions
are usually required for at least a subset of the spectra. In fact,
the CPM tool recommends that users set their relaxation
parameter to 1.75, which generates a target of 1.75 charge state
predictions for each input query. In practice, each additional
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Figure 1. Overall ETD precursor charge state classification scheme. Single charge classifiers are applied first. If no charge state is
assigned by any of those classifiers, then the multiple charge classifiers are applied next. If all of those fail to report a charge, then the
overall classifier defaults to reporting charges 2+, 3+, 4+, and 6+ based on the negative result from the 5+/7+ charge classifier in the
second stage.
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Figure 2. Accuracy versus charge:scan ratio performance comparison of the SVM classifier and CPM on the test data sets. Both tools
were run with a range of input options, varying the relaxation parameter in CPM and varying the probability cutoff in the SVM classifier.
Performance of the two classifiers at the default settings (1.75 relaxation parameter for CPM and 0.98 probability cutoff for SVM) are
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highlighted/labeled on the plots.

charge state prediction requires a separate database search,
which is the main cost that we are trying to minimize while
maintaining prediction sensitivity. Thus, the goal is to achieve
accurate, high prediction sensitivity while minimizing the total
number of charge state predictions.

To evaluate the performance of our classifier, we apply the SVM
models to both the Orbitrap-LTQ-ETD and LTQ-ETD test data sets.
These data sets are also input to CPM for comparison (CPM version
1.0.0.11 using model file Charges2—7yeastTrypsinLysC081027.etdc).
For the SVM classifier, we vary the probability cutoff from 0.5 to 1.0.
Similarly for CPM, we vary the relaxation parameter from 1.0 to 6.0.
The performance of the two charge state classifiers is summarized
in Figure 2. The plots chart classification accuracy versus “z:
scan ratio” (i.e., charge-to-scan ratio or the average number
of charge states predicted per spectrum). In this evaluation,
optimal performance corresponds to 100% accuracy at a z:scan
ratio of 1.0. The performance of the classifiers at their default
settings (0.98 probability cutoff for SVM models, 1.75 relaxation
parameter for CPM) are noted in the charts as the marked data
points with listed coordinate values. Although both tools
demonstrate very good performance, this analysis shows that
the SVM classifier outperforms CPM with respect to both

accuracy and z:scan ratio in all three data sets evaluated. For
example, with respect to the Orbitrap-LTQ-ETD data set, the
SVM classifier achieved 99.55% accuracy at a 1.26 z:scan ratio
whereas CPM achieved 99.39% accuracy at a 1.95 z:scan ratio
at default settings. On the LTQ-ETD nonunique data set at
default settings, the performance was 99.06% accuracy at 1.45 z:
scan ratio for the SVM classifier and 98.82% accuracy at 1.91 z:
scan ratio for CPM. And for the LTQ-ETD unique peptide data
set at default settings, the performance was 98.92% accuracy
at 1.53 z:scan ratio for the SVM classifier and 98.71% accuracy
and 1.92 z:scan ratio for CPM. The SVM classifier is able to
achieve either higher accuracy at the same z:scan ratio or a
lower number of z:scan predictions at the same classification
accuracy compared with CPM across a broad range of settings
on all test sets.

The performance of the SVM classifier as a function of
precursor charge state are shown in Table 4 and Supplemental
Tables 2 and 3 (Supporting Information) for the Orbitrap and
two LTQ test sets, respectively. The results in these tables
demonstrates that the SVM classifier performs well across the
range of precursor charge states and is not biased toward
superior performance for any specific precursor charge. The
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Table 4. Accuracy by Precursor Charge State on the
Orbitrap-LTQ-ETD Test Set Using a Probability Cutoff of 0.98

accurate all charge
charge test count predictions % accurate predictions®
2+ 537 537 100.0% 2
3+ 1652 1650 99.9% 10
4+ 993 989 99.6% 13
5+ 317 312 98.4% 27
6+ 69 67 97.1% 3
7+ 12 9 75.0% 3

“Number of instances that were assigned all six (2+ through 7+)
charge states. These instances were not classified at or above the
probability threshold by any of the SVM models.

Table 5. Accuracy by Precursor Charge State on
Orbitrap-LTQ-ETD Data for PSMs with PeptideProphet
Probability Values of 0.5 to 0.8

Accurate All Charge
Charge Test Count Predictions % Accurate Predictions”
2+ 4684 4677 99.9% 113
3+ 6267 6244 99.6% 148
4+ 3392 3358 99.0% 64
5+ 1294 1250 96.6% 262
6+ 286 272 95.1% 25
7+ 36 28 77.8% 5

“These results reflect precursor charge prediction performance for
spectra of lower confidence identifications. ” Number of instances that
were assigned all six (2+ through 7+) charge states. These instances were
not classified at or above the probability threshold by any of the SVM
models.

results also show that the classifier rarely resorts to reporting
all seven charge states for a spectrum, indicating that the single
and pairwise charge SVMs are effective in accurate charge
predictions. Similarly, Table 5 demonstrates SVM classifier
performance on spectra of lower confidence identifications.
The SVM training and tests sets derived for the analysis
presented in this paper used spectra of very confidently
identified peptides in order to obtain accurate precursor charge
state information but more importantly to generate training
and test sets that did not contain the same duplicate peptide
sequences. To test how the SVM classifier performs on less
confidently identified peptides of presumably lower quality
spectra, spectra of PSMs with PeptideProphet probability 0.5
to 0.8 from the Mascot searches of the Orbitrap runs were
isolated and subjected to the SVM classifier. The predicted
charge states were compared against the Orbitrap MS1 derived
precursor charge states and summarized in Table 5. The z:scan
ratio of the charge predictions for this data set is 1.58 with an
overall classification accuracy of 99.19%. The results show that
the prediction accuracy remains high for this very large set of
less confidently identified spectra.

As the z:scan ratio of predicted charge states is lowered, this
directly influences subsequent database search times due to
having to search a smaller number of predicted charge states.
However, there are intuitive but less obvious benefits of
minimizing the z:scan ratio of predicted precursor charge states
with respect to overall peptide identification performance. It
is expected that as the z:scan ratio is reduced, there would be
an associated reduction in “distracting” peptide identifications
due to the analysis of fewer predicted charge states which in
turn would improve overall peptide identifications. To test this
hypothesis, the SVM classifier was applied to all spectra in two
of the LTQ-ETD runs. For this analysis, ETD precursor charge
states from the two runs were predicted using a range of
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Figure 3. Plot of PSM as a function of z:scan ratio from two LTQ-
ETD runs. PSM counts are determined based on SEQUEST
E-values and PeptideProphet at a 1% FDR. In both analysis, the
number of PSMs tends to increase as z:scan decreases indicating
the benefits in minimizing superfluous charge predictions to the
PSM identification rate.

probability cutoffs (0.5 to 1.0) that resulted in a range of z:scan
ratios (1.38 to 5.99). These were searched by SEQUEST and both
E-value based analysis and PeptideProphet analysis were
performed using the same search conditions and analysis
parameters as applied previously. A plot of the resulting PSM
count vs z:scan ratio is shown in Figure 3 where PSM counts
were determined at a 1% FDR. Both analyses exhibit a distinct
trend toward a higher number of PSMs as the z:scan ratio is
reduced. This shows the clear benefit that minimizing the
number of charge predictions has on improving peptide
identifications.

There were two primary motivations behind developing a
new ETD charge state prediction tool. The first motivation was
that the existing tools that perform this function, Charger and
CPM, both have various restrictions that did not lend them to
be suitable tools for our analysis pipeline. Charger is a com-
mercial Windows program available from Thermo Scientific
while our primary analysis is performed on Linux systems using
custom and open source tools. CPM is freely available to
academic users. However, the source code to CPM is not
distributed. It is primarily a Windows tool with Linux command
line execution dependent on third party software support
(Mono), and more importantly, the software has redistribution
restrictions that do not allow it to be incorporated into and
distributed with existing freely available and open source
pipelines. Thus, we developed this ETD charge state prediction
tool so that there is an unencumbered software application that
is freely available, can run on multiple operating systems, and
can be easily extended from the current Java implementation
to other programming languages such as C++, Python, and
Perl because of LIBSVM’s cross language compatibility. The
existing tool takes a collection of spectra in the dta, ms22° or
mgf formats as input and returns the predicted charge states
in a tab-delimited text file, a collection of .dta files, an .ms2
file, or an .mgf file.
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The second motivation behind developing this tool was to
evaluate the potential for better classification performance than
previously demonstrated due to novel use of classification
features. As noted above, the goal was to maximize accuracy
while minimizing the z:scan ratio. Charger applies a signal
processing approach with a fallback to linear discriminant
analysis whereas CPM trains a classifier based on Bayesian
decision theory and Bayesian discriminant analysis. With
respect to the various types of classifiers available to apply to
this problem, a major distinction between the performance of
such tools is the discriminative quality of the actual underlying
training/test features. Although our SVM classifier uses a subset
of the features that CPM uses, we keep the individual features
separate. The hypothesis is that the distribution of the charge
reduced precursor peaks, specifically the set of intensities at
each expected charge reduced m/z mass for each hypothesized
precursor charge, is more discriminative than summing and
then normalizing intensities to a single value for the charged
reduced precursor peaks at each hypothesized precursor charge
(which CPM does). We were not able to benchmark the Charger
program but CPM was compared favorably against Charger in
its publication. CPM itself performs extremely well, so dem-
onstrating significant improvements over its performance is
difficult. However, we do show that on the test data sets our
classifier performs favorably compared to CPM across a broad
range of settings. Thus, we have successfully developed a
classifier that performs accurate ETD precursor charge state
predictions while minimizing the total number of predictions,
thereby directly minimizing the number of associated sequence
database searches.

Conclusions

We developed an ETD precursor charge state classifier using
a collection of SVMs that exhibits high accuracy and sensitivity
while maintaining a low total number of overall charge state
predictions. Although functional in its current stand-alone
implementation, our classifier is meant to be incorporated into
software tools and pipelines and work toward this goal has been
initiated. Importantly, the tool is not only freely available but
it is open sourced with an Apache 2.0 license. Current alterna-
tives do perform very well, as demonstrated by the CPM
analysis here, but are either commercial tools or are freely
available to academic users but not open sourced and not
amenable to being modified or redistributed. Thus we present
an ETD precursor charge state classifier that will hopefully
address an unmet need in the proteomics community.
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