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Abstract
The problem of identifying the proteins in a complex mixture using tandem mass spectrometry can
be framed as an inference problem on a graph that connects peptides to proteins. Several existing
protein identification methods make use of statistical inference methods for graphical models,
including expectation maximization, Markov chain Monte Carlo, and full marginalization coupled
with approximation heuristics. We show that, for this problem, the majority of the cost of
inference usually comes from a few highly connected subgraphs. Furthermore, we evaluate three
different statistical inference methods using a common graphical model, and we demonstrate that
junction tree inference substantially improves rates of convergence compared to existing methods.
The python code used for this paper is available at http://noble.gs.washington.edu/proj/fido.
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1 Introduction
In tandem mass spectrometry, proteins in a mixture are digested into peptides, which are
separated by hydrophobicity using liquid chromatography (LC) and then further separated
by their mass-to-charge ratio (m/z). At each combination of elution time and m/z, the
population of peptides is subsequently fragmented to produce an MS/MS spectrum (Figure
1). This spectrum can be thought of as a collection of statistics that describe the population
of peptides. Using existing tools [1], each observed MS/MS spectrum is matched to the
peptide that would theoretically produce the most similar statistics. Matched peptide
spectrum pairs can be assigned probability-like scores, which estimate the probability that
the match is correct [2, 3]. By modeling the relationship between proteins and their
constituent peptides, the resulting bipartite graph on proteins and “peptide spectrum
matches” (PSMs) can be used to perform statistical inference on the set of proteins initially
present in the sample. Because the ultimate goal of many tandem mass spectrometry
experiments is protein identification, the primary output of the statistical inference
procedure is a posterior probability distribution over proteins. Performing accurate inference
is of crucial importance; even small errors can permute the ranking of protein posteriors, and
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result in a different set of identified proteins. Efficiency of inference is also paramount; data
analysis must be substantially faster than the acquisition process.

As mass spectrometry-based proteomics has grown in prominence, several statistical
procedures for protein identification have been proposed. These statistical methods for
inference fall into two general classes. The first class is comprised of methods that conflate
inference and modeling; they are described procedurally, without derivation from
assumptions, and operate in a manner similar to EM, iteratively computing protein scores
until convergence is reached. Examples of these methods include ProteinProphet [4] and
EBP [5]. The second class of methods emerged in an attempt to improve upon the reliability
of methods from the first class; these new methods employed models derived from formally
stated assumptions. Methods in this second class do not conflate modeling with inference,
and so they are are more robust to different experimental conditions. Examples of methods
in this second class include methods which compute posterior probabilities with
enumeration (Fido [6] and a hierarchical Bayesian model [7]) or with Gibbs sampling, a type
of Markov chain Monte Carlo (MCMC) [8].

The methods in the second class have gained popularity due to their statistical rigor and
robustness to large data sets [9]; however, in order to perform exact inference, these
methods all have runtimes that may become exponential in the total number of proteins
found in each connected subgraph. As mass spectrometry data sets become larger and more
complex, performing rigorous inference may become prohibitively expensive.

The junction tree (also called “tree decomposition”) has been used to uncover structure in
graphical models that would permit exact inference to be performed much more efficiently
than with naive enumeration. Specifically, tree decomposition has been used to perform
inference on models of gene expression [10] and to estimate probabilities in pedigrees with
loops [11]. However, the efficiency of marginalization with junction trees depends on the
connectivity of the graph analyzed: some sparsely connected graphs can be decomposed into
junction trees where inference becomes trivial, while other highly connected graphs have no
performance benefit from junction tree inference. To our knowledge, tree decomposition has
never been applied to MS/MS protein inference, and so the practical benefit on protein
inference graphs is unknown.

In this paper we use an existing state-of-the-art model [6] and compare the computational
costs of using four different inference methods: marginalization by enumeration, two
varieties of Gibbs sampling, and junction tree marginalization. We apply these methods to
three data sets from organisms of varying biological complexity: H. influenzae, yeast, and C.
elegans. We show that the computational cost of protein inference is dominated by a small
number of difficult subgraphs, which each contain several proteins. Furthermore, we show
that inference can be performed much more efficiently by using the junction trees, which
can compute high-quality posteriors on these graphs in a fraction of the time required by
naive enumeration and Gibbs sampling.

2 Materials and Methods
2.1 Data sets

For all of the inference methods we compare, the connectivity of the protein-to-peptide
graphs and the coverage for the experiment determines the difficulty of protein inference.
We analyzed the complexity of computing protein posteriors using protein lysate data from
three model organisms of varying complexity: H. influenzae, S. cerevisiae, and C. elegans.
For each data set, the spectra were searched against a database comprised of the target
organism’s proteome and a set of decoy proteins. The net connectivity of these target and
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decoy databases, as well as the coverage of the experiment, determine the complexity of
protein inference for each data set. For all data sets, we cluster proteins adjacent to identical
peptide sets. This can be trivially accomplished by building a dictionary of peptide sets to
their adjacent proteins. Clustering the proteins in this way ensures that the complexity of the
graph results from distinct proteins that are a challenge to resolve during protein inference.
Proteins within the same cluster cannot be distinguished without some additional evidence
or prior belief; therefore, clustering is performed to guarantee that computational cost results
only from biologically interesting connectivity.

2.1.1 H. influenzae—Trypsinated H. influenzae lysate was separated by LC and subjected
to MS/MS on an ESI-ITMS instrument. Using SEQUEST [12], mass spectra were searched
against the H. influenzae proteome (using the UniProt database) combined with a decoy
database containing the human proteome. PSMs were scored using PeptideProphet (using
default parameters) with no minimum PSM score. This data set contains several highly
connected subgraphs, but mostly due to the complexity of the decoy database. As expected,
peptides associated with decoy proteins generally receive low scores, and so naive
enumeration can be performed by pruning very low-scoring peptides, which essentially
introduce no error.

2.1.2 S. cerevisiae—Lysate from mid log phase S. cerevisiae strain S288C was
trypsinated and separated using LC and subject to MS/MS on an LTQ instrument. The
resulting tandem mass spectra were searched using Crux [13] against a database containing
all yeast ORFs (using the SGD database) and a shuffled decoy copy of each ORF. PSM
scores were assigned using PeptideProphet (using default parameters) and with a minimum
PSM probability of 0.05. A couple of moderately large connected subgraphs cannot be
separated by pruning low-scoring peptides, and so probability estimates from those
subgraphs must be approximated if marginalization is to be performed efficiently.

2.1.3 C. elegans—C. elegans of various developmental stages were grown on plates
containing E. coli and cleansed of bacterial contamination using sucrose floating. The lysate
was sonicated and digested with trypsin and subject to six technical replicate LC-MS/MS
analyses on an LTQ instrument. The tandem mass spectra were searched against a database
containing the C. elegans proteome (UniProt), known contaminants, and a reversed decoy
copy of every target protein. PSMs were scored with PeptideProphet (using default
parameters), and with a minimum PSM score of 0.05.

2.2 Protein inference model
Protein inference requires definition of a model, which provides an interpretable score for
every proposed set of present proteins. Previously, we have introduced the Fido model and
have shown that it performs similarly to established methods [6]. Originally, infererence
with Fido was performed using marginalization by enumeration. We will briefly describe the
model employed by Fido.

Qualitatively, the Fido model creates a directed acyclic graph (DAG) associating proteins to
their constituent peptides and spectra to their best-matching peptides. Each protein has an
independent prior probability γ of being present. Every peptide has an independent
probabilty α of being emitted by an adjacent present protein and an independent probability
β of being observed incorrectly due to noise. Each spectrum depends solely on its best-
matching peptide, and each peptide is associated with only its best-matching spectrum. A
more substantial description can be found in [6]. The conditional probability that each
spectrum is observed given the state of its associated peptide is estimated by dividing the
posterior estimate from Peptide-Prophet or Percolator by the estimated prior probability.
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Because each spectrum depends only on its best-matching peptide and each peptide is
conditionally independent of every other peptide given the set of proteins, it is possible to
efficiently compute the likelihood of a set of proteins by marginalizing over the set of
peptides in linear time.

For simplicity, the edge between each peptide and spectrum can be contracted to replace
each associated peptide-spectrum pair with a PSM, resulting in a bipartite graph between
proteins and PSMs, shown in Figure 2. The Fido model efficiently computes the likelihood
and prior probability for any proposed set of present proteins; therefore, posteriors for each
protein can be computed by marginalizing over all proteins in a connected subgraph. This
marginalization is performed by enumerating all possible protein configurations for a
connected subgraph; the runtime required for this is exponential in the number of proteins in
a connected subgraph.

It is important to note that the Fido model shares similar characteristics to the model used by
MSBayes, a method that performs inference with Gibbs sampling. Both models define an
independent prior probability for each protein and a conditionally independent distribution
for each peptide; however, MSBayes does not exploit this conditional independence and
jointly samples peptides and proteins. MSBayes also has a more complex emission model;
all peptides, not only those paired with an observed spectrum, are considered, and each
adjacent peptide-protein pair is given a unique emission probability. This emission
probability is predicted using peptide detectability data from another experiment. In contrast,
Fido uses a single emission probability α for all peptides and proteins, and estimates its
value empirically.

2.3 Approximate inference with the Fido model
A key advantage of the Fido method is the ability to compute high-quality approximations
by transforming connected subgraphs into graphs that are equivalent or graphs that will
result in very similar posterior estimates. There are two main graph transformations that
make this possible: protein clustering and peptide pruning.

The first graph transformation, protein clustering, merges together proteins that are
connected to identical sets of observed peptides. Because the protein nodes in the graph have
identical connectivity, there will be several equivalent protein sets that will result in the
same score; therefore, these equivalent configurations can be collapsed using a binomial
transformation, effectively enumerating the number of proteins in the cluster that are
present. Thus, a substantial speedup is observed, even though no error is introduced.

The second graph transformation, pruning, exploits the fact that degenerate peptides (i.e.
peptides that are shared among multiple proteins or protein clusters) introduce a dependency
between the proteins only when the scores of these peptides are nonzero. Because of this,
degenerate peptides identified with scores of exactly zero can be split so that each protein or
protein cluster that is adjacent to the peptide is now adjacent to a unique copy. Pruning can
be used to split apart connected subgraphs containing many proteins; thus, an equivalent
graphical inference problem is created, but where fewer proteins must be jointly
enumerated. Likewise, when peptide scores are approximately zero, pruning can be used to
separate large connected subgraphs at the cost of a small amount of error introduced. Thus,
the user sets a threshold indicating the maximum number of proteins or protein clusters in a
connected subgraph and a greedy algorithm separates the graph by pruning the lowest-
scoring peptides. When a high marginalization cost is permitted, all proteins with
dependencies are enumerated jointly, and no error is introduced. Any desired efficiency can
be achieved at the cost of greater error in the posterior probability estimates.
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3 Results
3.1 Inference procedures

Posterior probabilities for the Fido model can be estimated using alternative approaches to
naive enumeration. In this paper we compare four procedures and evaluate their efficiency
on real protein inference problems: they are marginalization by enumeration, Gibbs
sampling, collapsed Gibbs sampling, and junction tree inference. Before the
marginalization-based inference procedures (i.e. marginalization by enumeration and
junction tree inference) are run, pruning can be used to achieve smaller connected
subgraphs; peptides with nonzero scores can be pruned to compute approximate posteriors
with varying degrees of error and speed. A similar comprimise between runtime and
accuracy can be achieved with sampling procedures by varying the depth of sampling.

3.1.1 Enumeration—Marginalization can be trivially performed by enumerating and
summing over all possible protein configurations for each connected subgraph; however, the
cost of enumeration is exponential in the number of proteins in a connected subgraph, and is
prohibitively slow when many proteins share a subgraph.

3.1.2 Gibbs sampling—A popular approach to approximating posteriors, MCMC, does
so using a random walk through the space of unobserved random variables. This random
walk is chosen so that its corresponding Markov chain has a stationary distribution equal to
the desired posteriors. Gibbs sampling is a specific random walk procedure, which starts
with some initial state for the unobserved random variables and proposes several random
state changes. A value proportional to the probability of each proposed configuration is
computed, and a new configuration is selected based on these relative proportional
probabilities.

In our Gibbs sampler, we sampled from configurations defined by states for all peptides and
proteins. Using a “blocking” approach similar to MSBayes, we proposed all possible
changes to a random block of peptides and a random block of proteins. We used block sizes
of three, which was found to yield best performance for MSBayes.

3.1.3 Collapsed Gibbs sampling—Because our model (like MSBayes) uses
independent protein priors and treats peptides as conditionally independent given the protein
set, it is possible to efficiently marginalize over all peptide configurations when the protein
configuration is known. We exploited this conditional independence by creating a
“collapsed Gibbs sampler,” which samples some unobserved random variables and
marginalizes out the remaining variables. In the collapsed Gibbs sampler, we sampled
protein configurations only and marginalized out the peptide configuration given the
sampled protein configuration. We used the same blocking strategy for proteins, sampling
all possible perturbations to a random block of size three.

3.1.4 Junction tree—We also investigated junction tree inference, a more sophisticated
approach to marginalization by enumeration. Naive enumeration computes posterior
probabilities by “marginalizing” or summing over all protein configurations in a connected
subgraph; the number of configurations, and thus the computational cost of this
enumeration, is exponential in the number of proteins in the subgraph. However, it is
possible to marginalize some subgraphs more efficiently. For example, the graph in Figure
3A can be thought of as two subgraphs that are “d-separated” by protein R3; given a known
boolean value for R3, the graph separates into two disjoint subgraphs. Removing R3 and its
edges leaves two graphs, each containing two proteins; therefore, the entire graph can be
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marginalized in 2 × (22 + 22) = 24 protein configurations rather than the 25 protein
configurations required by naive enumeration.

In general, a protein set that results in a useful d-separation in the graph should be
marginalized out late so that it has a specific value when other variables are marginalized
out. Choosing a collection of nodes that d-separates the graph corresponds to placing those
nodes set late in the “elimination ordering.” The most efficient elimination ordering for
marginalizing all variables corresponds to the tree decomposition (or junction tree) with
minimum treewidth. Decomposing a graph into a tree of minimum treewidth is NP-hard
[14]; however, in practice greedy heuristics can be used to create trees with low treewidth.
Figure 3B shows that this protein inference problem can be decomposed into a tree of four
nodes with treewidth two. For this reason, marginalization can be performed by visiting
23+22+22 = 24 protein configurations. Effectively, the junction tree shown makes use of the
fact that R3 d-separates (R1, R2) from (R4, R5).

We performed tree decomposition using a minimum neighbor heuristic (nodes were
eliminated in ascending order of the number of remaining neighbors in the graph). Inference
was performed using our implementation of the Hugin algorithm [15], which efficiently
computes the marginal posterior probabilities using the junction tree.

3.2 The cost of naive enumeration in real protein inference graphs
In order to investigate the difficulty of marginalization on real data sets, we divided each
data set into connected subgraphs and counted the number of proteins in each connected
subgraph. In the first row of Figure 4, the red solid series shows the distribution of naive
enumeration costs for the unpruned graphs from each data set; the x-axis of each figure is
the value of the log marginalization cost and the y-axis is the number of connected
subgraphs with log marginalization cost at or exceeding that value. The H. influenzae data
set contains roughly 10 connected subgraphs with marginalization cost at or exceeding 225

and maximum marginalization cost 2120; naive enumeration on this data set is far too
computationally expensive to be performed. The unpruned S. cerevisiae data has only two
subgraphs with more than 10 proteins: one contains 22 proteins and the other contains 54.
While enumerating 222 protein configurations is on the high side of what can be performed
efficiently, 254 configurations is too high for naive enumeration to be practially useful. The
unpruned C. elegans data contains no connected subgraphs with more than six proteins;
therefore, naive enumeration is quite practical. It is somewhat surprising that naive
enumeration is feasible on the data from the most complex organism and with the highest
coverage; however, closer examination reveals that some highly connected proteins can be
successfully clustered together. These proteins are not necessarily identical; they simply
contain the same set of observed peptides. Without clustering these proteins, the cost of
naive enumeration for the C. elegans data would be much higher. Just as sparse graphs are
highly separable, highly connected graphs result in components with identical connectivity,
and so they benefit most from clustering

Proteins connected solely by PSMs with scores very close to zero can be separated without
introducing any error. A PSM with a score of zero requires it was neither created by a
protein or by the noise model. These same necessary events correspond to a graph in which
the zero-scoring PSM is copied so that each adjacent protein has its own copy; therefore, by
simply adjusting for the number of copies made, it is possible to transform one graph into
subgraphs with fewer proteins without any error. In our previous paper, we called this
process “pruning” [6]. Because pruning can sometimes reduce the cost of marginalization
without introducing any error, we consider the cost of naive enumeration when PSMs with
very low PeptideProphet scores are pruned. The second row of Figure 4 shows the cost of
naive enumeration after pruning PSMs with scores that are practically zero (i.e. less than
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0.001). After pruning these low scoring PSMs, the H. influenzae data contains no connected
subgraphs more than six proteins, making naive enumeration trivial. The H. influenzae data
was searched against a target-decoy database comprising both the H. influenzae proteome
and the human proteome. Generally, peptides associated with human proteins should receive
very low scores; therefore, pruning is very effective at reducing the cost of marginalization.
In contrast, pruning is of little use on the S. cerevisiae data because larger subgraphs are
connected by high-scoring peptides found in yeast proteins. Because C. elegans was already
quite easy, there is essentially no benefit from pruning.

For each experiment, the graph containing only the peptides matched to observed spectra
and only the proteins adjacent to those peptides is a subgraph of the entire bipartite graph for
the entire search database; all proteins, peptides, and edges in the graph from an experiment
must also be found in the full graph produced by the search database. For this reason, the
complexity of the graph from the search database provides an upper bound on the
complexity of protein inference for any data set searched against that proteome. We
therefore analyzed the cost of naive enumeration on graphs produced by digesting each
target proteome in silico and including all fully tryptic peptides with lengths in range [6, 50]
residues and masses in range [200, 7200] daltons. The third row of Figure 4 shows the cost
of naive enumeration for the entire proteome of each of these species. As expected, naive
enumeration on the H. influenzae data is trivial, corroborating the prediction that the
difficult subgraphs are the result of the human decoy database. The full S. cerevisiae
proteome is more difficult than the observed data, but the distribution has a similar shape.
On the other hand, the C. elegans proteome is far more difficult. Despite the fairly good
coverage of the data set, the observed data produces a graph that is only a fraction of the
graph produced by digesting the full proteome. An experiment that covered a larger portion
of the C. elegans proteome would not only produce subgraphs that were more highly
connected, it would also increase the chances of connecting a protein with a peptide that it
does not share with other proteins; such a peptide would prevent a protein from being
clustered, which may substantially increase the cost of inference.

3.3 The value of tree decomposition
For each connected subgraph, we also created the junction tree and computed the number of
protein configurations required for marginalization using junction tree inference. A disparity
between the cost of naive enumeration and the cost of junction tree indicates subgraphs with
tree decompositions that can be marginalized more efficiently than with the naive approach.
In Figure 4 we overlayed the distributions of cost for junction tree inference using a blue
dashed series.

In the first row of Figure 4, we show the cost of inference on the unpruned graphs. On the H.
influenzae data, the cost of junction tree inference is substantially lower than the cost of
naive enumeration: there are only two subgraphs requiring more than 225 steps with junction
tree inference, whereas there are around 10 subgraphs requiring more than 225 steps using
naive inference. Furthermore, the most difficult subgraph for junction tree inference requires
just over 240 steps; in comparison, the most difficult subgraph for naive enumeration
requires more than 2120 steps. The S. cerevisiae data exhibits a more modest improvement
from junction tree inference, but the cost of the most expensive subgraph drops from 254 to
240 when using junction tree inference rather than naive enumeration. The improvement to
the C. elegans data set is negligable, largely because the most computationally expensive
subgraph for naive enumeration requires a modest 26 steps.

The second row of Figure 4 shows the cost of junction tree inference after pruning the data.
There is no improvement over naive enumeration for the pruned H. influenzae data set,
which is quite easy when using naive enumeration. As noted above, the large subgraphs in
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the H. influenzae data set are the result of matches to the human decoy database; spectra that
match peptides adjacent only to decoy proteins generally have very low scores and were
successfully pruned, thus reducing the number of proteins in connected subgraphs. These
subgraphs are so small that junction tree inference offers no benefit. Junction tree inference
improves the pruned S. cerevisiae data about as well as it improves the unpruned S.
cerevisiae data. The larger connected subgraphs on this data set have high-scoring PSMs
that come from target proteins; therefore, pruning barely changes the S. cerevisiae graph.
Likewise, pruning has nearly no influence on the C. elegans data set, and so the
improvement of junction tree inference is negligable, just as it was for the unpruned data.

The third row of Figure 4 shows the cost of junction tree inference on the graph produced
from the entire proteome of the target organism. On the H. influenzae data, junction tree
inference provides no advantage over naive enumeration, which is already quite easy. The
distribution of costs is nearly identical to that of the pruned H. influenzae data, confirming
that the complexity of inference for the unpruned H. influenzae data was the result of the
human decoy database. The S. cerevisiae data set is more interesting, and the improvement
of junction tree inference over naive enumeration is noteworthy: in one case, junction tree
inference improves upon naive enumeration by reducing the number of steps necessary from
272 to just under 250. The full C. elegans proteome data has the most dramatic improvement
from junction tree inference. The largest connected subgraph contains over 2000 proteins,
but it corresponds to a junction tree that can be solved in 289 steps. Furthermore, junction
tree inference requires no more than 219 steps for all remaining subgraphs; aside from the
largest subgraph, there are 24 other subgraphs that demand more than 219 steps using naive
enumeration, including subgraphs requiring 289, 259, and 250 steps.

3.4 Convergence of inference methods
In order to compare empirically the various inference algorithms, we chose a moderately
large subgraph of 22 proteins from the S. cerevisiae data set. We chose this subgraph
because it is non-trivial for naive enumeration and it can’t be substantially separated without
pruning high-scoring PSMs, but exact inference is still feasible; therefore, the exact
posteriors can be used as a gold standard to evaluate and compare the other methods. In
Figure 5A, we show the directed protein-to-PSM graph. In Figure 5B, we show the junction
tree produced by that graph. Each node in the junction tree is labeled with the number of
proteins found in the node; the number of variables in each node determines the cost of
junction tree inference. The largest node contains 14 proteins, and the total cost of
enumerating all protein states for each junction tree node is 214.644. Naive enumeration
requires 222 steps.

Figure 6 shows the tradeoff between error and efficiency when analyzing this subgraph
using the four inference algorithms. For all methods we used the optimal α, β, and γ
parameters for this data set from our previous paper [6]. On the x-axis, we plot the execution
time and on the y-axis, we plot the largest absolute error introduced compared to doing exact
marginalization. We implemented all methods using a shared python framework. All times
are reported in user time. It should be noted that the relative times of the python
implementations are useful for comparison, but the actual times presented are not
representative of a fast implementation in a compiled language; for instance, the C++
version available in [6] is substantially faster than the corresponding python implementation.
Using the largest absolute posterior error was motivated by the fact that a single significant
perturbation to a protein’s posterior estimate disrupts the overall ranking of the proteins even
if the average error of each posterior is small. The Gibbs sampler and the collapsed Gibbs
sampler were each run for successively longer periods while periodically logging the error
of their estimates. Both samplers were started at random configurations of variables with
nonzero likelihood and given a 100 iteration burn-in. Because the samplers are stochastic,
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Figure 6 shows the average time-error relationship after replicating 10 times for each
sampler; these replicate series were all very close to the average. Naive enumeration and
junction tree inference were run after successively pruning the graph more and more
aggressively. Exact inference on the unpruned graph introduces no error and was used as the
baseline. As more PSMs with higher scores are pruned, marginalization becomes more
efficient, but the largest posterior error becomes larger.

Not surprisingly, the collapsed Gibbs sampler outperforms the Gibbs sampler, which mixes
less efficiently because it samples the peptide configuration as well as protein configuration.
Also not surprising is the fact that junction tree inference is superior to naive enumeration,
particularly when the graph is unpruned; however, when aggressive pruning of high-scoring
peptides is permitted, naive enumeration is superior to junction tree inference because of the
substantially lower overhead.

4 Discussion
We have demonstrated that junction tree inference can be substantially more efficient than
naive marginalization for protein inference. Some subgraphs, though dramatically more
efficient to marginalize using junction tree inference, are still computationally infeasible
without pruning. For instance, one connected subgraph in the S. cerevisiae data set requires
254 steps using naive inference and 240 steps using junction tree inference; while 240 steps
may still be infeasible, the substantial decrease in the cost of inference may be enough to
make the problem approachable by other methods. For instance, given the states of all
proteins in the largest node in the junction tree of Figure 5, the remaining marginalization
problem becomes trivial; therefore, rather than perform the full marginalizatin using the
junction tree, it may be favorable to use a more sophisticated collapsed Gibbs sampler,
which samples the configuration of proteins in a few highly connected junction tree nodes
and then performs junction tree inference on the reminaing tree. Such an approach would
substantially reduce the dimensionality of the sampling problem. Other hybrids between
sampling and marginalization may also prove fruitful. For instance, it is always possible to
obtain a fast approximation of posteriors using marginalization and pruning. This fast
estimate may be used to initialize the sampling process or could be used in place of a
uniform proposal distribution.

Junction tree inference may also be used to generalize the pruning procedure to enable faster
and more accurate approximation. Essentially, pruning exploits cases where the joint
distribution can be approximted as the product of multiple independent distributions. A
general search for more exploitable instances of this phenomenon could be performed by
analyzing the messages sent by the message passing algorithm used to perform junction tree
inference. In a similar manner, it may be possible in some instances to avoid marginalizing
over variable configurations with extremely low likelihoods without noticably altering the
final posterior estimates. It would also be interesting to compare these approaches to other
iterative approximations like loopy belief propagation [16]. It is important to note that
junction tree inference and sophisticated variants of Gibbs sampling and collapsed Gibbs
sampling would be trivially compatible with other Bayesian models (e.g. MSBayes [8] and
the hierarchical Bayesian model [7]).

Furthermore, Figure 4 shows that the cost of inference is dominated by a few highly
connected subgraphs. Even in cases when the posterior estimates of the proteins in these
graphs must be estimated with some error, it may be possible to obtain a high-quality
estimate of what proteins are present in a complex mixture. Rather than focusing on
computing exact posteriors where it is very difficult, it may be possible to estimate a bound
on the posterior estimates and present the ultimate ranked list of proteins using a partial
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rather than a total ordering based on whether there is a provable hierarchy for a pair of
proteins.

Formal graphical methods provide a general framework that can be adapted for new models
to see whether they are computationally feasible. General inference methods that work well
in practice on real protein inference graphs will enable the development of more complex
models that reflect real processes in tandem mass spectrometry. For instance, all approaches
we are aware of currently perform protein inference on a bipartite graph, when in actuality
the data forms a tripartite graph; including edges between a spectrum and the second and
third-best matching peptides may allow spurious high-scoring peptides to be explained away
by peptides adjacent to proteins with independent supporting evidence. In a similar manner,
modeling competition between peptides in data-dependent acquisition may help explain why
peptide detectability varies widely between experiments. Enabling efficient inference on
more realistic models of the mass spectrometry process will contribute dramtically to our
ability to analyze protein data and improve our understanding of the biological processes
inside the cell.

Acknowledgments
Funding NIH Award R01 EB007057.

References
1. Nesvizhskii AI, Vitek O, Aebersold R. Analysis and validation of proteomic data generated by

tandem mass spectrometry. Nature Methods. 2007; vol. 4(no. 10):787–797. [PubMed: 17901868]

2. Keller A, Nesvizhskii AI, Kolker E, Aebersold R. Empirical statistical model to estimate the
accuracy of peptide identification made by MS/MS and database search. Analytical Chemistry.
2002; vol. 74:5383–5392. [PubMed: 12403597]

3. Käll L, Canterbury J, Weston J, Noble WS, MacCoss MJ. A semi-supervised machine learning
technique for peptide identification from shotgun proteomics datasets. Nature Methods. 2007; vol.
4:923–925.

4. Nesvizhskii AI, Keller A, Kolker E, Aebersold R. A statistical model for identifying proteins by
tandem mass spectrometry. Analytical Chemistry. 2003; vol. 75:4646–4658. [PubMed: 14632076]

5. Price TS, Lucitt MB, Wu W, Austin DJ, Pizarro A, Yokum AK, Blair IA, FitzGerald GA, Grosser
T. EBP, a program for protein identification using multiple tandem mass spectrometry datasets.
Molecular Cell Proteomics. 2007; vol. 6(no. 3):527–536.

6. Serang O, MacCoss MJ, Noble WS. Efficient marginalization to compute protein posterior
probabilities from shotgun mass spectrometry data. Journal of Proteome Research. 2010; vol. 9(no.
10):5346–5357. [PubMed: 20712337]

7. Shen C, Wang Z, Shankar G, Zhang X, Li L. A hierarchical statistical model to assess the
confidence of peptides and proteins inferred from tandem mass spectrometry. Bioinformatics. 2008;
vol. 24:202–208. [PubMed: 18024968]

8. Li, YF.; Arnold, RJ.; Li, Y.; Radivojac, P.; Sheng, Q.; Tang, H. A Bayesian approach to protein
inference problem in shotgun proteomics. In: Vingron, M.; Wong, L., editors. Proceedings of the
Twelfth Annual International Conference on Computational Molecular Biology. Vol. vol. 12.
Berlin, Germany: Springer; 2008. p. 167-180.ser. Lecture Notes in Bioinformatics

9. Serang O, Noble WS. A review of statistical methods for protein identification using tandem mass
spectrometry. Statistics and Its Interface. 2012; vol. 5(no. 1):3–20.

10. Dojer N, Gambin A, Mizera A, Wilczynski B, Tiuryn J. Applying dynamic bayesian networks to
perturbed gene expression data. BMC Bioinformatics. 2006; vol. 7(no. 1):249. [PubMed:
16681847]

11. Totir L, Fernando R, Abraham J. An efficient algorithm to compute marginal posterior genotype
probabilities for every member of a pedigree with loops. Genetics Selection Evolution. 2009; vol.
41:1–11. 10.1186/1297-9686-41-52.

Serang and Noble Page 10

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2013 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



12. Eng JK, McCormack AL, Yates JR III. An approach to correlate tandem mass spectral data of
peptides with amino acid sequences in a protein database. Journal of the American Society for
Mass Spectrometry. 1994; vol. 5:976–989.

13. Park CY, Klammer AA, Käll L, MacCoss MP, Noble WS. Rapid and accurate peptide
identification from tandem mass spectra. Journal of Proteome Research. 2008; vol. 7(no. 7):3022–
3027. [PubMed: 18505281]

14. Arnborg S, Corneil DG, Proskurowski A. Complexity of finding embeddings in a k-tree. SIAM
Journal on Algebraic and Discrete Methods. 1987; vol. 8(no. 2):277–284.

15. Andersen, SK.; Olesen, KG.; Jensen, FV. HUGIN, a shell for building Bayesian belief universes
for expert systems. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.; 1990. p.
332-337.

16. Weiss Y. Correctness of local probability propagation in graphical models with loops. Neural
Computation. 2000; vol. 12(no. 1):1–41. [PubMed: 10636932]

Biographies

Oliver Serang Oliver Serang received a B.S. in computer engineering from North Carolina
State University, Raleigh in 2006 and a Ph.D. in Genome Sciences from the University of
Washington, Seattle in the lab of William Noble in 2011. He is now a postdoctoral research
fellow in the Steen lab in the Department of Pathology at Children’s Hospital Boston and the
Department of Neurobiology at Harvard Medical School. His research interests include
probabilistic modeling, algorithms for statistical inference and optimization, and biomarker
detection.

William S. Noble William Stafford Noble (formerly William Noble Grundy) received the
Ph.D. in computer science and cognitive science from UC San Diego in 1998. After a one-
year postdoc with David Haussler at UC Santa Cruz, he became an Assistant Professor in
the Department of Computer Science at Columbia University. In 2002, he joined the faculty
of the Department of Genome Sciences at the University of Washington. His research group
develops and applies statistical and machine learning techniques for modeling and
understanding biological processes at the molecular level.

Serang and Noble Page 11

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2013 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1. Protein identification using tandem mass spectrometry
In the tandem mass spectrometry approach to proteomics, a protein mixture is first digested
into peptides. These peptides are separated by hydrophobicity using LC and then by
precursor m/z. Each resulting peptide population is fragmented to produce an MS/MS
spectrum. These spectra are matched to peptides using a search database and the matches are
scored. The graph mapping proteins to their scored constituent peptides is used for protein
inference.
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Fig. 2. Graphical view of the Fido model
In the Fido model peptides depend only on proteins which would produce them when
digested. Spectra only depend on their best-matching peptides; these peptide-spectrum pairs
are merged into PSMs. Proteins have prior probability γ that they are present, and a present
protein has probability α of emitting an adjacent peptide. Peptides have probability β that
they will be created due to some error.
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Fig. 3. Decomposing a graph for protein inference
(A) An example DAG for a five protein inference problem. Proteins, labeled with prefix R,
are shown as large circles and peptides, labeled with prefix E, are shown as smaller circles.
Choosing a specific state for protein R3 effectively removes R3 and its edges from the graph
and propagates these values towards its sucessors. This results in two subgraphs that can be
marginalized independently. (B) The protein subgraph of the junction tree depicts
dependencies between proteins. Weights on the edges indicate the size of the overlap
between adjacent nodes.
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Fig. 4. Distribution of marginalization complexities
For each organism we plot the distribution of marginalization costs for the connected
subgraphs found in the unpruned graph, the pruned graph, and the graph from the full target
proteome. The x-axis measures the log marginalization cost of a subgraph, and the y-axis
shows the number of subgraphs with marginalization cost at or exceeding that cost. The
distribution of costs using naive marginalization is shown using the red solid series and the
distribution of costs using junction tree inference is shown using the blue dashed series.
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Fig. 5. A difficult connected subgraph and its tree decomposition
Pruning introduces no error when pruned peptides have very small scores; however, some
connected subgraphs may not be separable without pruning higher-scoring peptides. (A) In a
subgraph taken from the S. cerevisiae data set, 22 dependent proteins cannot be separated
without pruning high-scoring peptides. Many proteins in this subgraph share several
peptides; in order to separate these proteins, all peptides shared by them must be pruned.
Proteins are shown as large circles and peptides are shown as smaller circles. (B) Each node
in the junction tree is labeled by the number of proteins it contains and each edge is labeled
by the size of the intersection between its incident nodes. Junction tree inference requires
enumerating the power-set for the collection of proteins found in each junction tree node;
therefore, inference can be performed on the order of the sum of the cost of computing those
power sets. For this connected subgraph, marginalization would require enumerating 214.644

protein states, a fraction of the 222 protein states enumerated by naive marginalization.
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Fig. 6. Convergence of various inference methods
For each method, we plot the log relationship between the largest posterior error and runtime
for protein inference on the subgraph from Figure 5. The Gibbs sampler runtimes were
varied by allowing more iterations. Junction tree inference and naive marginalization
runtimes were varied by successively pruning the graph and allowing PSMs with
sequentially higher scores to be pruned. The Gibbs sampler and collapsed Gibbs sampler
series are averages of 10 replicate runs, none of which vary substantially from the average
shown. For the Gibbs sampler and collapsed Gibbs sampler, error bars indicate the smallest
and largest errors achieved in the 10 replicate runs.
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