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The problem of identifying proteins from a shotgun proteomics experiment has not been definitively
solved. Identifying the proteins in a sample requires ranking them, ideally with interpretable scores. In
particular, “degenerate” peptides, which map to multiple proteins, have made such a ranking difficult
to compute. The problem of computing posterior probabilities for the proteins, which can be interpreted
as confidence in a protein’s presence, has been especially daunting. Previous approaches have either
ignored the peptide degeneracy problem completely, addressed it by computing a heuristic set of
proteins or heuristic posterior probabilities, or estimated the posterior probabilities with sampling
methods. We present a probabilistic model for protein identification in tandem mass spectrometry
that recognizes peptide degeneracy. We then introduce graph-transforming algorithms that facilitate
efficient computation of protein probabilities, even for large data sets. We evaluate our identification
procedure on five different well-characterized data sets and demonstrate our ability to efficiently compute
high-quality protein posteriors.
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1. Introduction

Tandem mass spectrometry is an increasingly useful tool for
identifying proteins in complex mixtures, particularly as an
agent for hypothesis generation. However, large data sets,
which benefit from the advantages of mass spectrometry,
commonly lead to many spurious matches between peptides
and spectra. These errors substantially decrease the specificity
of predictions made by existing algorithms. For example, we
have observed that ProteinProphet' may assign to a protein a
very high posterior probability even when that protein only
contains a single peptide with a good match to an observed
MS/MS spectrum or when a protein contains several peptides
with very poor matches to MS/MS spectra. These inflated
proteins often receive scores tying or exceeding proteins
containing many high-scoring PSMs. When larger proteins or
many spectra are considered, the number of these incorrectly
matched spectra grows, and the set of proteins suggested by
ProteinProphet becomes untrustworthy.
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Attempts to compute statistically rigorous protein prob-
abilities, with models derived using relatively few, well-defined
assumptions, are hampered by the problem of peptide degen-
eracy, which arises when a single peptide maps to multiple
proteins. In Figure 1, the peptides EEAMPFK and VNILLGLPK
are degenerate: EEAMPFK maps to two identically connected
proteins, and VNILLGLPK maps to two differently connected
proteins. Degenerate peptides are responsible for the apparent
intractability of computing protein probabilities, because the
posterior probability of one protein depends on the presence
of other proteins when a peptide maps to both proteins.

Existing approaches to protein identification solve the pep-
tide degeneracy problem in quite different ways. Several
heuristic methods®>** use the distribution of decoy peptide
scores to estimate protein false discovery rates (FDRs), while
ignoring the differences in peptide degeneracy between the
target and decoy databases. ProteinProphet, which is perhaps
the most widely used procedure for solving the protein
identification problem, employs an iterative heuristic prob-
ability model to estimate posterior protein probabilities. The
similar EBP method® takes a more sophisticated approach for
amalgamating replicate experiments, extending the Protein-
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Figure 1. Tandem mass spectrometry process as a graph. (A) Proteins are connected to peptides that they would theoretically yield
when digested. Spectra are connected to matching peptides, with weights representing the quality of the match. (B) By taking only the
highest scoring peptide match for each spectrum and highest scoring spectrum match for each peptide, the peptides and spectra can

be merged into a single layer of PSMs.

Prophet method and using more explicitly stated assumptions.
Both of these methods use a similar expectation-maximization
framework and perform very well in practice. However, both
methods are described procedurally rather than derived from
assumptions, so the resulting models are difficult to understand
and improve upon.

In contrast, the nested model of Li et al.,® is derived clearly
from well-described assumptions but ignores the peptide
degeneracy problem entirely. The result is that a protein may
be reported as present even though its only associated high-
scoring peptide is explained by a second protein, which
contains many more high-scoring peptides. PANORAMICS”
uses a numeric heuristic to jointly compute peptide prob-
abilities from protein probabilities and compute protein prob-
abilities from peptide probabilities and efficiently solves the
resulting simultaneous equation in an iterative manner. Both
of these models perform well, but neither offers a substantial
improvement in sensitivity when using a high threshold for
protein probabilities. Despite their shortcomings, these meth-
ods illustrate how sensitive ProteinProphet can be when
allowing very few false positive protein identifications.

IDPicker®® adopts a conservative, nonprobabilistic approach,
thresholding peptides into “present” and “absent” sets and then
using a greedy algorithm to solve (or approximate a solution
to) the resulting NP-hard minimum set cover problem. The
peptide-level threshold must be set quite strictly, because every
present peptide may permit identification of an associated
protein. Furthermore, this approach does not distinguish
between a protein associated with a single moderately scoring
peptide identification and a protein with several moderately
scoring peptide identifications. Although nonprobabilistic ap-
proaches are often easy to understand, they are in principle
not as informative as probabilistic methods, which can as-
semble large quantities of weak evidence and use the evidence
to estimate the probability that a given protein is present.

Recently, Li et al.'® developed perhaps the most rigorous
existing treatment of the peptide degeneracy problem. They
use a Bayesian framework and a sampling procedure for
estimating protein probabilities, and their system slightly out-
performs ProteinProphet on a small data set. Unfortunately,
their sampling approach requires training a complex model of
peptide detectability involving hundreds of parameters. Fur-
theremore, it has not been demonstrated that the detectability

model can be trained on one data set and then employed
effectively for protein identification on a different data set;
detectability is widely recognized to fluctuate between even
similar experiments, and small errors in peptide detectability
may result in a large differences to the set of proteins identified.
Finally, the running time of the sampling method on this small
data set is substantially longer than the running time of
ProteinProphet. Sampling methods are known to converge to
exact posteriors, but in an infinite time, and the actual time
necessary for an acceptable approximation may be too great
to be of utility on larger data sets.

In this paper, we introduce a novel Bayesian method for
computing posterior protein probabilities. Our approach is
motivated by our desire to derive a model using a few relatively
simple assumptions but also to create accompanying algo-
rithms that make computation very efficient. Such a model will
allow us to evaluate the assumptions and systematically make
improvements in a manner that is difficult with many current
approaches. Our model uses only three parameters, which can
be easily estimated using the same data set used for identifying
proteins. With respect to the peptide deneracy problem, our
model rewards protein sets that contain independent evidence
in addition to degenerate peptides. In particular, the model
allows a protein with strong independent supporting evidence
to “explain away” supporting data that is shared with other
proteins. Thus, our method automatically apportions informa-
tion from degenerate peptides during the marginalization
procedure, rather than requiring an ad hoc adjustment.

We then describe a series of three mathematical transforma-
tions, which substantially increase the computational efficiency
of computing posterior probabilities, while still recognizing
peptide degeneracy. The resulting algorithm is mathematically
equivalent to the result achieved by marginalizing, the process
of computing every possible set of present proteins and
evaluating their net contribution. In contrast to sampling,
marginalizing yields an exact, closed-form solution in a finite
amount of time. Naively marginalizing would require enumer-
ating every possible set of proteins, which is exponentially
complex and hence impossible even for small problems, but
our optimized marginalization procedure is significantly more
efficient and computes the same result as the naive approach.
Using our method, it is possible to compute discriminative and
interpretable posterior probabilities quickly, even on large data

Journal of Proteome Research ¢ Vol. 9, No. 10, 2010 5347



research articles Serang et al.
Table 1. Data Set Sizes?
H. influenzae yeast ISB 18 C. elegans sigma 49
spectra 33350 35236 1.1 x 108 42091 32700
target proteins 1709 6734 34 23932 49
decoy proteins 88299 6734 1709 23932 31227
decoy database human shuffled H. influenzae reversed human and reversed human

“The table lists, for the five data sets, the number of fragmentation spectra produced, the number of proteins in the target and decoy databases, and
the type of decoy proteins used. All numbers are reported before any analysis was performed; Table 2 reports the number of proteins and PSMs that are
actually matched and connected in the bipartite graph. Proteins were counted using their unique accession numbers, so this is the true size of the
database and is invariant to redundancy or homology. The different decoy databases are taken from existing publications of protein and peptide
identification algorithms and were selected to demonstrate that our method performs well regardless of the decoy database used.

Table 2. Utility of the Optimizations?

H. influenzae yeast ISB 18 C. elegans sigma 49

PSMs 29123 10390 21166 4944 23964
proteins 32748 3742 1777 4303 392
edges 60844 12202 21720 7332 24392
Log# 32764.6 11495.6 1833.7 4316.3 407.6
Log# PRT 935.2 90.4 71.6 40.0 92.3
Log# PRT, CLST 72.6 46.961 71.6 16.2 92.3
Log# PRT, CLST, PRUNE 18.3 72.6 314 16.2 16.9
Runtime 1.4s (0.1s) 1.6s (0.2s) 8.6s (4.3s) 1.3s (0.1s) 1.0s (0.1s)

“The table lists, for the five data sets, the size of the protein identification graph (using the combined target and decoy databases) in terms of the
number of PSMs (after identical peptides are merged), number of proteins, and number of PSM-to-protein edges, as well as the log of the size of the full
search space and the search space after each of the three optimizations are successively applied. PRT indicates partitioning, CLST indicates clustering, and
PRUNE indicates pruning (using a theshold of 107%). As before, the proteins are counted by their unique accession numbers; however, peptides are
counted using their sequence, so degenerate peptides are only counted once. The final row lists the running time necessary to compute the posterior
probabilities for a fixed value of the parameters «, 3, and y using a variable threshold and allowing for up to 2!® marginalization steps for each subgraph
(using a single-core standard desktop computer). The first runtime listed is the total execution time (including file I/O to read the data); the runtime in
parentheses is the time necessary to only run the marginalization procedure. The H. influenzae data has the highest degree of peptide degeneracy,

because it includes a human decoy database.

sets. This combination of efficiency and rigor allows us to
compute accurate and well-calibrated posterior probabilities
quickly and lays the groundwork for more complex models and
more optimized procedures.

2. Materials and Methods

2.1. Data Sets. We have compared our method to Protein-
Prophet’ on four data sets, yeast lysate,'' H. influenzae lysate,’
the ISB 18 mix protein standard,'? and C. elegans lysate,"® and
compared to MSBayes'® on one additional data set, the Sigma
Aldrich 49 protein standard.? Each collection of spectra was
searched against a combined database of target and decoy
proteins. For the purposes of the analyses, when a protein
identification method identifies a protein from the database,
that identification is considered a “true positive” or a “false
positive,” depending on whether the protein is a target or a
decoy, respectively. It should be noted that treating the targets
as true positives is not perfectly correct, because the target
database is actually a mixture of true and false positives.
Consequently, our true positive counts may be slightly inflated;
however, because we are only using this estimate of the true
positives as a relative comparison between methods, the slight
bias introduced will not influence the comparison. Summary
statistics describing each data set are given in Table 1.

H. influenzae. H. influenzae lysate was digested with trypsin
and analyzed by LC—MS/MS on an ESI-ITMS machine. The
spectra were searched with SEQUEST' against a database
containing H. influenzae (targets) and human proteins (decoys).
The resulting PSMs were scored using PeptideProphet with a
minimum peptide probability of 0.0.

Yeast. Saccharomyces cerevisiae strain S288C were grown to
mid log phase on rich media at 30 °C. The proteins were
digested with trypsin and analyzed using data dependent
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acquisition and LC—MS/MS, using an LTQ machine. The
resulting spectra were searched using Crux'® against a database
consisting of all yeast ORFs plus a shuffled version of each ORF.
PSMs were assigned probabilities by PeptideProphet using a
minimum peptide probability of 0.05.

ISB 18 Mix. The ISB 18 protein data was created using
proteins purchased from Sigma Aldrich. This data set consisted
of four prepared samples, which were analyzed on a variety of
mass spectrometry machines with several technical replicates.
The proteins were digested together using trypsin, and in one
of the four samples, digestion was aided by sonication. These
peptides were analyzed using LC—MS/MS on a variety of
machines, including LTQ, LCQ Deca, Q-TOF, QSTAR, AGILENT
XCT Ultra, Applied Biosystems ABI 4800, AppliedBiosystems
4700, and Thermofinnigan LTQ-FT. The spectra obtained from
each experiment were searched using SEQUEST against a
database containing these 18 proteins, a set of closely related
homologues (obtained from the authors), which are indistin-
guishable from or may have been purified with the 18 proteins,
possible contaminants, and a collection of H. influenzae
proteins. PSMs were assigned probabilities by using Pep-
tideProphet with a minimum peptide probability of 0.05. The
contaminant proteins were not treated as present or absent,
because they were identified using the Trans Proteomic
Pipeline (http://tools.proteomecenter.org/wiki/index.php?title=
Software:TPP), which includes the ProteinProphet algorithm.
We analyzed the replicate experiments in two ways: individu-
ally, and after pooling all experiments together.

C. elegans. C. elegans were grown to various developmental
stages on peptone plates containing E. coli. After removal from
the plate, bacterial contamination was removed by sucrose
floating. The lysate was sonicated and digested with trypsin
and subject to six technical replicate LC—MS/MS analyses using
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LTQ machine and data dependent acquisition. The spectra
were searched against a database containing the target proteins,
the C. elegans proteome and known contaminants, as well as
a reversed copy of every target protein. PeptideProphet was
run using a minimum PSM probability of 0.05.

Sigma 49 Mix. The Sigma 49 mixture was prepared using 49
human proteins from Sigma Aldrich. The proteins were di-
gested with trypsin and subjected to three replicate LC-MS/
MS analyses using a Thermo LTQ machine. The spectra were
searched using MyriMatch16'® against a database composed
of all Swiss-Prot (54.2) proteins with the _HUMAN as well as a
reversed copy of each protein. During the database search, any
spectra that matched multiple peptide sequences and that also
received equal scores for these matches were excluded. The
remaining PSMs were scored using PeptideProphet and any
PSMs with probability less than 0.05 were thrown out.

3. Results

3.1. Protein Identification Problem. In tandem mass spec-
trometry, a complex protein mixture is first digested with a
restriction enzyme to create a population of peptides. These
peptides are separated by hydrophobicity using liquid chro-
matography (LC) and subsequently separated by their mass-
to-charge ratios (m/z) using the mass spectrometer. This
procedure isolates a population of peptides with a common
hydrophobicity and precursor m/z. Ideally, this population of
peptides is homogeneous. Each such population is then
fragmented, and the fragments are subjected to a second scan
with the mass spectrometer to recover the m/z values of the
fragments. Together, these fragments produce an MS/MS
spectrum. In a typical shotgun proteomics experiment, this
process is performed several thousand times, producing many
MS/MS spectra and their associated precursor m/z values.
Protein identification is the task of ranking the proteins by the
evidence that they are in the sample, given these fragmentation
mass spectra. Ideally, each ranked protein also is assigned a
score with a well-defined semantics, specifying our confidence
in the assertion that the protein was present in the sample.

Typically, the protein identification process consists of two
stages. In the first stage, the observed spectra and precursor
m/z values are matched to peptides by a database search tool
(reviewed in ref 17). During this stage, probability scores may
be computed for each match using a tool such as PeptidePro-
phet.'® In the second stage, the proteins are scored and ranked
using the scored peptides. We will focus on the second stage.

The process by which proteins create spectra, and the
resulting problem of identifying proteins from these spectra,
can be represented using graphs. After the first stage, the
proteins, peptides, and spectra can be represented by a
tripartite graph (Figure 1A). Following previous methods,! we
collapse the tripartite graph into a bipartite graph by keeping
only the edges connecting the best peptide match for each
spectrum and the edges connecting the best spectrum match
for each peptide. Once each spectrum associates with only one
peptide and each peptide associates with only one spectrum,
each of these pairs can be merged together to form a layer of
“peptide spectrum matches” (PSMs), which are weighted by
the quality of the match between the paired peptide and
spectrum (Figure 1B). Like ProteinProphet and unlike MSBayes,
we currently do not consider peptides that have not matched
a spectrum. This bipartite graph serves as the input to the
second stage, in which we rank the proteins according to the
estimated probability that they are present in the sample.

research articles
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Figure 2. Assumptions. The assumptions of the model are
illustrated graphically and numbered by their corresponding
assumption numbers from Section 3.2. Solid arrows represent
dependencies. Peptides depend on the proteins and the noise
model; present proteins emit associated peptides with probability
a, and peptides that are not created by associated proteins are
created by the noise model with probability 5. Spectra depend
exclusively on the best-matching peptide. Proteins have identical
and independent prior probabilities y. The marked-out dashed
arrows depict dependencies that do not exist within the model.

3.2. Probability Model for Scoring Candidate Solutions. To
compute the desired protein posterior probabilities, we model
the tandem mass spectrometry process using a Bayesian
probability model. Our model follows directly from a series of
seven simple assumptions, which are illustrated in Figure 2 and
described in detail below. First, however, we introduce some
terminology. We say a peptide was emitted by a protein if that
peptide was created by digesting a protein, retrieved by the
precursor scan, and analyzed by the fragmentation scan. We
say that a PSM is created by the noise model if the peptide was
identified by the fragmentation scan but the scan was not
derived from that peptide.

The seven assumptions underlying our model are as follows:

1. Conditional Independence of Peptides Given Proteins. The
process by which one peptide is retrieved from the precursor
scan does not influence the retrieval of other peptides from
the precursor scan given the set of proteins in the sample.

2. Conditional Independence of Spectra Given Peptides.
The process by which a spectrum is created and observed does
not influence the creation and observation of other spectra
given the set of peptides selected by the precursor scan.

3. Emission of a Peptide Associated with a Present Protein.
We model the probability with which a sample peptide is
generated from a protein containing it with a constant prob-
ability a. This event is independent of all other emission events.
Although the probability that a peptide is retrieved may depend
on properties of the peptide, the model can account for these
variations by adjusting the probability of the PSM. Adjusting
the probability of a PSM is equivalent to adjusting the prob-
ability that the peptide was retrieved from the precursor scan.
These events are only observable in conjunction, so it is not
possible to distinguish between the event where a peptide is
retrieved from the precursor scan but its spectrum is mistakenly
assigned from the event where a peptide is not retrieved from
the precursor scan and undergoes no fragmentation scan.

4. Creation of a Peptide from Noise. We model the prob-
ability that a truly absent peptide (i.e., not created by an
associated protein) is erroneously observed with the constant
probability S.

5. Prior Belief a Protein Is Present in the Sample. We
model our prior belief that any protein is present in the sample
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with probability y. It would be possible to later introduce a
more complex prior, but doing so may increase the runtime
of the algorithm.

6. Independence of Prior Belief between Proteins. The
prior probabilities of all proteins are independent.

7. Dependence of a Spectrum Only on the Best-Matching
Peptide. Each spectrum depends exclusively on the peptide that
it best matches and is paired with to form a PSM.

We consider the validity of these assumptions in more detail
in the Discussion section.

From this probability model, we are able to compute the
likelihood of a particular set of proteins given the observed set
of spectra, which is proportional to the probability that these
proteins would create the observed spectra:

L(R=r1D) < Pr(DIR=1) 1)

=Y [IPr.E = e)Pr(E = elR =1 @
Ve &

=Y > [IP.E = e)Pr(s, = elr =1 3)

Ve, Vee ¢

=Y Pr(D,IE, = ¢)Pr(E, = ¢|R =1 x

Ve,

Y [Pk = e)prE, = elrR=1 @)

Ve, =1
-[I X e =cpg=cir=n  ©
e Ve

where R is the set of present proteins, E is the set of present
peptides, D represents the observed spectra, and « is used to
index the peptides. Both R and E are random variables
representing the truly present protein and peptide sets; r and
e are specific values taken on by these random variables.
Equation 1 removes uncertainty from the unknown peptide set
E by marginalizing over all possible peptide sets (i.e., all
possible values E can take on, denoted Ve).For example, if the
set of spectra match 10 000 distinct peptides, then the enu-
meration over all possible values of e must consider 2!° 000
possibilities.

We compute values proportional to Pr (DJIE. = e) using
PeptideProphet and Pr (E. = elR = r) using our model of
peptide generation. This former is actually computed by an
intermediate step in the PeptideProphet algorithm and can be
recovered by applying Bayes’ rule to PeptideProphet’s prob-
ability scores and prior probability estimates; we show this
procedure in detail in the supplement. The conditional inde-
pendence of peptides given proteins allows us to compute the
sum over all peptide sets in linear time (rather than exponential
time), by transforming the sum into an equivalent product over
peptide indices. Essentially, the procedure between eqs 2 and
4 can be repeated on the right sum in eq 4 using a different
peptide index. This operation can be continued inductively on
each successive sum, effectively unrolling the sum of products
into a product of sums. In the product of sums form, each sum
has only two states (a particular peptide is present or absent),
so each term in the product is trivial, permitting the likelihood
of a set of proteins to be computed in linear time relative to
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the number of peptides. From a graphical model perspective,
once the set of proteins is specified, all of the PSMs are
disconnected from each other, making an independent graph
for each PSM. The likelihood is thus computable by a product
over these independent graphs. A more complete derivation,
as well as other derivations used for our model and optimiza-
tions, are provided in the supplement.

3.3. Computing Posterior Probabilities for Each Protein.
By applying Bayes rule to the likelihood proportional to Pr (DIR)
and marginalizing over the set of proteins, we can compute a
posterior probability for each protein. This approach appears
to be prohibitively expensive, because a naive implementation
of this marginalization requires explicitly enumerating every
possible set of proteins (a so-called “power set”). The compu-
tational cost of enumerating this power set is exponential in
the number of proteins, making the naive implementation
impractical for even small data sets. However, in practice, we
do not need to enumerate the power set of peptides, because
we have assumed conditional independence of peptides given
proteins; when a protein set is specified, our assumptions allow
us to marginalize over all peptide sets using a single product.

In order to make computation of our posterior probabilities
computationally feasible for large data sets, we introduce three
graph-transforming procedures: partitioning, clustering, and
pruning. These procedures, illustrated in Figure 3, dramatically
increase the efficiency of computing posterior probabilities for
the proteins.

3.3.1. Speedup #1: Partitioning. In our model, a protein is
dependent on other proteins within connected subgraphs but
not dependent on proteins that share no peptides with proteins
in the connected subgraph. We exploit this property to compute
posterior probabilities for proteins in a subgraph by enumerat-
ing over the power set of proteins in the subgraph. We
accomplish this by partitioning the original graph into con-
nected subgraphs. When a specific digest, such as trypsin, is
used, this transformation considerably decreases the number
of protein sets that need to be evaluated.

3.3.2. Speedup #2: Clustering. We prove (see Supporting
Information) that in our probability model, proteins with
identical connectivity can be clustered together to compute
their posterior probabilities with greater efficiency. In Figure
3, proteins 1 and 2 are indistinguishable; therefore, the case in
which protein 1 is present and protein 2 is absent has the same
probability as the case in which protein 1 is absent and protein
2 is present. Thus, these two proteins can be merged into a
single node (Figure 3B), which can occupy three distinct states:
a state with both proteins absent, a state with only a single
protein present, and a state with both proteins present. The
state where a single protein is present must now be counted
twice because there are two ways for it to occur. Using this
transformation, we enumerate the power set in three steps
rather than four. Generally, merging n proteins reduces the
number of states that must be enumerated from 2" to n + 1.

3.3.3. Speedup #3: Pruning. We also prove (see Supporting
Information) that within a connected subgraph, any two
partitions of proteins that are only connected by peptides with
a probability of zero can be transformed into two subgraphs
that do not connect to one another. These zero-probability
peptides are often produced by PeptideProphet when the best
spectrum match for the peptide is a very poor match. Because
they are a special case, each zero-probability peptide implies
two necessary events: first, the peptide cannot be emitted by
any protein, and second, the peptide cannot be created by the
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(C) Pruning

Figure 3. Three speedups. (A) Graph is partitioned into connected subgraphs (enclosed by dashed boxes). Posterior probabilities can
be computed individually for each connected subgraph. (B) Proteins with identical connectivity are clustered together. In this example,
proteins 1 and 2 are clustered to more efficiently enumerate the power set. (C) Graph components joined only by zero-probability
peptides are separated by creating a copy of each of these peptides for each subsection. This operation further divides existing partitions

to create partitions containing fewer proteins.

noise model; for if the peptide were emitted by a protein or
created by the noise model, it would necessarily raise its
probability above zero, resulting in a contradiction. When two
protein partitions within a subgraph are connected only
through zero-probability peptides, then neither partition may
emit any of those zero-scoring peptides.

The pruning operation copies each zero-probability peptide
so that each of these protein partitions connects to its own
copy; therefore, these necessary events remain the same, except
the event that the peptides are not created from noise is now
counted twice instead of once, because a copy has been added.
We correct for this overcounting, transforming the original
problem into two partitioned subproblems.

In Figure 3C, proteins 4 and 5 are only connected by a zero-
probability peptide. The only possible events that would
produce the observed data require that neither protein 4 nor 5
emit the peptide and require that the peptide not be created
by the noise model. Creating a copy of the peptide for each of
these proteins and then correcting so that the noise model is
only counted once will produce the same posterior probability
for each protein.

Table 2 illustrates the effects of these three speed-ups on
five different data sets. The first three rows of the table indicate
the size of the input graph, the next four rows list the size of
the corresponding search space initially and after each of the
three graph transformations, and the remaining row shows the
runtime of the algorithm. In the most extreme case, H.
influenzae, the graph transformations reduce the size of the
search space by nearly 10 000 orders of magnitude. By reducing
the theoretical complexity of the procedure, these graph
optimizations lead to efficient runtimes, as shown in the last
row of Table 2. In comparison, ProteinProphet took 13.3s on
the yeast data and 10.7s on the ISB 18 data. MSBayes took
2m23.5s on the Sigma 49 data. We did not have access to the
proper files to time ProteinProphet on the H. influenzae data.

Unfortunately, even after the transformations, the search
space associated with the larger data sets is still prohibitively
large. To guarantee the efficiency of our algorithm on large data

sets, we approximate the original problem by pruning low-
scoring PSMs as if they were zero-scoring PSMs. With this
approximation, the pruning procedure creates subgraphs with
many fewer proteins. Because the user is only interested in
using the smallest threshold that will sufficiently break apart
the connected subgraphs, we perform this process recursively
and divide each subgraph using a successively greater flooring
threshold. This process is continued until the total number of
steps necessary for marginalization is less than a user-specified
value. The result is that, rather than choosing one strict
threshold for the entire data set, the user can specify a
permitted computational complexity, and then different thresh-
olds are employed to ensure that the method is as efficient as
the user requires.

Occasionally, it is necessary to apply the pruning procedure
to a PSM with a larger probability. In these cases, a collection
of proteins are connected through a collection of high-scoring
PSMs. These cases are already known to be difficult; in the
extreme case, when all PSMs have probability 1.0, this problem
closely resembles the NP-hard minimal set coverage problem
(except, in our case, marginalization requires that each per-
mutation of present and absent protein states must be con-
sidered). Fortunately, any error introduced by pruning will only
distort the probabilities of proteins connected in this way;
therefore, accurate protein posteriors may be achieved as long
as these cases are relatively rare. In the supplement, we show
the distribution of PSM probabilities that must be pruned to
achieve no more than 2'® marginalization steps, and demon-
strate that few pruned PSMs have probabilities greater than
zero. When such a PSM is pruned, the two partitions it joins
are approximated as being independent (even though they may
not be). In these cases, our method behaves similarly to the
first iteration of ProteinProphet, by treating the peptides as
independent.

3.4. Comparison of our Method, ProteinProphet and
MSBayes. We evaluate a C++ implementation of our method
using the five data sets described in Materials and Methods.
The source code of this implementation is publicly available
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Figure 4. ROC plots. For each data set, we plot the number of true positives as a function of the number of false positives. We compare
our method to ProteinProphet in (A—D) and compare to the ABLA model of MSBayes in (E). The figure also shows the overlap between
the sets of true positive proteins found at each false positive level. Our method is run on each data set with the same set of parameters

used for the same data set in Figure 5.

(http://noble.gs.washington.edu/proj/fido). Starting from the
scored peptides, each method computes a probability for each
protein, and these probabilities are used to rank the proteins.
Groups of identically connected proteins are merged for
evaluation, and are treated as a single protein group. Whenever
we refer to the number of target proteins or decoy proteins
identified at a threshold or use these values in a calculation,
each protein group is counted once, rather then once for each
protein it contains. Groups containing both targets and decoys
are not counted in evaluation; such groups are so infrequent
that their treatment does not visibly change the figures
presented.

From each ranked list of proteins, we evaluate the method
by creating a receiver operator characteristic (ROC) curve,
which plots true positive counts (i.e., the number of target
proteins) as a function of false positive counts (the number of
decoy proteins). A curve is produced by varying the probability
threshold above which a protein is deemed to be present.
Because we are particularly interested in the performance of
the algorithms when the false positive rate is low, we only plot
the curve out to 100 false positives along the x-axis. We also
evaluate each ranked list of proteins using a calibration false
discovery rate (FDR) plot, which plots the empirical FDR as a
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function of the estimated FDR. The empirical FDR is calculated
as the number of decoys identified divided by the total number
of proteins identified. In order to estimate the FDR using
posteriors, we exploit the fact that the probability that a protein
is absent is equal to one minus the posterior assigned to the
protein; therefore, by assuming that the posterior probabilities
are independent, we can estimate the FDR for any set of
proteins by computing the expected number of false positives
(found by the number of proteins minus the sum of their
posteriors) divided by the number of proteins identified at the
threshold. If our method is perfectly calibrated and if the
empirical FDR estimate is accurate, then the empirical FDR
and estimated FDR should be equal at every threshold.
Figure 4 shows, for each data set, ROC curves for our method
and either ProteinProphet or MSBayes. We compare against
ProteinProphet for the first four data sets, and MSBayes for
the Sigma 49 protein mixture. ProteinProphet has previously
been demonstrated to perform similarly to MSBayes on this
data set.'® We do not compare against MSBayes on any other
data sets, because the model it employs was trained to be used
for the Sigma 49 protein mixture; hence, attempting to compare
performance on another data set would be unfair. The ISB 18
protein data set includes many replicate analyses, so we show
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Figure 5. FDR calibration plots. For each data set, we plot the decoy database estimate of the empirical FDR as a function of the
estimated FDR. We compare our method to ProteinProphet in (A—D) and compare to the ABLA model of MSBayes in (E). We also plot
the line along which the two axes are equal, which represents an ideally calibrated model (without considering bias introduced in the
estimation of the empirical FDR). Our method is run on each data set with the same set of parameters used for the same data set in

Figure 4.

the ROC for protein inference using the pooled replicate data
sets. On the yeast data set, our method performs better than
ProteinProphet. On the H. influenzae data, our method per-
forms nearly identically to ProteinProphet. On the Sigma 49
data set, our method performs similarly to MSBayes but
achieves a smaller minimum FDR. For the pooled ISB 18 data
set, we observe a substantial improvement over ProteinProphet
in the low false positive region. The diagonal line produced by
ProteinProphet for the ISB 18 data set corresponds to 25
proteins that each receive a probability of exactly 1.0 because
this data set includes many spectra, many PSMs associated with
the decoy proteins are assigned scores larger than zero, and
the ProteinProphet algorithm assigns these decoy proteins
scores of 1.0.

In addition to ROC curves, the plots in Figure 4 contain series
labeled “Overlap,” corresponding to the number of proteins
identified by both methods at a given number of false positives.
In every case, the overlap line is very close to the ROC curves,
indicating that the methods are consistent with one another
and identify a largely overlapping set of proteins at each score
threshold.

Table 3 depicts the sensitivity of the methods at different
empirical FDRs. Our method outperforms ProteinProphet on

the yeast data and performs significantly better than Protein-
Prophet on the ISB 18 data set. On the H. influenzae data set,
our method performs almost identically to ProteinProphet; this
similarity can also be observed in the ROC plot in Figure 4A.
On the C. elegans data set, our method performs better at the
0.0 FDR, worse at the 0.01 FDR and better for higher FDRs. On
the Sigma 49 data set, our method performs better than
MSBayes, which does not achieve a FDR less than 0.10.

Figure 5 shows, for each data set, the calibration of the
posterior probabilities assigned by the different methods. In
these figures, we compare the estimated FDR to the empirical
FDR. On the yeast data set our method has better calibration
accuracy compared to ProteinProphet. For the Sigma 49 data
set we achieve better calibration than MSBayes. On the ISB 18
data set our method is much better calibrated than Protein-
Prophet. On the H. influenzae data set, both our model and
ProteinProphet are very well calibrated and achieve similar
results. On the C. elegans data set, our method’s calibration is
similar or slightly inferior to ProteinProphet.

It should be noted that our empirical FDRs are estimates,
which necessarily include some error. In particular, all decoy
proteins are known false positives but not all target proteins
are always present. As a result, we may underestimate the

Journal of Proteome Research ¢ Vol. 9, No. 10, 2010 5353



research articles Serang et al.
Table 3. True Positive Identifications vs. Empirical FDR?
H. influenzae Yeast ISB 18 C. elegans Sigma 49
FDR OBM PP OBM PP OBM PP OBM PP OBM MSB
0.0 225 224 1008 745 25 - 549 412 19 -
0.01 235 237 1320 1225 25 - 602 687 19 -
0.05 254 249 1603 1471 25 - 849 788 39 -
0.10 256 255 1778 1566 25 - 954 900 39 -

“Table lists, for the five data sets, the number of true positive identifications that the methods achieve at the greatest empirical FDR not exceeding 0.0,
0.01, 0.05, and 0.10. Methods are abbreviated as PP = ProteinProphet, MSB = MSBayes, and OBM = our optimized Bayesian marginalization method. The
true positive counts are boldfaced if that method is better for that data set and at that particular empirical FDR. All FDR values for ProteinProphet applied
to the ISB 18 data are missing because the minimum FDR attainable was greater than 0.43. All FDR values for MSBayes applied to the Sigma 49 data are

missing because the minimum FDR attainable was greater than 0.10.

empirical FDR in Figure 5. However, this observation does not
alter our conclusion that our model is similarly or better
calibrated compared to ProteinProphet and MSBayes. For four
of the five sets (H. influenzae, 1SB 18, C. elegans, and Sigma
49) our FDR calibration curve is nearly identical to or below
the curve from ProteinProphet, indicating that our method is
at least as conservative as ProteinProphet. Furthermore, on
these data sets ProteinProphet is less conservative than an ideal
model. Due to the high level of agreement among the algo-
rithms in Figure 4, it is reasonable to assume that both curves
would similarly move upward; therefore, any negative bias to
the empirical FDR estimation would move both curves similarly
upward, causing our model to remain better calibrated than
ProteinProphet. In other words, after correcting for absent
targets, it is preferable to have a more conservative model, and
our model is more conservative on these data sets. Further-
more, the ISB 18 and Sigma 49 data sets consist of several
proteins directly purified into the sample. In these cases, there
should be little or no error to the estimated empirical FDR,
because no proteins from the target database should be absent.

We cannot be certain whether we are better calibrated on
the remaining yeast data set. However, at the 0.05 estimated
FDR level (which will not be influenced by the potential
empirical FDR bias), we estimate the empirical FDR at 0.034.
Even if the empirical FDR was underestimated by 50%, our
method would be nearly perfectly calibrated. For our method
to have significantly worse calibration than ProteinProphet, the
bias toward absent targets would need to be substantial.

Our probability model requires the estimation of three free
parameters, o, 3, and y. We empirically choose the set of
parameters that jointly maximizes the ROCs score (the average
sensitivity when allowing between zero and 50 false positives)
and minimizes the mean squared error (MSE) from an ideally
calibrated probability. We compute the calibrated MSE by
integrating the square of the difference between the estimated
and the empirical FDR over the estimated FDR range [0, 0.1].
We then perform a rough three-dimensional grid search in the
range [0.01, 0.76] at resolution of 0.05 for a, in the range
[0.00, 0.80] at resolution 0.05 for 3, and in the range [0.1, 0.9]
at resolution 0.1 for y. For each triplet of parameters, we
compute both the ROCsy and the calibration MSE. For each
data set we then select the triplet of parameters that result in
an acceptable compromise between the most accurate model
and the best-calibrated model. In order to demonstrate that
this comprimise can be achieved objectively, we minimize
(1 — A)MSE — AROCs,, where 1 is a parameter selected to
emphasize ROCs, or MSE; a 4 approaching 1.0 will shift the
emphasis to the most accurate model, and a 4 approaching
0.0 will result in a more calibrated model. We have used 1 =
0.15 for every data set.

5354 Journal of Proteome Research ¢ Vol. 9, No. 10, 2010

Because we choose the parameters for each data set, we
cannot be certain that the observed differences in performance
between our method and ProteinProphet or MSBayes are not
partially due to overfitting. On the other hand, the optimal o
and  parameter values are similar for these data sets.

Furthermore, the influence of the y parameter is limited
because we estimate it with very low resolution, and very few
bits of precision are used to define it. Also, the y parameter
almost exclusively contributes to calibration because it up-
weights or downweights all proteins in a similar manner; using
a fixed y of 0.5, which is equivalent to using a uniform prior
for all protein sets, and performing the grid search for only o
and f resulted in nearly identical ROC figures. The risk of
overfitting is also decreased because we are jointly optimizing
both the accuracy and calibration, which are independent
values. To demonstrate the robustness of our model to
suboptimal parameters, we also used the values of o, 3, and y
that were selected using the H. influenzae data set, but we
applied the parameters to a each of the experiments in the ISB
18 data set. Our method attains a greater ROCs, score than
ProteinProphet for 193/236 (81%), even when using parameters
chosen from completely different data.

Table 4 shows that our method compares favorably to
ProteinProphet and MSBayes when identifying proteins that
contain a high-scoring degenerate peptide. On all of these data
sets, our method identifies no decoy proteins that contain a
high-scoring degenerate peptide. Furthermore, it does so
without blindly introducing a systematic bias against such
proteins. For instance, on the yeast data, we identify 88 proteins
with degenerate peptides without introducing any false posi-
tives. On the ISB 18 and Sigma 49 data sets, our method
identifies nearly the same number of target proteins containing
high-scoring degenerate peptides as the competing methods
but without identifying any decoy proteins. In contrast, Pro-
teinProphet and MSBayes identify six and two decoy proteins
on these data sets, respectively. The only data set where our
method does not increase either the sensitivity or specificity
without sacrificing the other is the H. influenzae data, on which
we identify four fewer degenerate target proteins but still
maintain perfect specificity. These proteins are not a significant
percent of the targets identified. It should be noted that on
the C. elegans data set, we identify many fewer target and decoy
proteins that contain high-scoring degenerate peptides, but on
this data set, ProteinProphet is overly permissive, while our
method is overly conservative (as shown by Figure 5D).
Lowering the protein threshold to 0.8 on our method yields a
superior sensitivity and identical or superior specificity for both
categories of proteins.

Rather than treating the PeptideProphet values as prob-
abilities and making an ad hoc correction, our method analyzes
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Table 4. Accuracy on Proteins Containing Degenerate Peptides?

research articles

H. influenzae yeast ISB 18
OBM PP OBM PP OBM PP

TP FP TP Fp TP Fp TP Fp TP Fp TP Fp

simple proteins 228 1 227 1 83 5 886 2 13 0 15 87

proteins with degeneracy 2 0 6 251 0 163 1 10 0 11 6

C. elegans Sigma 49
OBM PP OBM MSB

TP FP TP FP TP Fp TP FP
simple proteins 420 4 445 14 27 1 36 5
proteins with degeneracy 173 0 273 5 0 5 2

“Table lists, for the five data sets, the number of true positive and false positive proteins identified by each method using a probability threshold of
0.90. The proteins identified are separated into two classes: “proteins with degeneracy” are proteins that share a high-scoring (=0.90)peptide with another
protein and “simple proteins” do not share such a peptide with another protein. Proteins that share a high-scoring peptide only through protein grouping
are not treated as proteins with degeneracy in order to prevent any artifacts due to the treatment of grouped proteins. Methods are abbreviated as PP =
ProteinProphet, MSB = MSBayes, and OBM = our optimized Bayesian marginalization method. When high-scoring degenerate peptides must be resolved,
our protein identification method offers a favorable trade-off between sensitivity and specificity.
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Figure 6. Example of differently ranked ISB 18 proteins. We show
an example of three proteins from the ISB 18 data set, one target
(sp|P02643|TNNI2_RABIT) and two decoys (gi|1573522|gb|
AAC22195.1| and gi|1573516|gb|AAC22189.1|). ProteinProphet
assigns posteriors of 1.0 to the target protein sp|P02643|TNNI2_
RABIT and to the decoy protein gi|1573516|gb|AAC22189.1|.

all of the data in a gestalt manner. As a result, our emission
model can prevent a degenerate peptide from being counted
twice, and the noise model in our method can prevent spurious
evidence from accumulating and awarding an absent protein
a high score. On large, somewhat noisy data sets like the ISB
18 data set, ProteinProphet effectively aggregates a great deal
of noise, resulting in many decoy proteins with estimated
probabilities of 1.0. In contrast, our method gives these decoy
proteins smaller probabilities than ProteinProphet, and more
importantly, gives the decoy proteins smaller probabilities
relative to several target proteins.

In Figure 6, we show a decoy protein (gil1573516IgblAAC22189.11)
that matches several PSMs, but the majority of these PSMs have
fairly low scores and are the result of the enormous number
of spectra. In contrast, most of the PSMs associated with the
target protein splP02643ITNNI2_RABIT have scores above 0.99.
Our method estimates that the target and decoy proteins have
respective posterior probabilities of 1.0 (which is higher than
any decoy protein posterior) and 0.00092. ProteinProphet
assigns both proteins posteriors of 1.0, preventing them from
being effectively ranked. For completeness, we also show the
decoy protein gil1573522IgblIAAC22195.11, which shares a com-
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Figure 7. Accuracy against the number of states. The accuracy
of the procedure on the H. influenzae data (measured by
unnormalized ROCs, score) increases as the number of states
allowed grows. A larger number of states corresponds to less
aggressive pruning; a smaller number of states corresponds to
pruning many moderately scoring PSMs. The number of states
can be thought of as the number of possible protein and peptide
configurations that must be enumerated when marginalizing a
connected subgraph with our optimizations. The H. influenzae
has the most complex graph connectivity (due to the human
decoy database used), as illustrated by the number of edges in
Table 2.

mon PSM with the target. Our method likewise accumulates
the relatively weak evidence supporting this decoy protein to
estimate a weak posterior of 0.019 (which is lower than any
target protein posterior). ProteinProphet estimates a 0.0 prob-
ability for the protein gil1573522IgblIAAC22195.1I.

In general, even after partitioning, clustering and pruning
zero-probability peptides, we cannot be sure that the running
time of our algorithm will not be prohibitively high. Therefore,
as described above, we allow the user to specify the log of the
maximum size of the search space. If, after the graph trans-
formations, one or more connected components contain too
many nodes, then the probabilities of low-scoring PSMs in the
offending components are temporarily set to zero, increasing
the separability. The threshold for this zeroing procedure is
adjusted recursively, on a per-component basis, to achieve the
desired search space size (and, hence, running time). To test
how the performance of our method varies as we adjust the
size of the search space, we ran the H. influenzae analysis
multiple times with a fixed value for o and g but different
search space sizes. Figure 7 shows that the performance (as
measured by ROCs, score) improves in a stepwise fashion as
the search space increases.
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4. Discussion

We have demonstrated that, using a straightforward prob-
ability model, we can efficiently marginalize to compute protein
posterior probabilities with respect to a given collection of
PSMs. The resulting posteriors provide rankings that often out-
perform accurate and widely used existing methods, thus
providing evidence that finding an exact or near-exact solution
to this problem is beneficial.

As pointed out by one of the reviewers of this manuscript,
the timing results shown in Table 2 are slightly unfair, because
we only ran our procedure once rather than multiple times to
select the parameters o and S. In the experiments reported in
Figure 4, for example, we ran our procedure ~1900 times;
however, we do not expect users to do such an exhaustive
search in practice. Some parameter values do not make much
sense; for instance o = 0, 5 = 1 would award all identified
proteins with identical scores. Furthermore, empirically, the
optimal parameters from our dense grid search are all fairly
similar and would easily be found by a much lower resolution
grid search. For instance, a search over a € {0.01, 0.04, 0.09,
0.16, 0.25, 0.36}, 5 €{0.01, 0.025, 0.05}, y € {0.1, 0.5, 0.9} requires
54 iterations (9 x 3 x 3) and produces produces similar
parameter sets and very similar results. Running our method
54 times (i.e., loading the data once and marginalizing 54 times)
would take less time on the yeast data and 20 s longer than
ProteinProphet on the ISB 18 data. Note, however, that our
method results in substantially better performance on the latter.

When the marginalization is too expensive, we have pro-
posed a pruning procedure that approximates the full margin-
alization. Importantly, the effects of this approximation are
restricted to the graph components in which they are carried
out. Thus, when a PSM with a nonzero probability must be
split during the pruning procedure, the pruning will only
change the probabilities assigned to the proteins in that
subgraph. In the future, it may be possible to bound the error
introduced by pruning around nonzero nodes. This bound
could be used to design pruning strategies that would minimize
the error incurred. When multiple proteins share a large group
of high-scoring peptides, the problem becomes very similar to
the minimum set coverage problem, which is already known
to be very difficult; it resides in the complexity class NP-Hard,
making it equivalent to the Traveling Salesperson Problem.
Hence, in these scenarios, even a locally inaccurate approxima-
tion may be welcome if the runtime is efficient.

In this work, we have used a relatively simple enumeration
strategy to select values of the three parameters, o, 5, and y. A
more rigorous approach would set these parameters using
cross-validation. However, such an approach would still require
users to provide a decoy database. We have shown that a, f3,
and y are robust across different data sets. It would be
interesting, therefore, to investigate strategies for estimating
these parameter values without using a decoy database.

These experiments demonstrate that the quality of Protein-
Prophet’s analysis depends heavily on the data set being
analyzed. ProteinProphet’s strength and weakness are derived
from its implicit assumptions and its reliance on PeptidePro-
phet. ProteinProphet implicitly assumes that PeptideProphet
scores are true, unbiased probability estimates. ProteinProphet
does not use protein length or the number of associated
peptides to correct the PeptideProphet scores associated with
a protein. In a similar manner, ProteinProphet does not correct
for the total number of spectra observed. When myriad spectra

5356 Journal of Proteome Research ¢ Vol. 9, No. 10, 2010

Serang et al.

are observed, nearly every peptide has a strong chance of being
matched to a spectrum with a high PeptideProphet score. When
ProteinProphet’s assumptions prove to be reasonable, they add
extra information and result in a very accurate and well-
calibrated model (e.g., the H. influenzae data set). On data sets
where these implicit assumptions are not helpful and may even
be harmful, ProteinProphet performs similarly or worse than
our method (e.g., the yeast and ISB 18 data sets).

One significant difference between our model and Protein-
Prophet is that our model explicitly allows the possibility that
a high-scoring PSM is the result of an error. In data sets
containing many spectra, the chance of a protein associating
with an erroneous high-scoring PSM becomes higher. This
effect can be represented in our model by using a larger value
of the  parameter. It is important to note that even if the
parameter is larger than the o parameter, this does not mean
that a peptide is more probably created from noise rather than
from an associated protein. This is because j is used as the
probability that a peptide is matched to a fragmentation scan
given that the peptide was absent. When each protein is
associated with several identified peptides, then the collective
effect of these peptides make it very unlikely that they are
absent, substantially lowering the influence of the noise model.
ProteinProphet does consider the number of sibling peptides
(NSP), the sum of other peptide scores sharing a protein
association with a candidate peptide, when interpreting a score
from PeptideProphet. But the manner by which this NSP
correction lowers inflated peptide scores will not remove a
systematic bias from all peptide scores.

The different manner in which our model handles noise is
indicative of a larger fundamental difference in how our model
employs PeptideProphet scores. ProteinProphet uses Pep-
tideProphet scores as true probabilities and conditions on the
NSP score to distinguish multihit proteins from so-called “one-
hit wonders.” Without conditioning on NSP, association with
a single high-scoring peptide may be indistinguishable from
association with many high-scoring peptides. In contrast, our
model removes the prior probability estimates used by Pep-
tideProphet and converts them back into discriminant score-
based likelihoods. The difference is that ProteinProphet initially
interprets PeptideProphet scores as the probability that a
peptide is present given a paired spectrum was observed,
whereas our method initially uses these scores to compute a
value proportional to the probability that a spectrum would
be created given that its paired peptide was present. For a given
hypothesized set of present proteins, our model will compute
the likelihood that the spectra were observed given that set of
proteins was present. This subtle distinction lets our model use
protein-level information when utilizing the PeptideProphet
scores to compute protein posteriors. A protein associated with
many high-scoring peptides will score higher than a protein
associated with a single high-scoring peptide, but without using
an iterative heuristic like ProteinProphet’s NSP score.

In a similar manner, our method uses protein-level informa-
tion in a rigorous, gestalt manner when handling degenerate
peptides, rather than by using a correction in hindsight.
ProteinProphet partitions every degenerate peptide’s prob-
ability between its associated proteins. Initially, the peptide is
split equally between them to compute the protein prob-
abilities, but in the next iteration, each protein is afforded a
stake proportional to its most recent probability. Like the NSP
correction, this approach works well, but it does so in a
somewhat opaque manner; hence, identifying its implicit
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assumptions and improving their effects is not trivial. Rather
than heuristically partitioning each identified peptide among
its associated proteins, our graphical model allows a protein
with strong independent supporting evidence to “explain away”
supporting data that is shared between itself and other proteins
(e.g., degenerate peptides). This happens simply because the
likelihood increases only slightly by including the protein with
little independent supporting evidence, but the likelihood
decreases substantially when a protein with substantial inde-
pendent supporting evidence is omitted. In this manner, our
method automatically apportions information from degenerate
peptides during the marginalization procedure and does not
require an ad hoc adjustment.

Like other methods, our model’s assumptions are not perfect.
But because we have derived our model from clear, explicitly
stated statistical assumptions, it may be possible to evaluate
their accuracy and replace them with more relaxed assump-
tions. For instance, when using data dependent acquisition,
assumption #2 may be inaccurate, because the population of
peptides with equal hydrophobicity effectively compete in the
MSI1 to be selected for collision induced dissociation. Assump-
tion #4 could be improved by treating spurious peptide
identifications as mismatches between the observed spectrum
and peptides that produce similar spectra at that precursor
mass. Assumption #5 may be improved for certain samples by
using more complex priors that more aggressively enforce
competition between proteins for ownership of shared pep-
tides. But perhaps the most fruitful avenue for future work
involves relaxing the assumptions regarding the peptide emis-
sion model and the noise model (assumptions #3 and #4).
Using the current model, we have observed that likelihood
estimates of a and 3 are not as good as the empirical estimates,
suggesting that relaxed assumptions will better model the type
of data observed in practice. It is intuitive that the likelihood
estimates do not match the empirical estimates, because
likelihood estimates essentially infer a uniform prior on all a,
pairs despite the inherent relatedness between the parameters
(the contribution of § decreases as o increases or as graph
connectivity increases). A more accurate model of these prob-
abilities may preserve the optimizations we have introduced,
while taking into account peptide-specific information. Fur-
thermore, a more sophisticated model would make far greater
use of the entire graph by including peptides that are not
matched to any spectra (without unfairly penalizing proteins
that contain many undetectable peptides).
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