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INTRODUCTION

Protein structure prediction with computational methods is an im-

portant research area that has the potential to dramatically accelerate

the determination of protein structures. The availability of high qual-

ity predicted protein structures would greatly enhance our ability to

understand the functions of the proteins, redesign proteins of interest,

and develop drugs interacting with protein targets.1,2 Protein struc-

ture prediction can be classified into two categories: template-based

modeling and ab initio modeling. In template-based modeling, one or

more template structures in the PDB are identified that promise to be

structurally similar to the protein target, whose structure we are inter-

ested in predicting. Predicted models are then constructed based on

the identified template structures. In the ab initio approach, no tem-

plate structures are used, and models are constructed from scratch by

efficient sampling of the conformational space.

Most protein structure prediction approaches, either template-based

or ab initio approaches, first generate a large number of candidate

models by either constructing models from different alignments of

different templates3 or by sampling different regions of the conforma-

tional space.4–6 A scoring function is then needed to discriminate

between high quality models and misfolded models. An ideal scoring

function should have perfect correlation with the quality of a struc-

tural model, which is measured by the closeness of the model to the

native structure. Scoring functions can be derived with one of the fol-

lowing three approaches: (1) physical potentials, (2) probability distri-

bution-based potentials, and (3) machine learning-based scores. A

physical potential computes the energy of a structure by modeling the

interactions between different components of the protein or between

the protein and the solvent based on physical laws.7–9 A probability

distribution-based potential extracts the energy parameters from the

probability distribution functions of environment types in known

native structures.10–13 Finally, machine learning-based scores utilize

machine learning techniques such as artificial neural networks14,15

and support vector machines16 to learn how to combine multiple
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ABSTRACT

Protein structure prediction is an important

problem of both intellectual and practical

interest. Most protein structure prediction

approaches generate multiple candidate models

first, and then use a scoring function to select

the best model among these candidates. In this

work, we develop a scoring function using sup-

port vector regression (SVR). Both consensus-

based features and features from individual

structures are extracted from a training data set

containing native protein structures and pre-

dicted structural models submitted to CASP5

and CASP6. The SVR learns a scoring function

that is a linear combination of these features.

We test this scoring function on two data sets.

First, when used to rank server models submit-

ted to CASP7, the SVR score selects predictions

that are comparable to the best performing

server in CASP7, Zhang-Server, and significantly

better than all the other servers. Even if the SVR

score is not allowed to select Zhang-Server mod-

els, the SVR score still selects predictions that

are significantly better than all the other servers.

In addition, the SVR is able to select signifi-

cantly better models and yield significantly bet-

ter Pearson correlation coefficients than the two

best Quality Assessment groups in CASP7,

QA556 (LEE), and QA634 (Pcons). Second, this

work aims to improve the ability of the Robetta

server to select best models, and hence we evalu-

ate the performance of the SVR score on ranking

the Robetta server template-based models for the

CASP7 targets. The SVR selects significantly bet-

ter models than the Robetta K*Sync consensus

alignment score.
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features, such as physical or probability distribution-

based potentials, from a training set including structures

of different quality.

In this study, we use a machine learning approach to

develop a scoring function to select the best models for a

protein. The task is to learn to rank the predicted struc-

tures of each target correctly according to their quality,

i.e., their closeness to the native structure. Several widely-

used metrics to measure the similarity between two pro-

tein structures have been proposed. We use the GDT_TS

measure,17 which is used in the CASP evaluation,18 as

the criterion to judge the quality of a structure. The

learning task can be formulated as a regression problem,

where a function is learned that predicts the quality of a

structure from multiple features. Our features include

consensus-based features that measure the closeness be-

tween a structure and all the other predicted structures

for the same target,19,20 and structural features that

measure properties of a structure directly.21,22 We use

support vector regression (SVR) to solve this regression

problem. SVR is a modification of the support vector

machine (SVM) classifier for the regression problem.

Both methods are derived from statistical learning

theory,23 attempting to control the complexity of the

learned function while minimizing training errors. This

approach allows SVR to achieve good generalization per-

formance. SVMs have been used successfully in numer-

ous bioinformatics applications,24 including remote

protein homology detection,25 protein function classi-

fication,26 protein interaction prediction,27 protein

secondary structure prediction,28 and microarray data

analysis.29

Using SVR, we have developed a scoring function that

is a linear combination of twelve features. We test this

scoring function on two data sets. First, we test on the

task of selecting the best models among the CASP7 server

predictions. The top-ranked models with this scoring

function have comparable quality as the best server

(Zhang-Server), and significantly better performance than

all the other server submissions. Next, to evaluate the

feasibility of using this scoring function to improve the

performance of the Robetta server, we test the SVR score

on the ranking of template-based models of CASP7 tar-

gets generated by the Robetta server. On this task, the

SVR score performs significantly better than the Robetta

consensus alignment score.3

METHODS

Training data set

The training data set consists of predicted structures

submitted to CASP5 and CASP6 by participating predic-

tion groups, and a selection of native protein structures

from the PDB. Only the first model submitted to CASP

by each group is included in the training set. All the

structures are first subject to local minimization with

Rosetta to remove steric clashes, build missing sidechain

atoms and optimize side chain rotamers before comput-

ing the structural features. The training set only include

structures that remain similar to the original structures

after minimization, with a MAMMOTH E value less than

0.001.30 The data set contains 7280 predicted structures

for 73 CASP targets satisfying this criterion. We also

include 50 native structures corresponding to the targets

in the training set whose structures were determined

with X-ray crystallography.

The CASP51CASP6 targets represent a small subset of

all the proteins present in the PDB. To increase the cov-

erage of protein folds in PDB, we include additional

native PDB structures from a representative data set. A

list of nonredundant representative high-quality protein

structures was downloaded from the PISCES server31

at http://dunbrack.fccc.edu/Guoli/pisces_download.php.

This list contains 1060 proteins of at most 20% pairwise

sequence identity, resolution of better than 1.6 Å and R

factor cutoff of 0.25. The R factor measures the disagree-

ment between the original X-ray diffraction data and the

expected diffraction pattern from the crystallographic

coordinates, and it reflects the quality of the crystal

structure. Proteins of fewer than 50 residues or more

than 500 residues are removed from the list. We remove

from the list proteins sharing significant sequence simi-

larity with any of the CASP targets in the training set,

using a BLAST E value threshold of 1. Protein structures

with multiple chains can have large quarternary interac-

tion interfaces that affect the folding of each individual

chain dramatically. To avoid this scenario, we removed

402 structures with multiple chains from the list. The

final list contains 424 proteins.

The final training set contains 7754 structures includ-

ing 7330 structures based on 73 CASP51CASP6 targets

and 424 additional native structures from PDB. The full

training set can be found in the online supplement at

http://noble.gs.washington.edu/proj/decoy.

Features

Several studies have shown that consensus-based fea-

tures are powerful predictors of the quality of a struc-

ture.19,20 In other words, a correctly-folded structure is

more likely to be similar to the other predicted structures

for the same protein target than an incorrectly-folded

structure. We include consensus-based features by meas-

uring the median structural similarity between a struc-

ture and all other predicted structures of the same target:

fi 5 median(sim(i,j)), Vj = i. Compared with the mean,

the median has the advantage that it is insensitive to the

presence of outliers. The native structures not in CASP

have the consensus-based features set to the mean of the

median similarity scores for all CASP structures. We

include four different structural similarity measures: root
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mean square deviation (RMSD), MaxSub,32 GDT_TS17

and TM.33 The simple RMSD measure is highly influ-

enced by large errors in parts of the model and poor at

detecting models that are partially correct. MaxSub,

GDT_TS, and TM all aim to overcome this problem by

identifying maximum well-predicted substructures. Max-

Sub considers a substructure to be well-predicted if dis-

tances between equivalent residues in the substructure af-

ter superposition are below a constant threshold, 3.5 Å.

GDT_TS uses four thresholds, 1, 2, 4, and 8 Å, and com-

putes the average across the four thresholds. TM takes

into account that smaller proteins tend to have lower

RMSD, and varies the distance threshold according to

the size of the protein. The consensus-based features

derived from the four different similarity scores are

highly correlated. As described later, the learned model

chooses to assign only the median TM feature a nonzero

weight.

We also include several additional features that mea-

sure properties of a structure directly. These features

include T32S3, a distance-dependent pairwise atomic

potential,22 and several Rosetta-generated features,21

which are listed in the online supplement. The Rosetta

features capture the overall shape and burial, packing,

solvation effects, hydrogen bonding patterns, torsion

angle preferences, pairwise interactions, and so on. All

the features are standardized so that they have a mean of

0 and standard deviation of 1.

Two scenarios in ranking decoy structures exist in

practice. In the relative ranking scenario, we are inter-

ested in ranking decoy structures correctly for each tar-

get, but we are not concerned with how decoy structures

from different targets are ranked relative to one another.

Relative ranking is particularly important when selecting

the best predicted models from a set of candidate decoy

structures. On the other hand, in the absolute ranking

scenario, we are interested in ranking decoy structures

from all targets correctly. This scenario is important

when we want to provide a confidence score for a partic-

ular predicted structure.

In this study, we concentrate on the relative ranking

scenario. Therefore, to allow different scales between dif-

ferent proteins, we add additional protein identity fea-

tures during training. Each CASP target is represented by

a binary feature (flag) with value of 0 or 1. A CASP

structure has the flag corresponding to its protein iden-

tity set to 1 and all the other protein identity features set

to 0. The native protein structures not corresponding to

a CASP target have all the protein identity features set to

0. The inclusion of these protein identity features allows

the predicted output values for structures from one

CASP protein to shift arbitrarily with regard to struc-

tures from another CASP protein. This in effect allows

the training to focus only on the ranking of structures

from the same protein, as in the relative ranking

scenario.

Support vector regression

To learn the function that maps the feature values to

the predicted GDT_TS, we use SVR. With SVR, an e-
insensitive loss function is used where only errors greater

than a pre-defined parameter e are considered in the loss

function. We use a linear kernel to learn a linear decision

function, where the predicted GDT_TS is a weighted

sum of the features. The mathematical formulation of

the linear SVR is as follows34:

min 1
2
kw k2 þPl

i¼1 Ciðni þ n̂iÞ
subject to ðhw; xii þ bÞ � yi � eþ ni

yi � ðhw; xii þ bÞ � eþ n̂i
ni; n̂i � 0 8i ¼ 1; 2; . . . ; l

In the formulation, w and b are the weights of the fea-

tures and the bias term in the decision function that we

want to learn, xi and yi are the features and the target

GDT_TS value of the ith training example, and Ci is a

parameter that weights the error associated with the ith

training example.

We can adjust parameters Ci to put different weights

on different training examples. In general, we are more

interested in the correct ranking of the good models than

the bad models. Thus we define Ci to be dependent on

ri, the rank of structure i among all the predicted struc-

tures of the same protein:

Ci ¼
Cnat if structure i is a native protein structure
5�Cnatffiffiffi

ri
p if structure i is a predicted structure

�

Cnat was chosen to be 10. In this scheme, a native struc-

ture gets the same weight as a predicted structure with

rank 25. We did not experiment with other values of

Cnat.

We choose the signs of all features except for the pro-

tein identity features such that they have a positive corre-

lation with the target output, GDT_TS. Table I lists the

Pearson correlation coefficients of the features with

GDT_TS averaged over all CASP targets in the training

set. The consensus-based feature, median TM, has a

much larger correlation coefficient than the other fea-

tures derived from individual structures. In principle, the

learned function should therefore assign positive weights

to all the nonidentity features. However, because the fea-

tures are not independent of each other, the SVR tends

to learn a decision function with both positive and nega-

tive weights. Therefore, to derive a scoring function that

is more interpretable and generalizable, we introduce

additional constraints requiring that all nonidentity fea-

tures have non-negative weights. The Mosek toolbox35 in

Matlab is used to solve the resulting SVR optimization

problem.

Ranking Predicted Protein Structures with SVR
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RESULTS

The learned scoring function

A collection of 21 structural features and 4 consensus-

based features are used to learn to predict the target out-

put, GDT_TS to the native structure. A list of these fea-

tures can be found in the online supplement. During

training, the weights of these 25 features are constrained

to be non-negative. These additional constraints in effect

play the role of feature selection, and the resulting solu-

tion assigns positive weights to only 12 features. Table I

lists the 12 selected features and their weights. Although

we compute four different consensus-based features, me-

dian RMSD, GDT_TS, MaxSub, and TM scores, because

these four features are highly correlated the learned scor-

ing function assigns positive weight only to the median

TM feature. Furthermore, the median TM feature re-

ceives a much larger weight than all the other features.

This observation is consistent with the superior power of

consensus-based features in predicting protein structure

quality, as indicated by the high correlation between me-

dian TM and GDT_TS in the training set, 0.87.

The CASP7 server prediction

To evaluate the ability of the SVR scoring function to

predict structure quality, we test its performance in rank-

ing the server predicted models for the CASP7 targets.

All the models are first subject to local minimization

with Rosetta before computing the structural features, as

was done in the training set. We evaluate the perform-

ance of the SVR score in selecting the best models by

four metrics: GDT_TS1 raw and Z scores, and GDT_TS5

raw and Z scores. GDT_TS1 measures the GDT_TS score

of the first model ranked by a quality assessment method

or submitted by a server group, and GDT_TS5 measures

the best GDT_TS score among the top five models.

GDT_TS scores from different targets have different dis-

tributions, and the differences in GDT_TS may have dif-

ferent scales for different targets. Therefore, we also com-

pute the Z scores of GDT_TS1 and GDT_TS5. Table II

compares the performance of the SVR with the servers

having the highest average GDT_TS1 Z scores: Zhang-

Server,36 Pmodeller6,19 ROBETTA,37 and MetaTasser,38

and the two best performing Quality Assessment (QA)

groups in CASP7, QA556 (LEE),39 and QA634

(Pcons).19 For both GDT_TS1 and GDT_TS5 raw and Z

scores, the SVR score performs better than both quality

assessment methods, at least as well as Zhang-Server and

better than all the other servers. To evaluate the statistical

significance of the differences, we perform pairwise Wil-

coxon signed rank tests and compute the resulting p val-

ues. Table III shows that the performance of the SVR is

not statistically different from that of Zhang-Server, and

both the SVR and Zhang-Server perform significantly

better than all the other methods. Table II also lists the

mean GDT_TS score of the best model of each target.

This score is the theoretically optimal score. The large

margin between the best model GDT_TS and the SVR

results indicates that the SVR scoring function still has

plenty of room for improvement.

Considering the outstanding performance of the Zhang

server in Table II, we are interested in how much the

performance of the SVR score depends on the presence

of the Zhang-Server models. Therefore, we also compute

the performance of the selection by the SVR score of

models from server submissions other than the Zhang

server, represented as ‘‘SVR (no Zhang).’’ Tables II and

Table I
The Weights of the Features in the Learned Scoring Function

Feature Description Weight Correlation

median TM Consensus score 20.057 0.87
T32S3 Pairwise atomic potential 2.444 0.52
sasapack Packing quality score 2.180 0.07
fa_prob Torsion angle preference 1.732 0.30
numres Number of residues 1.405 0.19
env Residue burial preference 1.376 0.60
hb_sc Side chain hydrogen bonds 1.167 0.004
pair Residue-based pairwise potential 0.946 0.40
hb_lrbb Long range backbone

hydrogen bonds
0.565 0.33

co Contact order 0.526 0.17
sasa Solvent accessible surface area 0.475 0.41
hb_srbb Short range backbone hydrogen

bonds
0.280 0.10

The third column lists the nonzero weights of the features in the trained SVR

model. The last column lists the average Pearson’s correlation coefficients between

these features and GDT_TS in the training set. The correlation coefficients are

computed separately for each target and then averaged over all CASP targets.

Table II
The Average Structural Quality of Top-Ranked CASP7 Server Models by SVR

Method

No of
targets
predicted

Mean
GDT_TS1
(Z score)

Mean
GDT_TS5
(Z score)

Best model 98 0.636 (1.81) 0.636 (1.81)
SVR 98 0.589 (1.17) 0.614 (1.47)
Zhang-Server 98 0.589 (1.11) 0.613 (1.47)
SVR (no Zhang) 98 0.576 (1.02) 0.603 (1.32)
QA634 98 0.556 (0.88) 0.593 (1.22)
Pmodeller6 98 0.553 (0.87) 0.584 (1.16)
QA556 96 0.564 (0.83) 0.580 (1.02)
ROBETTA 97 0.550 (0.82) 0.582 (1.22)
MetaTasser 98 0.545 (0.76) 0.562 (0.96)

The first column lists the names of the server groups or the methods used to

select the model. For the ‘‘best model,’’ we select the best model according to the

observed quality of a structure, its GDT_TS. SVR ranks the models according to

the scoring function developed in this study. ‘‘SVR (no Zhang)’’ is the same as

SVR except that all Zhang Server submissions are excluded. Zhang-Server, Pmod-

eller6, ROBETTA and MetaTasser are the top performing servers according to

mean GDT_TS1 Z score, and QA634 (Pcons) and QA556 (LEE) are the two best

performing Quality Assessment groups in CASP7. The numbers in the parentheses

represent the average Z scores based on the distributions of GDT_TS scores of

each target.
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III show that although ‘‘SVR (no Zhang)’’ performs

worse than both SVR and Zhang-Server, it is able to per-

form significantly better than the other top performing

servers, Pmodeller6 and ROBETTA. ‘‘SVR (no Zhang)’’

also achieves better performance than QA634 and QA556

for all four metrics evaluated, but the difference is not

statistically significant. Table IV shows the 11 server

groups with at least two models selected by SVR as the

best model for a target. The three top performing servers,

Zhang-Server, ROBETTA and Pmodeller6, contribute the

most models to the top 1 SVR-ranked models. In total,

there are 32 servers with predictions ranked by SVR as

the best for some targets. Figure 1 compares the struc-

tural quality of the first model selected by SVR with that

of Zhang-Server for each target. In the lower left region,

a majority of the points lie above the diagonal. This sug-

gests that among the difficult CASP7 targets, the top-

ranked models by the SVR are more often better than

the first models of Zhang-Server.

In CASP7, Pearson’s and Spearman’s correlation coeffi-

cients were used to evaluate the Quality Assessment per-

formance. We also compare the Pearson’s and Spearman’s

correlation coefficients of the SVR with those of QA556

and QA634 in Table V. The SVR yields Pearson’s correla-

tion coefficients that are significantly better than both

QA556 and QA634, and Spearman’s correlation coeffi-

cients that are statistically indistinguishable from QA556

and QA634. Figure 2 plots the correlation coeffient of

the SVR versus that of QA556 or QA634 for each target.

As shown in Figure 2(A), the majority of the points lie

above the diagonal, indicating that the SVR yields better

Pearson’s correlation coefficients than the two QA meth-

ods in general. In figure 2B, although there are more

Table III
Pairwise Comparisons Between SVR and Best-Performing Servers and Quality

Assessment Methods

SVR

SVR
(no

Zhang) QA634 QA556 Pmodeller6 ROBETTA

Zhang-Server — 0.002 0.0003 6e-05 3e-08 7e-09
SVR 0.0001 0.008 0.002 2e-07 2e-07
SVR (no
Zhang)

— — 0.0004 0.001

QA634 — 0.006 0.009
QA556 0.01 0.0009
Pmodeller6 —

This table lists one-tailed Wilcoxon signed rank test P-values comparing the

GDT_TS1 ranked by SVR or ‘‘SVR (no Zhang)’’ and that submitted by the best-

performing servers and Quality Assessment methods. The table is sorted according

to the median of GDT_TS1. When a P-value is less than 0.05, the P-value is

shown indicating the significance of the row method performing better than the

column method. A dash indicates that the median GDT_TS1 for the row exceeds

the median GDT_TS1 for the column, but that the difference is not significant at

a threshold of 0.05.

Table IV
Distribution of Server Choices Among the First Models Ranked by SVR

Group No of models selected

Zhang-Server 30
ROBETTA 11
Pmodeller6 8
PROTINFO 6
Pcons6 6
HHpred2 3
RAPTORESS 3
CPHmodels 3
3Dpro 3
Frankenstein 2
keasar-server 2

Figure 1
Comparison of the structural quality of the first models selected by SVR and

submitted by Zhang-Server. Each point represents one target, with the x

coordinate indicating the GDT_TS of the first Zhang-Server model and the y

coordinate indicating the GDT_TS of the first model selected by SVR.

[Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]

Table V
Comparison of the Correlation Coefficients Between the SVR and Best-

Performing CASP7 Quality Assessment Methods

Correlation
method

QA
method

SVR
mean

QA
mean

No
of win

No of
lose P-value

Pearson QA556 0.852 0.806 53 43 0.02
QA634 0.852 0.818 62 36 0.03

Spearman QA556 0.762 0.764 37 59 0.09
QA634 0.762 0.746 41 57 0.2

The first column lists the correlation methods used, and the second column lists

the QA methods in comparison. The third and fourth columns indicate the mean

correlation coefficients of the SVR and the QA method in comparison, respec-

tively. The fifth column shows the number of times the SVR achieves a better cor-

relation than the QA method, and the sixth column shows the number of times

the SVR has a worse correlation coefficient. The last column indicates the Wil-

coxon signed rank test P-values.
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cases where the SVR yields a lower Spearman’s correla-

tion coefficient than QA556 or QA634, the difference

between the SVR and the QA method tends to be smaller

than in the cases where the SVR has a better Spearman’s

correlation coefficient.

Note, however, that the SVR is not trained to optimize

the overall correlation. In particular, we assign a larger

weight to training examples with better structural quality.

This design is motivated by the observation that we are

often more interested in the correct ranking of the good

models rather than the bad models. Thus the SVR score

is optimized for the task of selecting the best models

rather than having good correlation with GDT_TS

among both good and bad models. Nevertheless, it is

encouraging that the SVR score performs rather well

in correlation coefficients compared with QA556 and

QA634.

The Robetta server prediction

One goal of this study is to develop a ranking method

that improves the performance of the Robetta server by

selecting better models from the sampled decoy struc-

tures. Therefore, we test the ability of the SVR scoring

function to rank Robetta template-based decoy models

for CASP7 targets. This dataset contains predictions for

77 targets with from 30 to 1955 predicted structures for

each target. The SVR scoring function is used to rank

these predicted models and select either one, or five pre-

dictions for each target. The structural quality of the best

prediction in the selected subset is then compared with

that selected by the Robetta consensus score based on the

Robetta K*Sync alignment ensemble.3 Figure 3 plots the

GDT_TS scores of the models selected by SVR versus

those selected by the Robetta consensus score. More data

points lie above the diagonal, indicating that the SVR

selects better models than the Robetta consensus align-

ment score in most of the cases. Table VI shows that in

both top 1 and top 5 selections, the SVR score selects

significantly better models than the Robetta consensus

Figure 2
The correlation coefficients of SVR and best-performing CASP7 Quality Assessment methods.

Figure 3
Comparison of the structural quality of the top-ranked models by SVR and by

the Robetta consensus alignment score.
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alignment score according to a Wilcoxon signed-rank

test, and has a better mean GDT_TS score.

DISCUSSION

In this paper, we have used support vector regression

to derive a scoring function for ranking predicted protein

structures. The SVR scoring function is evaluated in two

settings: ranking CASP7 server models and ranking

Robetta server models. With the CASP7 test set, if we

use the SVR scoring function to choose one model for

each target, the selected models have comparable quality

to the Zhang server and perform significantly better than

all the other servers and the two best performing Quality

Assessment groups in CASP7. Even if the Zhang server

submissions are excluded, then the selected models still

perform significantly better than all the other servers.

With the Robetta test set, the SVR score is able to select

models significantly better than the Robetta consensus

alignment score.

The SVR score gives a much larger weight to the con-

sensus-based feature, median TM, than the other fea-

tures. To investigate how much this consensus-based fea-

ture contributes to the performance of the SVR score, we

train another scoring function without consensus-based

features, represented as ‘‘SVR (no consensus).’’ The fea-

tures and their weights in the new scoring function are

listed in the online supplement. Table VII compares the

performance of the original full SVR score with the me-

dian TM score alone and ‘‘SVR (no consensus).’’ Both

median TM and ‘‘SVR (no consensus)’’ perform better

than all the servers except the Zhang server. The full SVR

score performs better than both median TM and ‘‘SVR

(no consensus),’’ indicating the benefit of combining fea-

tures from both categories. When evaluated with the Wil-

coxon signed rank test, the full SVR score performs sig-

nificantly better than median TM with a P-value of 0.03.

Several groups have previously used SVR to learn a

composite score for evaluating protein structure qual-

ity.16,40 This work differs from previous work in several

aspects. First, our SVR formulations are different. We

modify the standard SVR formulation to specifically suit

our problem in hand. To allow learning in the local rank-

ing scenario, we introduce additional protein identity fea-

tures such that models from different proteins can have

different scales. We also set the C parameter in a struc-

ture-specific fashion, assigning larger weights to the

learning of structures with better quality. The last modi-

fication is to enforce the directions of the features and

disallow negative weights in the training. Second, we use

different features to derive the SVR score. Xu et al.40

derived all their features from consensus-based features,

and Eramian et al.16 derived features based on individual

structures such as the DOPE potential, several potentials

from MODPIPE and two PSIPRED/DSSP secondary

structure agreement scores. Our SVR score instead

includes both a consensus-based feature, the median TM

feature, and features directly describing the properties of

each individual structure, such as several Rosetta features

and the T32S3 potential. Our study shows that these two

kinds of features are complementary, and the inclusion

of both kinds perform better than either alone. Finally,

the three approaches use different metrics to measure the

quality of a structure, the target function to train the

regressors. Eramian et al.16 trained their regressor to pre-

dict the RMSD of a model. RMSD has the drawback that

it is highly influenced by large errors in a local region,

and may not reflect the quality of the global topology.

We instead choose to evaluate the quality of a structure

using the GDT_TS metric. Xu et al.40 used the MaxSub

score to measure structural quality.

Quite often we are not only interested in the overall

quality of a structure, but we are also interested in how

the structural quality varies across different regions. The

additional knowledge of region-specific structural quality

can have multiple applications. First, poor quality regions

can be identified that need remodeling. Second, multiple

models can be combined to construct better predicted

structures by combining regions of high quality. Finally, a

predicted structure can be used more wisely by a biolo-

gist with region-specific quality information. One future

direction of this work is to extend the approach used in

this paper to the problem of predicting residue-level

structure quality.

Table VI
Comparison Between SVR and the Robetta Consensus Alignment Score

Subset
selected

SVR
mean

Robetta
mean

No of
win

No of
lose P-value

Top1 0.595 0.587 48 28 0.003
Top5 0.609 0.600 57 18 4e-05

This table compares the GDT_TS scores of the best predicted structures in subsets

selected by SVR with those selected by the Robetta consensus alignment score.

The first column indicates the sizes of the subsets selected. The second and third

columns indicate the mean GDT_TS score of the best model in the subset selected

by the SVR score and by the Robetta consensus alignment score, respectively. The

fourth column indicates the number of times the SVR-selected models have better

GDT_TS scores than Robetta-selected models, and the fifth column indicates the

number of times SVR-selected models have worse GDT_TS scores. The last col-

umn lists the Wilcoxon signed rank test P-values comparing the GDT_TS scores

of SVR-selected models with those of Robetta-selected models.

Table VII
The Performance Comparison Between the SVR Score and the SVR Score

Without Consensus-Based Features

Method Mean GDT_TS1 (Z score)

SVR 0.589 (1.17)
Zhang-Server 0.589 (1.11)
median TM 0.572 (1.02)
SVR (no consensus) 0.559 (0.89)
Pmodeller6 0.553 (0.87)

Ranking Predicted Protein Structures with SVR
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