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Abstract

A variety of functionally important protein properties, such as secondary structure, transmembrane topology and solvent
accessibility, can be encoded as a labeling of amino acids. Indeed, the prediction of such properties from the primary amino
acid sequence is one of the core projects of computational biology. Accordingly, a panoply of approaches have been
developed for predicting such properties; however, most such approaches focus on solving a single task at a time.
Motivated by recent, successful work in natural language processing, we propose to use multitask learning to train a single,
joint model that exploits the dependencies among these various labeling tasks. We describe a deep neural network
architecture that, given a protein sequence, outputs a host of predicted local properties, including secondary structure,
solvent accessibility, transmembrane topology, signal peptides and DNA-binding residues. The network is trained jointly on
all these tasks in a supervised fashion, augmented with a novel form of semi-supervised learning in which the model is
trained to distinguish between local patterns from natural and synthetic protein sequences. The task-independent
architecture of the network obviates the need for task-specific feature engineering. We demonstrate that, for all of the tasks
that we considered, our approach leads to statistically significant improvements in performance, relative to a single task
neural network approach, and that the resulting model achieves state-of-the-art performance.
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Introduction

Proteins participate in every major biological process within

every living cell. Therefore, elucidating protein function is a

central endeavor of molecular biology. In this work, we focus on

predicting local functional properties, which can be summarized as

a labeling of amino acids. Many important functional properties

can be described in this fashion, including secondary structure,

solvent accessibility, transmembrane topology and the locations of

signal peptides, DNA-binding residues, protein-binding residues

and coiled-coil regions.

Our work is motivated, in part, by recent, successful work in the

field of natural language processing [1]. Analogous to functional

labeling of amino acids, natural language can be annotated with

tags indicating synonymous pairs of words, parts of speech, larger

syntactic entities, named entities, semantic roles, etc. These

labelings exhibit strong dependencies across tasks. Accordingly,

Collobert and Weston [1] demonstrated that a unified neural

network architecture, trained simultaneously on a collection of

related tasks, provides more accurate labelings than a network

trained only on a single task. Their study thus demonstrates the

power of multitask learning, which has been the subject of much

recent work in machine learning [2]. Furthermore, essential to the

success of the Collobert and Weston system is the use of a deep

neural network [3,4], which is able to learn a hierarchy of features

that are relevant to the tasks at hand given very basic inputs. The

deep network employs different layers to represent cross-task and

task-specific information. Thus, the deep multitask architecture

makes it possible to avoid the challenging process of incorporating

hand-engineered features specific to each task. Finally, a critical

piece of the Collobert and Weston methodology is the use of a so-

called language modeling task [1], in which the network learns to

discriminate between genuine natural language sentences and

synthetically generated sentences. Our work makes use of all three

of these components–multitask learning, deep learning and an

analog of the language model–to predict local protein properties.

Currently, most approaches to predict local protein properties

focus on one task at a time. Perhaps the most well-studied such

problems are the canonical secondary structure prediction

problem [5] and the related task of predicting transmembrane

protein topology [6]. Other tasks include identifying signal

peptides, predicting DNA-binding residues, identifying coiled-coil

regions, predicting relative or absolute solvent accessibility, etc.

However, like the natural language processing tasks mentioned

above, all of these protein labeling tasks exhibit strong inter-task

dependencies. For example, transmembrane protein topology and
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secondary structure prediction are closely linked, because most

transmembrane protein segments are alpha helices. Similarly,

signal peptide prediction can be viewed as prediction of a

particular type of transmembrane segment. DNA-binding and

protein-binding residues may also share similar structural features,

since both must be exposed on the surface of the protein. Some

work makes use of these dependencies in a pipelined fashion; for

example, [7] use secondary structure and solvent accessibility

predictions as input to a DNA-binding residue predictor. A

drawback to the pipelining approach is that errors from one

classifier get propagated to downstream classifiers [8]. A more

elegant and robust approach is to use only the primary amino acid

inputs, combine the prediction problems, and learn the tasks

simultaneously using multitask learning. This strategy also avoids

extracting task-specific sets of features.

In this work, we define a unified architecture for prediction of

local protein properties by training a deep neural network in a

multitask fashion. Specifically, our network learns simultaneously

to predict solvent accessibility, transmembrane topology and two

secondary structure alphabets, and to identify DNA-binding

residues, protein-binding residues, signal peptides and coiled-coil

regions. We also include a semi-supervised learning task, which we

call natural protein modeling, to learn features representing local

amino acid patterns in naturally occurring protein sequences. We

evaluate this architecture using benchmark datasets for each task.

The results show that multitask learning improves performance on

nearly every task, and adding the semi-supervised natural task

helps in nearly every case. Furthermore, adding both multitask

learning and the natural protein task makes our architecture

achieve state-of-art performance on almost all tasks.

Methods

Prediction tasks
A variety of local protein properties can be represented as

predicting labels of amino acids. In this work, we predict ten such

labelings, each of which is described below.

Secondary structure. A protein’s secondary structure is a useful

intermediate between the relatively easy-to-ascertain primary

amino acid sequence and the difficult-to-obtain three-

dimensional structure. The secondary structure specifies the

general three-dimensional form of local segments of a protein.

The most commonly observed local structures are a-helices, b-

sheets and loops. In the secondary structure prediction task we aim

to predict each residue’s secondary structure label. Knowing a

protein’s secondary structure may yield insight into the protein’s

functional class, suggest boundaries between domains, or aid in

inferring the protein’s 3D structure.

Since the advent of the first automated secondary structure

prediction method 22 years ago [5], dozens of subsequent methods

have been described in the scientific literature. These include

methods that employ neural networks [5,9–13] and probability

models such as hidden Markov models [14] and dynamic Bayesian

networks [15].

Our multitask learning data set includes three protein secondary

structure prediction tasks. The first is a standard benchmark,

CB513 [16], consisting of 513 unrelated proteins with known 3D

structure. To create the other two secondary structure prediction

tasks, we used 11 795 chains from the DSSP [17]. We considered

two variants of the secondary structure prediction task, one task

using the full 8-letter alphabet and one task using the reduced, 3-

letter alphabet.

From the CB513 benchmark we eliminated 16 proteins because

they were shorter than 30 amino acids. The CB513 data is labeled

with the 8-letter DSSP alphabet (H = alpha helix, B = residue in

isolated beta bridge, E = extended strand, G = 3-helix, I = 5-helix,

T = hydrogen bonded turn, S = bend, L = loop) [17]; however, for

comparison with other methods that use this benchmark, we

reduce the 8-letter alphabet to a 3-letter alphabet in the standard

way [9]: fH,Gg?H, fB,Eg?B, and fI ,S,T ,Lg?C~Coil.

To create the other two secondary structure prediction tasks, we

used the DSSP, downloaded on Feb 1, 2008. After removing short

sequences and sequences comprised primarily of Xs, and after

filtering so that no pair of sequences shares w40% sequence

identity, we were left with 11 795 protein chains. We considered

two variants of the secondary structure prediction task, one task

using the full 8-letter alphabet and one task using the reduced, 3-

letter alphabet.

Note that we cite the best previously reported accuracy (i.e., the

highest percentage of correct predictions) on CB513 as 80.0%

[18]. There is actually a recently published paper that reports

80.49% accuracy [19]; however, in corresponding with the

authors of that paper, we learned that this value is not based on

a cross-validated test.

Transmembrane topology and signal peptide

prediction. Complementary to prediction of protein secondary

structure is the prediction of transmembrane topology. The most

common type of transmembrane protein consists of a series of a-

helices that span the membrane, interleaved with loops that extend

out of the membrane. The labeling task consists of identifying these

membrane-spanning segments and then specifying whether each

loop is inside or outside of the membrane; hence, transmembrane

predictors employ a three-letter alphabet.

Transmembrane proteins are of particular interest for two

reasons. First, because transmembrane proteins cannot be crystal-

lized (due to the presence of the membrane), their 3D structure

cannot be easily determined. Second, because of their importance in

communicating across membranes, more than half of all drug

targets are transmembrane proteins, even though only an estimated

18–26% of all proteins are transmembrane proteins [20–22].

A closely related task to the prediction of transmembrane

protein topology is the prediction of signal peptides, which are

short (3–60 amino acids) peptides that direct newly translated

proteins to their final destinations in the cell. Early methods

predicted signal peptides [23,24] and transmembrane protein

topology separately [6]. More recent work suggests that the two

tasks can be solved more effectively using a joint predictor [25,26].

For the signal peptide and transmembrane topology prediction

tasks, we use data from three sources. First, we use 1087 globular

proteins described in [25]. These proteins are all labeled

completely with ‘‘O’s’’, corresponding to outside (non-cytoplasmic)

loops. Second, we combined the transmembrane proteins from

[25] and [27], resulting in a nonredundant set of 46 membrane

proteins with signal peptides and 324 membrane proteins without

signal peptides. These proteins are labeled with a five-letter

alphabet: S = signal peptide, O = outside loop, I = inside loop,

M = membrane-spanning alpha helix and R = re-entrant region.

Some residues are unlabeled (indicated with ‘‘.’’). Third, we use

1729 signal peptide proteins from [28]. In each of these proteins,

the signal peptide is labeled ‘‘S’’, and the rest is unlabeled (We use

‘‘N’’ to indicate non-signal peptide regions). Using these three data

sets, we consider two tasks: the full, five-letter SP+TM topology

prediction task on the first two data sets, as well as the three-letter

signal peptide detection task using the first and third data sets.

For validation on both tasks, we use the 10-fold cross-validation

splits from [26]. For the transmembrane topology problem, a

predicted transmembrane segment is deemed correct if it overlaps

a true transmembrane segment by at least five amino acids,
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whereas inside, outside and signal peptide predicted segments

require only a single amino acid overlap. The figure of merit is the

segment level metric for the transmembrane prediction task,

including both sensitivity and precision. This metric is only

computed with respect to the 324 TM or 46 TM+SP proteins in

the data. For signal peptide prediction, the figure of merit is

protein level accuracy, where a protein is deemed to have a

predicted signal peptide if any residue therein is assigned the label

‘‘S.’’

Solvent accessibility. The solvent accessibility prediction

task involves distinguishing between amino acids that are

accessible to water versus amino acids that are buried inside the

protein. Hence, the task involves a two-letter alphabet. Defining

this alphabet requires setting a threshold, which can be done either

on an absolute scale or relative to the protein in which the amino

acid resides.

Early methods for solvent accessibility prediction used neural

networks [10,29,30] or support vector machines [31]. [32] showed

that a simple baseline predictor performs rather well relative to

more sophisticated methods, and [33] made a consensus predictor

by combining predictions from three different methods.

We used the DSSP to define two solvent accessibility data sets.

The DSSP reports the solvent accessibility of each amino acid on

an absolute scale (surface area accessible to water in units of s2).

Therefore, we first defined a binary alphabet using a threshold of

15. Second, we computed the relative accessibility of each amino

acid by dividing each accessibility value by the per-protein

maximum, and we defined a second binary labeling using a

threshold of 0.15 [34]. We computed these two labelings across the

same collection of 11 795 sequences that were used for the

secondary structure task.

Coiled coil regions. A coiled coil is a protein structural

motif, in which a-helices are coiled together like the strands of a

rope. Coiled coils usually contain a repeated pattern, hpphppp, of

hydrophobic (h) and polar (p) amino-acid residues, referred to as a

heptad repeat. The positions in the heptad repeat are usually

labeled abcdefg, where a and d are the hydrophobic positions,

often being occupied by isoleucine, leucine or valine. Folding a

sequence with this repeating pattern into an alpha-helical

secondary structure causes the hydrophobic residues to be

presented as a ‘‘stripe’’ that coils gently around the helix in left-

handed fashion, forming an amphipathic structure. Coiled coil

domains function in the stabilization of tertriary and quaternary

structure of proteins. Many coiled coil proteins are involved in

protein-protein interactions and have important biological

functions, such as protein trafficking, signalling and regulation of

gene expression.

The first method for predicting coiled coil regions used position

specific scoring matrices to score sequence windows [35].

Subsequent methods achieved improved accuracy by including

correlations among residues [36–38] or by using hidden Markov

models [39]. Currently, the best performing coiled coil predictor is

an HMM that uses evolutionary information [40].

For the coiled coil prediction task, we downloaded a dataset

used in the training of the Paircoil [38] algorithm from the PPT-

DB [41] database server. The data set contains 776 proteins. In

each of these proteins, consecutive 7-residue stretches in the coiled

coil region are labeled with the sequence ‘‘abcdefg’’. The most

frequent label, at 69.8%, is ‘‘N’’, the label for non-coiled residues.

Each of the other labels has a frequency of about 4.3%.

We evaluate the performance of our method by using the ten-

fold cross-validation, as in the PPT-DB [41] database server. We

evaluate this task using both the amino acid level accuracy and the

‘‘Percent correct’’ metric proposed in [41]. The latter is computed

as the percentage of matching structure regions where matches are

any aligned coiled-coil segments (e.g. ‘‘a’’ matches ‘‘c’’), and ‘‘N’’

matching ‘‘N’’; otherwise, a mismatch is counted.

DNA binding. The final two prediction tasks involve

identifying amino acids that interact with, respectively, DNA

molecules or other proteins. Detection of DNA-binding sites in

proteins is critical for targeting gene regulation and manipulation.

Thousands of proteins are known to bind to DNA; however, for

most of these proteins the mechanism of action and the residues

that bind to DNA, i.e. the binding sites, are not known.

Experimental identification of binding sites requires expensive

and laborious methods such as mutagenesis and binding assays. If

the 3D structure of a protein is known, then it is often possible to

predict DNA-binding sites in silico. However, for most proteins,

such knowledge is not available.

Several methods have been developed to predict DNA-binding

residues from the primary amino acid sequence. [42] described

predictors based on sequence composition and predicted solvent

accessibility. Later, some of the same authors [43] used profiles of

homologous proteins to achieve more accurate prediction of DNA-

binding sites. More recently, [7] used three types of inputs–PSI-

BLAST profiles, predicted secondary structure, and predicted

solvent accessibility–to train a support vector machine DNA-

binding predictor.

For the prediction of DNA binding residues, we use a data set of

DNA/protein structures collected by [7]. The set contains 693

DNA-binding protein sequences with an average length of 183

amino acids. Residues are considered DNA-binding if they are

v6 Å from the DNA molecule. The label alphabet consists of two

characters (B = binding, N = not binding), and 18.8% of the amino

acids in this set are labeled ‘‘B.’’

To evaluate performance on this data set, we use a clustering of

the protein chains such that no inter-cluster pairs are too similar.

This is the same clustering that was used by [7]. Their HSSP

threshold of zero [44,45] corresponds to 20% pairwise sequence

identity. We then perform three-fold cross-validation on the

clusters, i.e., we randomly divide the set of clusters into three

equal-sized portions, and we repeatedly train on two-thirds and

test on the remaining one-third of the data.

Protein binding residues. The protein-binding prediction

task is analogous to the prediction of DNA-binding residues, but

focused on binding sites for protein-protein interactions rather

than protein-DNA interactions. Identifying these sites from the

primary amino acid sequence is critical to understanding protein

function, because so many proteins carry out their functions as

part of multi-protein complexes.

Several studies attempted to address the sequence-based

interaction site prediction problem. Pazos et al. [46] use multiple

sequence alignment to detect correlated changes in a group of

interacting protein domains for predicting contacting pairs of

protein residues. Gallet et al. [47] analyze hydrophobicity patterns

and amino acid distributions in known interaction sites to identify

linear stretches of sequences. Yan et al. [48] apply support vector

machines to predict protein binding sites with features extracted

from sequence neighbors for each target residue. Liang et al. [49]

predict interface residues using an empirical score function that is

a linear combination of the energy score, interface propensity and

residue conservation score. And Ofran et al. [50] employ a neural

network approach using PSI-BLAST profile features to identify

interaction sites directly from sequences.

For the prediction of protein binding residues, we use a data set

obtained from [50]. The authors used non-redundant subsets from

PDB, focusing on transient interactions between two non-identical

chains of two different proteins. This approach yielded 1133

Multitask Learning to Predict Protein Properties
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proteins. A residue was defined to be in a protein-protein

interaction if any of its atoms was v6 Å from any atom in the

other protein. The three-fold cross validation splits were also

obtained from [50], where sequence-unique subsets were built for

all types of proteins under consideration.

Deep neural network for each task
We introduce a deep neural network architecture for protein

labeling tasks. The input sequence is fed through several layers of

feature extraction, and features relevant to the task are learned

automatically by backpropagation in deep layers of the network.

The general deep network architecture, which is suitable for all

our prediction tasks, is summarized in Figure 1. The network is

characterized by two specialized layers–an amino acid feature

extraction layer and a sequential feature extraction layer–followed

by a series of classical neural network layers.

Amino acid feature extraction. The first layer extracts

features for each amino acid by mapping amino acids to real-

valued vectors. We use two distinct types of features–a learned

embedding into a d-dimensional feature space, and a 20-

dimensional feature representation produced by PSI-BLAST

[51]–which are concatenated to produce the output of the layer.

The first feature extraction module projects each amino acid

into a d-dimensional feature space, where d is a hyperparameter;

i.e., d is not subject to optimization. Within a finite amino acid

dictionary D, each amino acid si[D is embedded into the feature

space using a d|DDD lookup table W , such that Wsi
, the column

vector of W at the index of si, is the vector corresponding to

amino acid si. Thus, in the first layer of our architecture an input

sequence fs1,s2, . . . sng is transformed into a series of real valued

vectors fWs1
,Ws2

, . . . Wsn
g. The parameters of the lookup table

W are learned automatically as part of the neural network

training. This type of feature extraction–called a ‘‘local encoding

of amino acids’’–was originally proposed by Riis et al. [52]. The

encoding weights W are randomly initialized with a centered,

uniform distribution [53] and then learned by back-propagation.

The resulting encoding is optimal in the sense that it optimizes the

objective cost on the training set for the specific network and the

specific task.

The second feature extraction module in the first layer extracts

information from an alignment of homologous proteins identified

by the PSI-BLAST algorithm. Each length-M query sequence is

searched using PSI-BLAST against the NCBI nonredundant

protein sequence database, yielding a 20|M position-specific

scoring matrix. Note that PSI-BLAST will create a PSSM even

when no homologs are present. In this case, each column is simply

a value from the specified BLOSUM matrix. Each element in the

matrix represents the log-likelihood of a particular residue

substitution at that position in the template. The profile matrix

elements (typically in the range ½{7,7�) are scaled to the required

range ½0,1� by using the following scaling function [54]:

f (x)~

0:0 if xƒ{5

0:5z0:1x if {5vxv5

1:0 if x§5

8><
>:

ð1Þ

where x is the value from profile matrix. Each column of the

rescaled matrix comprises a 20-dimensional PSI-BLAST feature

vector for the corresponding amino acid.

Sequential feature extraction layer. To facilitate

identification of local sequence structure, the second layer

performs a sliding window operation on the sequence. As

illustrated in Figure 1, the second layer aggregates the output of

the first layer into blocks corresponding to a fixed window size k.

Figure 1 shows an example using a window size of k~7, so each

block contains information about the current amino acid as well as

the three flanking amino acids on either side. Altogether, because

the output of the first layer has dz20 dimensions, the output of

the second layer has k(dz20) dimensions.

Classical neural network layers. The remaining layers

comprise a standard, fully connected multi-layer perceptron

network with L layers of hidden units. Each hidden layer learns

to map its input to a hidden feature space, and the last output layer

then learns the mapping from the hidden space to the output class

label space. In Figure 1, the sequential feature extraction layer

induces a large effective feature space, where examples correspond

to each possible length-k sequence of amino acids. Thus, the job of

the hidden layers is to map this high dimensional input space to a

lower dimensional feature space and then to look for hyperplanes

that separate examples with different amino acid labels in the

output layer.

Figure 1. Deep neural network architecture. Given an input amino
acid sequence, the neural network outputs a posterior distribution over
the class labels for that amino acid. This general deep network
architecture is suitable for all of our prediction tasks. The network is
characterized by three parts: (1) an amino acid feature extraction layer,
(2) a sequential feature extraction layer, and (3) a series of classical
neural network layers. The first layer consists a PSI-BLAST feature
module and an amino acid embedding module. With a sliding window
input fs1,s2, . . . skg (here k~7), the amino acid embedding module
outputs a series of real valued vectors fWs1

,Ws2
, . . . Wsk

g. Similarly, the
PSI-BLAST module derives k 20-dimensional PSI-BLAST feature vectors
corresponding to the k amino acids. These vectors are then
concatenated in the sequential extraction layer of the network. Finally,
the derived vector is fed into the classical neural network layers. The
final softmax layer allows us to interpret the outputs as probabilities for
each class.
doi:10.1371/journal.pone.0032235.g001
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In practice, the output of the ‘th layer o‘, which contains h‘
hidden units, is computed with

o‘‘~h(L‘‘:o‘‘{{1) ð2Þ

where the matrix of parameters L‘‘[Rh‘|h‘{1 is trained by

backpropagation. The transfer function h(:) is defined as:

h(x)~Hard Tanh(x)~

{1 if xv{1

x if {1ƒxƒ1

1 if xw1

8><
>:

: ð3Þ

The size of the last (parametric linear) layer’s output oL is the

number of classes considered in the prediction task. This layer is

followed by a softmax layer which ensures that the outputs are

positive and sum to 1, allowing us to interpret the outputs of the

neural network as probabilities for each class. The ith output is

given by

~PPi~
expfoL

i gP
j

expfoL
j g

ð4Þ

In this work, for simplicity, we restrict the classical part of our

neural network to one single hidden linear layer and one output

linear layer.

Assuming that we are given a set of training examples

f(xn,yn)gn~1:::N , where xn represents a local short window of amino

acids and yn a label, the whole network is then trained to minimize

the negative log-likelihood, i.e. E(H)~
PN

n~1 E(H,xn,yn) over the

data with respect to H: all parameters of the network. Specifically,

E(H)~{
XN

n~1

logPh(ynDxn)~{
XN

n~1

log~PPh,yn (xn) ð5Þ

Stochastic gradient descent optimization is used for the above

training. Random examples (x,y) are sampled from the training set

and then a gradient descent step is applied to update network

parameter H as follows:

H/H{g
LE(H,x,y)

LH
ð6Þ

where g is a learning rate parameter.

Multitasking with weight sharing of deep neural
networks

The neural network architecture displayed in Figure 1 can be

adapted in various ways to perform multitask learning. In this

work, we used the multitask architecture shown in Figure 2, in

which the top-most layers of the network are shared across

multiple tasks, and only the very last layers of the network are task

specific.

Assuming we have T related tasks, the ‘‘weight sharing’’ strategy

implies that the parameters for the top-most layers of the network

are shared between tasks; i.e., the network includes parameters

Ht~fW ,L1,L2,:::,LL{{1,LL
t g ð7Þ

for each task t. With this setup–i.e., only the last layer LL
t is task-

specific–the neural network automatically learns an embedding

that generalizes across tasks in the first layers of the network, and

learns features specific for the desired tasks in the deep layers of the

network.

Training in the multitask setting is accomplished by minimizing

an objective function that is the sum of the objectives from each

task, where each task is given equal weight. That is, we optimize:

XT

t~1

XNt

nt~1

Et(Ht,xnt ,ynt ) ð8Þ

assuming each task has a training set f(xnt ,ynt )gnt~1:::Nt
. The tasks

share a common feature input, and the weight sharing among Ht

makes the optimization of different tasks dependent. When

training by stochastic gradient descent, this amounts to interleav-

ing the stochastic updates for each of the related tasks. That is, the

procedure iteratively carries out the following three steps:

1. select a task at random,

2. select a random training example for this task, and

3. compute the gradients of the neural network attributed to this

task with respect to this example and update the parameters.

Because some of the parameters are shared between the tasks, the

tasks influence each other during training. The training procedure

continues until the per-residue error becomes stable–i.e., error

decreases by less than 0.00005–on a held-out validation set (one fifth

of each training set was held out for this purpose) or reaches a

specified maximum number of iterations. In practice, we found that

100–150 iterations are sufficient for the networks trained here.

It is worth noting that labeled data for training each task can

come from completely different data sets. However, when the sizes

of the training sets for the different tasks are very different, then

the above procedure does not work well because the network does

not train enough on the ‘‘larger’’ tasks. To address this problem,

we employ a pre-training strategy, where the larger tasks (i.e. four

large task including ‘‘ss’’, ‘‘dssp’’, ‘‘saa’’ and ‘‘sar’’ in Table 1) are

trained jointly prior to multitasking of all tasks. This pre-training

Figure 2. Multitask learning with weight sharing between
multiple deep neural networks. In this figure, two related tasks are
trained simultaneously using the network the architecture from Figure 1.
Here only the very last layers of the network are task specific.
doi:10.1371/journal.pone.0032235.g002

Multitask Learning to Predict Protein Properties

PLoS ONE | www.plosone.org 5 March 2012 | Volume 7 | Issue 3 | e32235



procedure ensures that the large tasks reach a stable area of the

parameter space before the full multitasking, which involves all

tasks. As pointed out by [55], the pre-training guides provide a

regularization effect.

The natural protein task: feature learning with unlabeled
protein sequences

Labeling a data set can be expensive, especially when doing so

requires expensive and time-consuming laboratory experiments.

Consequently, the ability to leverage unlabeled data to improve a

predictive model is a compelling goal. We now present a semi-

supervised task to model the local patterns of amino acid contexts

that occur in natural protein sequences.

This ‘‘natural protein’’ task is motivated by results from the

natural language processing community. In that context, research-

ers noticed that for part-of-speech or other semantic tagging tasks,

words that are semantically similar can often be exchanged with

no impact on the labeling. For example, in a sentence like ‘‘the cat

sat on the mat’’ one can replace ‘‘cat’’ with nouns such as ‘‘dog’’,

‘‘man’’ or ‘‘patient’’ with no change in the part-of-speech tagging.

Collobert and Weston [1] therefore included in their multitask

learning system a task that forces two sentences with the same

semantic labels to have similar representations in the shared layers

of neural network, and vice versa. Training for this task is achieved

by assigning a positive label to genuine fragments of natural

language, and negative labels to fragments that have been

synthetically generated. Essentially, this task involves learning to

predict whether the given text sequence exists naturally in the

English languague.

Motivated by this language model, we propose an auxiliary task

aiming to model the local patterns of amino acids that naturally

occur in protein sequences. This is achieved by learning to predict

whether the given protein segment exists in real protein sequences.

Accordingly, all length-k windows from SwissProt version 54.7 are

labeled as positive examples, and negative fragments are generated

by randomly substituting the middle amino acid in each window.

Because the training set for this task is extremely large, we train the

natural protein modelling task separately from the other tasks.

Also, the network architecture used in this task is slightly different

from that shown in Figure 1; here we do not use the PSI-BLAST

feature encodings (see Figure 3). Other components of the network

are the same and explained in the previous sections. As for the

other tasks, the amino acid embeddings and the parameters of the

subsequent neural network layers are all automatically trained by

backpropagation. The difference is that here the model is trained

with a ranking-type cost (with margin):

Table 1. Summary of data sets.

Name Task Prot Num AA Num CV Composition (%)

ss Secondary structure 11 765 2 518 596 5 41.7 = C, 21.6 = E, 36.7 = H

cb513ss Secondary structure 497 83 707 7 42.8 = C, 22.7 = E, 34.5 = H

dssp Secondary structure, DSSP 11 765 2 518 596 5 33.3 = H,20.4 = E, 20.1 = L,

11.2 = T, 9.5 = S, 3.5 = G, 1.1 = B, 0.02 = I

sar Relative solvent accessibility 11 765 2 518 596 5 51.1 = B, 48.9 = A

saa Absolute solvent accessibility 11 795 2 518 596 5 64.9 = B, 35.1 = A

dna DNA binding 693 127 064 3 81.2 = N, 18.8 = B

sp Signal peptide 2816 1 058 598 10 30.8 = O, 4.0 = S, 65.2 = N

tm Transmembrane topology 1457 460 780 10 82.1 = O, 9.6 = I, 7.5 = M,

0.3 = S, 0.1 = R, 0.4 = N

cc Coiled coil 765 444 138 10 69.8 = N, 4.3 = each of a/b/c/d/e/f/g

ppi Protein protein interaction 1129 188 676 3 73.4 = P 26.6 = N

For each data set, we list the number of protein sequences, the number of amino acids, the number of cross validation folds, and the proportion of amino acids
assigned to each label.
doi:10.1371/journal.pone.0032235.t001

Figure 3. Network architecture for training the ‘‘natural
protein’’ auxiliary task. The ‘‘natural protein’’ auxiliary task aiming
to model the local patterns of amino acids that naturally occur in
protein sequences. Using local windows in the unlabeled protein
sequences as positive examples and randomly modified windows as
negative examples, the network learns the feature representations for
each amino acid. In contrast to the network illustrated in Figure 1, the
network contains only the amino acid embedding module in the first
layer of the network. The learned embedding is encoded into the real
valued parameter matrix of the amino acid feature extraction layer.
doi:10.1371/journal.pone.0032235.g003
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where S is the set of windows of amino acid segments, D is the

vocabulary of amino acids, f (:) represents the output of the

neural network architecture, and sa is a window where the middle

amino acid has been replaced by a random amino acid a.

Essentially, we are learning the network weights to rank positive

protein segments above synthetic segments. The training is

carried out using stochastic gradient descent, which samples the

cost online with respect to (s,a). As in the natural language

setting, the end goal for this training procedure is not the solution

to the classification task itself, but the embedding of amino acids

into a semantically meaningful, d-dimensional space. The real-

valued vectors representing the amino acids comprise the

columns of the lookup table W in the amino acid feature

extraction layer of the network. Thus, to combine the natural

protein task with other tasks, we initialize the amino acid

embedding lookup table W in the feature extraction layer

(Figure 1) with the embedding weights learned during training of

the natural protein task.

The natural protein modeling task aims to learn features

representing local amino acid patterns in naturally occurring

protein sequences. Conserved in natural protein sequences, these

patterns are different from patterns in random sequences

constructed from amino acid letters. This task is closely related

to the ‘‘language model’’ in natural language processing, whereby

language modeling aims to learn the joint probability function of

sequences of words. The auxiliary task used to identify these

patterns is essentially a pseudo-classification task which needs both

‘‘real’’ protein segments and ‘‘unreal’’ segments of amino acids.

The synthetic negative set provides the negative segments required

for this classification task.

Results

Data Sets
The collection of data sets tested in this paper is summarized in

Table 1 and is publicly available at http://noble.gs.washington.

edu/proj/multitask, along with software implementing our multi-

task learning strategy. The software and methods were imple-

mented using the Torch5 (http://torch5.sourceforge.net/) ma-

chine learning library. Torch is implemented in C, and the

scripting for this project was carried out in the Lua (http://www.

lua.org) scripting language. The data set includes three protein

secondary structure prediction tasks. The first is a standard

benchmark, CB513 [16], consisting of 513 unrelated proteins with

known 3D structure. To create the other two secondary structure

prediction tasks, we used 11 795 chains from the DSSP database

[17] downloaded on February 1, 2008. We also considered two

variants of the secondary structure prediction task, one task using

the full 8-letter alphabet and one task using the reduced, 3-letter

alphabet. For the signal peptide (SP) and transmembrane (TM)

topology prediction tasks, we define two tasks: a five-letter SP+TM

topology prediction task, as well as a signal peptide detection task.

We used the DSSP to define two solvent accessibility data sets,

absolute accessibility and relative accessibility, in which the

accessibility is scaled relative to the maximum per-protein

accessibility. For the coiled coil prediction task, we use a previously

described data set containing 776 proteins [38]. For the prediction

of DNA binding residues, we use a data set from [7], consisting of

693 DNA-binding proteins.

Experimental Setup
This work is predicated on a three-fold hypothesis, namely, that

we can improve our ability to predict various protein labeling tasks

by (1) learning an amino acid embedding, (2) using multitask

learning and (3) including the ‘‘natural protein’’ task in our

multitask learning. Accordingly, we systematically tested variants

of our learning approach, with the goal of testing each of these

hypotheses.

To evaluate the performance of a given predictor, we primarily

focus on accuracy evaluated at the amino acid level, sometimes

referred to as the ‘‘Q-score.’’ For a multiclass classifier, when we

compare a predicted labeling with a true labeling of a set of

proteins, each amino acid falls into one of the two categories:

either the predicted label and the true label agree and the amino

acid is ‘‘correct’’ or the predicted label and the true label disagree

and the amino acid is ‘‘incorrect.’’ Accuracy is defined as the

percentage of amino acids whose labels are predicted correctly;

i.e.,

Accuracy~
# correct

(# correct)z(# incorrect)

Considering the multiclass nature of the selected tasks, we also

compute the precision, recall and F1 metrics separately for each

class, where we treat the selected class as the positive class and all

of the other classes as negatives. This essentially treats each

multiclass task as separate binary classification tasks and computes

separate metrics for each one. Precision for a certain class refers to

the number of true positives (TP) (i.e. the number of amino acids

correctly labeled as the specific class) divided by the total number

of amino acids labeled as belonging to the class (i.e. the sum of true

positives (TP) and false positives (FP)).

Precision~
TP

TPzFP

‘‘Recall’’ for a certain class is defined as the number of true

positives (TP) divided by the total number of amino acids that

actually belong to the class (i.e. the sum of true positives (TP) and

false negatives (FN)).

Recall~
TP

TPzFN

Precision and recall can be usefully combined into a single

measure such as F1, defined as

F1~
2 � Precision � Recall

PrecisionzRecall

Accordingly, Table S1 summarizes the results from this

calculation.

In addition, we also report the protein-level accuracy for the

‘‘sp’’ task, segment-level accuracy for the ‘‘tm’’ task, and segment-

level accuracy for the ‘‘cc’’ task. These additional metrics allow us

to compare our results to those of previously published methods.

Our learning framework requires the specification of a variety of

hyperparameters. These include the size k of the sequence window,

the size h of the hidden layer, and the learning rate g. We considered

k[f7,11,13,15g, h[f60,75,85,100,120g, and g[f0:001,0:003,
0:005,0:01,0:03g. For the size of the embedding vector d in the

general embedding layer case or in the natural protein task, we tried

f10,15,25g. For the natural protein task, the unlabeled corpus was
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split into one training (70%) and one validation set. The best

parameters found for the natural protein task were k~13, h~100
and d~15. For the other tasks when training separately, we

optimized each task’s performance through a grid search of

parameter combinations. When training jointly on multiple tasks, a

grid search on parameters was also performed for the performance

optimization (on average). In general, the learning rate g does not

vary much across different tasks: for instance, the best learning rates

for the tasks dssp, ssp, sar, saa, cc, sp, dna (using the abbreviations

from Table 1) are all roughly 0.005. The window size k~13 and the

embedding size d~15 gave overall best results. Not surprisingly, the

optimal number of hidden units differs depending on the inputs. For

instance, when using only the PSI-BLAST feature representation for

amino acids, h~75 roughly performs the best for all tasks. After

adding the amino acid embedding to the feature extraction layer,

h~85 works better. Then, when training a joint model for

multitasking several tasks, we found that h~120 gives good

performance overall.

A learned amino acid embedding
We begin by evaluating the utility of including an amino acid

embedding into the amino acid feature extraction layer of the

network. The first two columns of Table 2 provide direct evidence

for the utility of the learned embedding. These columns compare

the performance of single-task neural networks trained using only

the PSI-BLAST embedding or trained using a combination of the

PSI-BLAST and learned amino acid embeddings. Considering

only the amino acid-level accuracy, including the embedding

improves the network’s performance on 7 out of 10 tasks.

Furthermore, when we consider adding the amino acid embedding

in the context of multitask learning (comparing columns ‘‘Multi’’

and ‘‘Multi-Embed’’), we observe an improvement in 9 out of 10

tasks. The largest improvement is observed for relative solvent

accessibility prediction, which improves by 1.8% (from 79.2% to

81.0%) in the multitask setting.

Thus far, these observations are only qualitative. However, to

avoid problems with multiple testing correction, we chose not to

perform a statistical test comparing the performance of each

algorithm with and without the embedding layer. Instead, we

perform at the end a statistical test jointly with respect to all three

of our hypotheses.

Multitask learning
Next, we evaluate the performance improvement to be gained

by performing multitask learning when using just the PSI-BLAST

features. Columns 1 and 3 (‘‘Single’’ and ‘‘Multi’’) in Table 2

compare the performance of networks trained one task at a time,

versus networks trained in a multitask fashion. For the multitask

learning, we experimented with various joint training schemes,

and we settled upon the following. First, we pre-train a joint

network for four ‘‘larger’’ tasks–dssp, ss, sar, saa. We then use the

resulting learned joint model as a starting point for joint learning

of nine tasks–the original four, plus dna, cc, ppi, sp and tm. For

task cb513ss, to avoid overfitting between the ss and cb513ss tasks,

we train a separate joint network from the task sar and saa, then

multitask the joint model with cb513ss.

In all 10 cases, multitask learning improves the amino acid level

accuracy. Not surprisingly, the performance difference is most

Table 2. Comparison of learning strategies based on percent accuracy.

Embedding? 3 3 * * *

Multitask? 3 3 3

Natural protein? 3 3 3

Task (%) Single Embed Multi
Multi-
Emb NP NP only All3 All3+Vit p-value CV Previous

ss 79.1 79.6 80.5 81.3 79.7 67.7 81.7 81.4 1e-4 100 –

cb513ss 76.1 74.5 79.8 80.2 74.8 65.8 80.2 80.3 1e-3 100 80.0 [18]

dssp 65.5 66.3 67.1 68.1 66.3 54.3 68.2 68.2 1e-4 100 –

sar 78.4 79.8 79.2 81.0 79.8 73.1 81.0 81.1 1e-4 100 –

saa 80.7 81.3 81.7 82.6 81.3 74.2 82.6 82.6 1e-4 100 –

dna 82.4 82.2 85.3 87.0 82.3 81.1 88.6 89.2 1e-4 66.7 89.0 [7]

sp 80.9 80.7 83.6 83.9 80.7 69.4 84.1 91.0 1e-4 100 –

sp (prot) 99.5 99.5 99.8 99.8 99.8 99.8 99.7 99.8 5e-2 – 97.0 [26]

tm 87.1 87.5 89.0 89.3 87.7 85.8 89.4 92.1 1e-4 100 –

tm (seg) 91.0 96.9 97.4 98.3 96.7 92.7 98.4 96.5 1e-4 – 94.0 [26]

cc 88.6 89.9 93.1 94.2 90.7 87.3 94.4 96.6 1e-4 100 –

cc (seg) 90.7 91.9 94.5 95.6 92.0 89.7 95.7 97.4 1e-4 – 94.0 [41]

ppi 73.6 73.6 78.4 73.1 73.6 71.0 74.3 75.6 1e-4 66.7 – [50]

The table lists, for each prediction task, the per-residue percent accuracy achieved via single-task training of the neural network with just the PSI-BLAST features
(‘‘Single’’), single-task training that includes the amino acid embedding (‘‘Embed’’), multitask training just using the PSI-BLAST features (‘‘Multi’’), multitask training
including the amino acid embedding (‘‘Multi-Emb’’), multitask training of one task along with the natural protein task (‘‘NP’’), multitask training without the PSI-BLAST
embedding module but initializing the amino acid embedding by using the natural protein task (‘‘NP only’’), multitask training including the natural protein task (‘‘All3’’),
‘‘All3’’ with Viterbi post-processing (‘‘All3+Vit’’) and a previously reported method (‘‘Previous’’). Each row corresponds to a single task. The p-value column indicates
whether the difference between ‘‘Single’’ and ‘‘All3+Vit’’ is significant, according to a Z-test. The ‘‘CV’’ column is computed based on the accuracies separately for each
cross-validation fold. It counts the percentage of CV folds in which the ‘‘All3+Vit’’ method outperforms the ‘‘Single’’ method. Rows labeled ‘‘(prot)’’ or ‘‘(seg)’’ report the
protein- or segment-level accuracy, rather than residue-level accuracy. For the ‘‘NP’’ setting, the ‘‘*’’ in the ‘‘Embedding?’’ row indicates that this network uses the pre-
trained embedding layer from the natural protein task.
doi:10.1371/journal.pone.0032235.t002
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dramatic for tasks with small training sets. For example, the

performance on the DNA binding task, which has a data set of 693

proteins, jumps from 82.4% to 85.3%, and the prediction of coiled

coil regions, with a data set of 765 proteins, improves from 88.6%

to 93.1%. The secondary structure prediction tasks show how

multitask learning helps with small data sets: for the small, CB513

data set, the accuracy improves by 3.7%, whereas for the larger

secondary structure prediction benchmark, accuracy increases by

1.4%. Similar conclusions can be drawn by comparing the

‘‘Embed’’ and ‘‘Multi-Embed’’ columns: in all 10 cases, multitask

learning improves the amino acid-level accuracy.

Natural protein prediction
Finally, we evaluate the utility of the natural protein prediction

task. The results in Table 2 confirm that multitasking with this

natural protein task is an effective strategy to improve deep neural

network training. Comparing column ‘‘Embed’’ to ‘‘NP’’, we see

that the performance improves in all cases. The benefit of the

natural protein task is more apparent in conjunction with

multitask learning, because the latter needs to handle much more

complicated cases and to search in a larger parameter space,

where a better starting position alleviates the difficulties associated

with small training sets. Comparing the ‘‘Multi-Embed’’ column

with ‘‘All3,’’ we see that adding the natural protein task improves

the amino acid level accuracy for nine out of ten tasks. In general,

however, adding the natural protein prediction task is not as

beneficial as adding multitasking. This observation implies that

inter-task dependencies provide more information than the

contraints introduced via the natural protein embedding.

Furthermore, Figure 4 provides qualitative evidence that this

embedding is helpful. Here, we used principal component analysis

to project a learned, 15-dimensional amino acid embedding down

to two dimensions for the purposes of visualization. The figure

shows that amino acids with similar physical and chemical

properties are embedded closely to one another. For instance,

we observe clustered groups of hydrophilic (DEKQN) and

hydrophobic (LMIVC) amino acids. We also observe that pairs

of amino acids that are close in the embedding tend to have high

BLOSUM62 scores [56,57], indicating that they can readily

substitute for one another in real protein sequences. Specifically,

we calculate the k-nearest neighbors for each amino acid, first

based on our learned embedding and then based on BLOSUM62.

We found that, with k~3, 62% of the amino acid neighbors

identified by one method were also identified by the other. This

result suggests that the learned embedding is closely related to

BLOSUM62, even though it is learned purely from unlabeled

protein sequences without any additional information.

To better understand the impact of the natural protein task, we

also evaluated our system without the PSI-BLAST embedding

module, but initializing the amino acid embedding with the

embedding layer from the natural protein task. These results are

reported in Table 2 in the column labeled ‘‘NP only’’. The ‘‘NP

only’’ network performs worse than ‘‘Embed’’ (which uses a

randomly initialized amino acid embedding plus the PSI-BLAST

embedding) in 9 out of 10 tasks; however, combining the natural

language task with the PSI-BLAST embedding (i.e. ‘‘NP’’) makes

better predictions than ‘‘Single’’ in 8 out of 10 tasks. Thus, the

embedding learned from the natural protein task is complemen-

tary to the PSI-BLAST features.

Viterbi post-processing
Thus far, our neural network framework uses a labeling-per-

amino-acid strategy without exploiting dependencies among the

targeted classes. This approach assumes that the label of each

position in a protein sequence can be predicted independent of

nearby positions in the sequence. Empirically, this assumption fails

dramatically for many local structure alphabets. For instance, the

repeated label patterns of abcdefg in coiled coil predictions exhibit

strong inter-label dependencies. It is straightforward to handle

these local dependencies by applying a Viterbi (dynamic

programming) post-processing step on the label posteriors. Adding

this postprocessing step on our multitasking deep network ouputs

(the ‘‘All3+Vit’’ column in Table 2) improves the the performance

on 7 out of 10 of our tasks.

Evaluation of the final system
The ‘‘All3+Vit’’ column in Table 2 represents the final

performance of our multitask learning strategy. To evaluate the

statistical significance of the difference between these results and

the initial results provided by the single-task neural network, we

performed a Z-test on each task. The result p-values are reported

in Table 2. For almost all tasks, the ‘‘All3+Vit’’ setting is

consistently better than the ‘‘Single’’ case, with most of the p-

values smaller than 0.05. The only exception is the signal peptide

task, assessed according to the protein level accuracy. The lack of

statistical significance here is partly because the existing methods

already achieve very good performance (99.5%) and partly

because the protein-level metric provides fewer data points as

input to the statistical test.

Relative to published, state-of-the-art prediction systems, our

multitask, deep learning methodology fares quite well. For the

secondary structure prediction task, our system achieved 80.3%

amino acid level accuracy on the benchmark CB513 secondary

structure prediction data set, which is slightly better than the state-

of-the-art 80.0% [18]. For the signal peptide and transmembrane

protein topology prediction tasks, our system outperforms Philius

[26] on the same benchmark, though this improvement is partly

because Philius does not make use of homology information. For

prediction of coiled coil regions, our performance of 97.4% beats

the best result (94%) on the same data set from [41] using the same

evaluation setup. For the DNA binding task, our performance of

Figure 4. A learned amino acid embedding. The figure shows an
approximation of a 15-dimensional embedding of amino acids, learned
by a neural network trained on the natural protein task. The projection
to 2D is accomplished via principal component analysis.
doi:10.1371/journal.pone.0032235.g004
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89.2% is slightly better than that of a previously described system

[7].

Comparison based on Precision/Recall/F1
As mentioned above, we compute precision, recall and F1 scores

by treating each selected class as the positive class and all of the

other classes as negatives for the multi-class tasks. The resulting

comparison, provided in Table S1, shows that the conclusions based

on accuracy in Table 2 still hold when we consider these alternative

performance metrics. For example, we can see that most tasks’

performance improves from ‘‘Single’’ to ‘‘Multi’’, from ‘‘Multi’’ to

‘‘MultiEmbed’’, from ‘‘MultiEmbed’’ to ‘‘All3’’ and from ‘‘All3’’ to

‘‘All3Vit’’. For one task–protein-protein interaction–this trend is not

maintained. In this case, multitasking does help (from ‘‘Single’’ to

‘‘Multi’’), but adding the embedding and ‘‘natural protein’’

strategies make the predictions of the interaction (‘‘P’’) class much

worse. This phenomenon may occur due to the small training set for

this task, which could not provide enough examples for the more

parameter-rich models like ‘‘MultiEmbed’’ and ‘‘All3’’.

For the protein-protein interaction (‘‘ppi’’) task, the ISIS system

[50] claimed its best performance as precision = 0:61 and

recall = 0:2 on the same data set as we use. The authors plotted a

precision-recall curve (though the terms ‘‘accuracy’’ and ‘‘coverage’’

of interaction were used in [50]) for different cut-offs on the

predicted score, and found this strongest prediction. In this paper,

we use ‘‘0.5’’ as the universal cutoff for all the covered learning

strategies to decide which class label an amino acid belongs to.

Despite allowing ISIS to pick an optimal threshold and restricting

our method to using a threshold of 0.5, under the ‘‘Multi’’ strategy,

our system results in precision = 0:649 and recall = 0:258, which is

better than what the ISIS system [50] has reported.

Discussion

We have described a multitask learning strategy for training a deep

neural network architecture for the prediction of a variety of local

protein properties. Our approach makes use of a learned embedding

to share information across related tasks and uses the natural protein

task to provide a good starting point for the learning of this

embedding. We demonstrated that learning tasks simultaneously can

improve generalization performance. In particular, when jointly

trained with the natural protein task, our architecture achieved state-

of-the-art performance in nearly all of the tasks that we considered.

We are not the first to suggest that multiple protein labeling

tasks should be considered jointly. Many previous authors have

combined tasks: transmembrane topology and signal peptide

prediction [58], secondary structure and solvent accessibility [8],

secondary structure, solvent accessibility and DNA-binding sites

[7]. Nonetheless, we believe that the ability to train jointly on a

large variety of tasks is novel and provides a flexible, robust

prediction system that will be of great practical utility.

Our methodology could easily be adapted to additional tasks,

such as the prediction of glycosylation sites, torsion angles, etc.

The methodology could likely also benefit from further optimiza-

tion. For example, it is possible to induce better pseudo-negative

examples in the proposed natural protein task by adding biological

knowledge, e.g., by simulating evolution. This, in turn, might

increase our system’s performance even more.

Supporting Information

Table S1 The table lists, for each prediction task, the per-residue

per-class performance, i.e. (precision, recall, F1, total number of

provided positive amino acids, true positive) averaged per cross-

validation test fold, achieved via single-task training of the neural

network with just the PSI-BLAST features (‘‘Single’’), multitask

training just using the PSI-BLAST features (‘‘Multi’’), multitask

training including the amino acid embedding (‘‘MultiEmbed’’),

multitask training including the natural protein task (‘‘All3’’), and

multitask training including the natural protein task with Viterbi

post-processing (‘‘All3+Vit’’).

(PDF)
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