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Introduction

Networks abound in the scientific literature these days.

Some of these networks (gene regulatory networks,

metabolic networks, protein–protein interaction net-

works) represent real biological phenomena. Other net-

works are useful abstractions that allow for formal

reasoning to occur.

Recently, we described a network-based algorithm

for detecting subtle protein sequence similarities [1].

This algorithm, called rankprop, performs a diffusion

operation on a network of pairwise protein similarity

relationships. The network itself is an abstraction, in

which edges are defined using a protein sequence com-

parison algorithm such as smith–waterman [2], blast

[3], fasta [4] or psi-blast [5]. In our work, we use psi-

blast to define the network. Given a query sequence,

rankprop produces a ranking of all the proteins in the

network. Thus, rankprop’s output is similar to the

output of psi-blast. However, rankprop’s ranking

relies not only upon the similarities identified by psi-

blast, but also upon the global network topology.

Exactly how this is accomplished will be made clear

below. In a cross-validated test of structural classifi-

cation of proteins (SCOP) superfamily recognition,

rankprop consistently produces better rankings than

psi-blast. This result indicates that the network topol-

ogy provides significant value in identifying false posit-

ive and false negative relationships in the underlying

protein similarity network.

In this minireview, we situate the rankprop algorithm

with respect to the bioinformatics and network inference

literatures. We also describe the algorithm itself in some

detail, attempting to provide some intuitions for how
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Perhaps the most widely used applications of bioinformatics are tools such

as psi-blast for searching sequence databases. We describe a recently

developed protein database search algorithm called rankprop. rankprop

relies upon a precomputed network of pairwise protein similarities. The

algorithm performs a diffusion operation from a specified query protein

across the protein similarity network. The resulting activation scores,

assigned to each database protein, encode information about the global

structure of the protein similarity network. This type of algorithm has a

rich history in associationist psychology, artificial intelligence and web

search. We describe the rankprop algorithm and its relatives, and we pro-

vide evidence that the algorithm successfully improves upon the rankings

produced by psi-blast.
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the diffusion adds value to the existing network. Ran-

kings produced by the rankprop algorithm are now

available through the UC Santa Cruz Gene Sorter,

http://genome.ucsc.edu.

Protein database search

Over the past 25 years, researchers have developed a

battery of successively more powerful methods for

detecting protein sequence similarities. Here we focus

on algorithms that take as input a single query sequence

and a protein database, and produce as output a rank-

ing of that database with respect to the query. Although

the protein similarity network is an abstraction defined

for the rankprop algorithm, we can relate previous

database search methods to this network.

Early algorithms did not exploit the structure of the

protein similarity network at all, but focused instead

on accurately defining the individual edges of the net-

work. The scores assigned to these edges induce the

output ranking. The needleman–wunsch [6] and

smith–waterman [2] dynamic programming algo-

rithms find a provably optimal pairwise alignment

between a user-provided query sequence and a target

sequence from a database. However, optimality is only

guaranteed with respect to a very simple model of evo-

lution. Furthermore, in practice, these dynamic pro-

gramming algorithms are slow, especially when run on

computers of the early 1980s. Hence, the increasing size

of GenBank necessitated the development of approxi-

mation algorithms like blast [3] and fasta [4]. These

algorithms run much more quickly, but at the expense

of possibly missing some significant alignments.

Various approaches have been suggested for perform-

ing local search through the protein similarity network

defined by algorithms such as blast. These methods

search for short paths in the network [7], or use average-

or single-linkage scoring of inbound edges [8,9]. The

average-linkage approach was developed in the context

of the ProtoMap project, which was one of the first to

explicitly represent protein similarities as a network.

Profiles [10] and hidden Markov models (HMMs)

[11,12] provide a more principled means of performing

local network search. These methods use statistical

models based upon multiple alignments to model the

local structure of the network. The resulting model can

then be compared to a target sequence. Because the

model contains more information than the original

query sequence, this comparison can yield statistically

significant results that would be missed by a purely

pairwise approach. Published results suggest that, for

a given false positive rate, these family based methods

allow the computational biologist to infer nearly three

times as many homologies as a simple pairwise align-

ment algorithm [13]. Profiles and HMMs cannot

directly solve the single-query search problem because

they require multiple sequences for training; however,

these models have been used successfully in the context

of iterative search.

Iterative search algorithms traverse the protein simi-

larity network. This approach was suggested early on

[14] and was popularized by the sam-t98 hmm soft-

ware [15] and, to a greater degree, by psi-blast [5].

These methods build an alignment-based statistical

model of a local region of the protein similarity net-

work and then iteratively collect additional sequences

from the database to be added to the alignment. Note,

however, that the search procedure is local and relies

upon the ability to multiply align all of the modeled

sequences with respect to the query. The rankprop

algorithm does not rely upon a multiple alignment,

and makes use of the entire protein similarity network.

The RANKPROP algorithm

The rankprop algorithm is surprisingly simple. Fur-

thermore, although it can be computationally quite

expensive, most of the computation occurs in the gen-

eration of the protein similarity network, before the

user issues a query. The query stage is very fast.

In a protein similarity network, the edges represent

similarities between pairs of proteins in the database.

We use psi-blast to define this network, though in the-

ory the network could be computed using any pairwise

sequence comparison algorithm. Associated with each

edge in the network is a weight that quantities the

degree of similarity between the proteins. This weight,

w, is derived from the psi-blast E-value, E, via the fol-

lowing transformation: w ¼ e)E ⁄r, where r is a param-

eter of the algorithm. How the value of r is set is

described below. The weights associated with edges

leading into a given node are then normalized to a

sum of 1. Thus, one can think of the network as defi-

ning probabilistic transitions between proteins. Given

a starting protein, we can successively choose random

numbers and probabilistically travel through the pro-

tein similarity network according to the transition

probabilities on the edges.

Querying the network consists of two steps. First,

assuming that the query is not already in the network,

psi-blast is run to connect the query to the rest of the

network. Second, an activation score of 1.0 is assigned

to the query node, and this score is ‘pumped’ through

the entire protein similarity network. This pumping, or

diffusion, operation is iterative, with the activation

score at node yi at time t+1 defined as the sum of
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two terms: the initial score from the query, and the

weighted sum of all scores coming from the neighbors

of yi:

yiðt þ 1Þ  K1i þ a
Xm

j¼2
KjiyjðtÞ

where Kji is the weight associated with the edge con-

necting the node i to node j, and node 1 is the query

node. The term a controls the rate of diffusion of acti-

vation scores through the network. The rankprop

algorithm essentially performs a probabilistic traversal

of the network across all paths leading away from the

query node. The output of the algorithm is the list of

all nodes (proteins) in the network, ranked by activa-

tion score. A protein’s rank reflects the number, length

and strength of edges along the paths connecting the

query to that protein.

To understand intuitively how rankprop success-

fully re-ranks proteins, consider the toy example

shown in Fig. 1. This simple network contains two

groups of homologous proteins (represented by gray

and white nodes) that are not related to one another.

We assume that the pairwise comparison algorithm

has correctly identified all the homology relationships

with two exceptions: one gray protein has not been

linked to the query (false negative) and one white pro-

tein has been incorrectly linked to the query (false pos-

itive). rankprop successfully identifies these errors by

examining the rest of the network. The relationships

among the gray nodes allows a high level of activation

to reach the false negative node. Conversely, the lack

of connections from the query to the other white nodes

allows the activation score initially assigned to the

false positive query to diffuse through the white nodes.

A more realistic example is shown in Fig. 2. In order

to illustrate how rankprop diffusion improves upon

the rankings induced by the underlying protein similar-

ity network, we focus on a particular query domain,

photoactive yellow protein (PYP) from Ectothiorhodo-

spira halophila which, in previously reported results [1],

yields good performance from rankprop but not from

psi-blast. This protein is a member of the PYP-like

sensor domain SCOP superfamily [16], which in our

experiment contains five protein domains. Our initial

experiment used a database of over 100 000 proteins,

including protein domain sequences of known structure

from SCOP as well as protein sequences from SWISS-

PROT. Because visualizing such a large network is

difficult, here we extract a relevant subnetwork by con-

sidering only paths from the query domain to three

members of the PYP-like sensor domain superfamily

and three false positives. The false positives are SCOP

domains from other superfamilies which are ranked

highly by psi-blast or rankprop. The one remaining

superfamily member, histidine kinase FixL heme

domain from Rhizobium meliloti (D1EW0A), is linked

to the query domain with a densely connected subnet-

work, which is too large to include for the purposes

of visualization. Furthermore, we display only proteins

on paths that are shorter than five edges, and for
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Fig. 1. RANKPROP uses network topology to re-rank proteins. (A) The

figure shows a seven protein network. We assume that all gray

nodes represent proteins that are homologous to one another, and

that the white nodes represent a separate class of proteins that

are homologous to one another but not to the proteins represented

by the gray nodes. The pairwise comparison algorithm has

assigned edges nearly correctly: the only mistakes are the missing

edge between the query and the protein labeled ‘false negative’

and the extra edge between the protein labeled ‘false positive’.

Each node is labeled with its initial activation score, computed

assuming that each edge has an E-value of 0.1. (B) After running

the RANKPROP algorithm, the nodes receive activation scores that

correctly re-rank the false positive and the false negative.
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which each edge on the path has an E-value no larger

than 0.1. The resulting network contains 34 proteins

and is shown in Fig. 2A. In the initial ranking pro-

duced by psi-blast (Fig. 2A), three PYP-like sensor

domains are ranked very low, while a false positive,

cholesterol oxidase of the glucose-methanol-choline

(GMC) family from Brevibacterium sterolicum

(D1COY_1), is ranked higher. Although there is no

edge directly from the query to the three other PYP-like

sensor domains, all four are linked to a set of strongly

connected proteins from SWISS-PROT, some of which

are connected to the query. On the other hand, the false

positive D1COY_1 has fewer supporting connections

from the query in this network. Thus, after running

rankprop, all the true superfamily members are ranked

correctly above nonsuperfamily members.

Other network-based propagation
algorithms for homology tasks

Other recent work has also proposed diffusion algo-

rithms defined on different kinds of protein networks

for homology-related tasks. The markov cluster

(mcl) algorithm [17], designed for clustering nodes in

a graph by simulating stochastic flow, has been used

to detect protein families in large sequence databases

[18]. In this task, the mcl algorithm performs multiple

rounds of random walks on a similarity network of

proteins and then decomposes the network into com-

ponents, each of which represents a candidate protein

family. Similar to rankprop, the mcl algorithm uses a

similarity network defined by a symmetric connectivity

matrix between proteins weighted by their sequence

similarity and normalized to be stochastic. The mcl

algorithm makes random walks by alternately taking

expansion and inflation operations to update the con-

nectivity matrix K as follows:

Expansion : K ¼ Kn

Inflation : Kij ¼ ðKijÞr=
Xm

q¼1
ðKqjÞr

where Kn is the matrix product of K for n times, m is

the row dimension of K, and r is a real number larger

than 1. The expansion step boosts the probabilities

between nodes in the same cluster, because random

walks connect members of the same cluster more

frequently than between members of different clusters.

On the other hand, the inflation step re-scales the

transition probabilities by favoring links with higher

scores. As in rankprop, the mcl algorithm captures

global cluster structure in graphs but uses a two-step

bootstrapping procedure. This bootstrapping proce-

dure provably converges to an equilibrium state, separ-

ating the graph into isolated subgraphs with no flow

between them (i.e., edges between these subgraphs

have zero weight in the limit). The mcl algorithm has

also been successfully applied in many other problem

domains [19–21] besides protein family detection.

Another recent propagation algorithm is motifprop

[22], which like rankprop is applied to the protein

remote homology detection problem. Instead of relying

on a pairwise similarity score between proteins, the

motifprop algorithm assumes that shared sequence

motifs are capable of capturing the cluster structure

among proteins. A protein-motif similarity network, a

bipartite graph defined by a connectivity matrix between

proteins and motifs, is constructed for this purpose.

Starting with the connectivity matrix H and initial

activation values on protein nodes and motif nodes,

motifprop takes a two-step diffusion operation to

update activation scores of protein nodes and motifs by

Ptþ1 ¼ a ~HFt þ ð1� aÞP0

Ftþ1 ¼ a ~H0Pt þ ð1� aÞF0

where parameter a 2 (0,1) balances between the diffu-

sion information and initial activation scores, ~H is

obtained from H by normalizing so that entries in each

row sum to 1 and ~H
0
is a similarly row-normalized ver-

sion of the transpose of H. F 0 is the vector of initial

motif activation values, and P0 is the vector of initial

activation values from the base ranking algorithm, each

normalized so that entries sum to 1. The vector P0 can

be initialized in the same way as in rankprop, and the

components of F 0 can be estimated based on some sta-

tistical measures for different motif sets [22]. By indu-

cing a ranking of motifs along with the ranking of

database sequences, motifprop provides additional

information useful for discovering common structural

components between remote homologies and also

improves the sensitivity of remote homology detection.

Fig. 2. RANKPROP improves the recognition of the PYP-like sensor domain superfamily. (A) The figure shows the protein similarity network.

Green nodes are members of the PYP-like sensor domain superfamily. White nodes are Swiss-Prot sequences with no known structure,

and red nodes are SCOP proteins from a different SCOP fold. Each node is labeled with the protein ID and rank before the first iteration of

RANKPROP. Edges to ⁄ from the query domain are labeled with E-values. (B) This network is the same as the one in (A), except that the ranks

have been computed after 20 iterations of RANKPROP. In both networks, only edges with E-values less than 0.1 are displayed.

W. S. Noble et al. Identifying protein homologs by network propagation
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In other related work, a procedure to enforce sym-

metry, applied to a large binary connectivity matrix,

has proved helpful for detection of multidomain pro-

tein sequences during protein clustering and reduction

of false positives due to transitive domains [23]. This

kind of algorithm does not use a diffusion operation

but does take advantage of an implicit protein similar-

ity network through processing of a connectivity

matrix.

Ranking in other domains

The protein homology detection task can be usefully

compared to many other ranking tasks, such as search-

ing the web or ranking images. In a protein database

search, the input is a user query (the amino acid

sequence of a protein) and a given database of pro-

teins, and the output is a ranking of the given data-

base. In a web search, the input is a query term (text

from part of a web page) and a database of web pages,

and again the output is a ranking of the database. In

several other such domains, algorithms similar to

rankprop have been very successful.

For example, one of the best performing web search

algorithms is pagerank [24], which drives the popular

Google website. The critical innovation that led to the

success of the Google search engine is its ability to

exploit global structure by inferring it from the local

hyperlink structure of the Web. pagerank works by

making the assumption that when one page links to

another page, it is effectively casting a (weighted) vote

for that other page. The more votes that are cast for a

page, the more important the page must be. Moreover,

the importance of the page that is casting the vote

determines how important the vote itself is. These

ranking scores are calculated through a so-called

spreading activation network: each page propagates its

score to its neighbors via its outbound links and alters

its score based upon the received scores from its

inbound links, according to the formula

yjðt þ 1Þ ¼ ð1� aÞ þ a
X

i

KijyiðtÞ
Ci

where yj denotes the page rank of web page j, and

Kij ¼ 1 if page i links to page j, and 0 otherwise. Ci ¼P
p Kip is the number of outbound links of page i, and

a is a damping factor (usually set to 0.85). In practice,

the propagation is usually iterated a small number of

times, e.g. up to t ¼ 40 time steps. (pagerank corres-

ponds to computing the principal eigenvector of the

normalized link matrix of the web, and can hence be

computed in closed form, rather than by iteration, but

at greater computational expense.) Empirical results

show that pagerank is superior to the naive, local

ranking method, in which pages are simply ranked

according to the number of inbound hyperlinks.

The idea of spreading activation, however, dates

back further than pagerank. In [25], spreading activa-

tion is defined as a class of algorithms that propagate

numerical values (activation levels) in a network for

the purpose of selecting the nodes that are most closely

related to the source of the activation. As such, the

model is related to associationist models of thought,

traceable to Freud and Pavlov and, ultimately, to

Aristotle [26].

Spreading activation was first described as a compu-

tational process by Quillian [27], who showed how it

can be used to search a semantic network, comparing

and contrasting word-senses in a network structured

dictionary database. The original idea was to spread

activation not from all nodes concurrently (as in page-

rank) but from a set of nodes, or a single node query:

yjðt þ 1Þ ¼ CjðtÞ þ cyjðtÞ þ a
X

i

KijyiðtÞ

where Cj(t) is the external input for node j at time step

t and c is the relaxation rate, chosen between 0 and 1.

In a typical application, some nodes (the sources) are

activated by external inputs and these in turn cause

others to become active with varying intensities. Such

algorithms have been used in various artificial intelli-

gence systems [27,28] and as a component of computa-

tional models of memory in cognitive psychology

[26,29,30].

More recently, in [31], the convergence of a similar

algorithm to (1) is shown, and a closed form expression

is given. The propagation approach is shown to outper-

form a local distance measure approach in the prob-

lems of image ranking (given a query image) and text

document ranking (given a query text document).

Finally, most recently, because the success of the rank-

prop algorithm, the authors of [32] have also applied

the rankprop algorithm to content based image retrie-

val with iterative feedback, with state of the art results.

Validation of the RANKPROP algorithm

The rankprop algorithm has been validated using a

gold standard derived from protein structure. SCOP

[16] is a hierarchical organization of protein domains

into classes based upon structural characteristics. Each

group, defined at the superfamily level of the hier-

archy, contains protein domains that are presumed to

be homologous to one another, whereas protein

Identifying protein homologs by network propagation W. S. Noble et al.
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domains within one fold group share structural simi-

larity but may not be homologous. Following the

design used in other experiments (e.g. [33]), we consi-

der a pair of domains to be homologous if they are in

the same superfamily, and unrelated if they are in dif-

ferent folds. Protein pairs that are in the same fold but

different superfamilies have an uncertain relationship

and hence are not used in the validation.

Figure 3 compares the performance of rankprop to

blast and psi-blast. The database consists of 108 931

proteins, which includes 7329 SCOP domains and

101 602 complete proteins from Swiss-Prot. For each

SCOP domain in a predefined test set of 2899 proteins,

we rank the entire database, extract the SCOP

domains, and label each one as ‘true’ if it is in the

same superfamily as the query, ‘false’ if it is in a differ-

ent fold, and ‘unknown’ if it is in the same fold as the

query but a different superfamily. To evaluate the

quality of a ranking, we compute receiver operating

characteristic (ROC) scores [34] with respect to the

ranked list of ‘true’ and ‘false’ labels. More specifically,

the ROC score is the normalized area under a ROC

curve, which plots true positives as a function of false

positives at different thresholds. By putting all true

positives ahead of true negatives, a perfect ranking

algorithm will have a ROC score of 1 while a random

ranking algorithm will receive a ROC score of 0 5. For

this particular task, because we are interested in the

quality of the top of the ranking, we compute the

ROC50 score [35]; i.e., the area under the ROC curve

up to the first 50 false positives. The figure shows a

dramatic improvement in the quality of the rankings

induced by rankprop.

The rankprop algorithm has two parameters that

can be set by the user: the diffusion constant a and

the r parameter used in converting E-values to edge

weights. For the SCOP experiments, we set these

parameters using a separate set of queries, choosing

the parameter values (a ¼ 0.95 and r ¼ 100) that yield

optimal performance.

RANKPROP on the UCSC Gene Sorter

Although the rankprop algorithm is quite simple

and the source code is publicly available (http://

www.kyb.tuebingen.mpg.de/bs/people/weston/rankprot/

supplement.html), computing a protein similarity net-

work can be very computationally expensive. We have

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

ROC−50

seireuq fo reb
mun

BLAST
PSIBLAST
RankProp

Fig. 3. Comparison of RANKPROP performance with BLAST AND PSI-BLAST. The figure plots the percentage of queries (out of 2899) for which a

given protein ranking algorithm achieves a specified ROC50 score. The three series correspond to the RANKPROP algorithm, PSI-BLAST using the

default inclusion threshold of 0.005 and a maximum of six iterations, and BLAST. More details are provided in [1].
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therefore made rankprop available via the UC Santa

Cruz Gene Sorter at http://www.genome.ucsc.edu [36].

Figure 4 shows the browser interface. Here, homologs

of the human p53 gene have been ranked by rankprop

activation score. These scores are computed in a net-

work of all human proteins, with edges defined by psi-

blast. The Gene Sorter allows for ranking by blast

E-value (symmetrized) psi-blast E-value, or rankprop

activation score, so the differences in rankings can be

compared. In this particular case, rankprop suggests

weak relationships with numerous proteins that psi-

blast did not identify.

Discussion

The rankprop algorithm provides a new, meta-level

approach to the protein database search problem. The

algorithm capitalizes on the decades of research that

went into producing current, state of the art search

algorithms such as psi-blast; but rankprop also lever-

ages information about the global topology of the

protein similarity network. Our experiments indicate

that the patterns of connectivity between the query

and its neighbors and among the query’s neighbors

and their neighbors, etc., contain important informa-

tion that allows rankprop to differentiate between

correctly and incorrectly inferred homology relation-

ships.

Because rankprop does not rely upon multiple

alignments to the query sequence, it runs the risk of

introducing false positive associations via multidomain

proteins. Theoretically, a single-domain protein A

which is homologous to a multidomain protein AB

could lead to a false inference of homology between A

and a single-domain protein B. However, our experi-

ments [1] indicate that multidomain proteins do not

cause a serious problem for rankprop. In practice, the

single-domain protein B will receive a relatively high

rank, but rankprop will successfully rank it below the

true homologs. Nevertheless, to address this issue

directly, and also to allow rankprop to provide

explanatory output in addition to its ranking, we are

currently developing variants of the algorithm that cut

proteins in the network into shorter segments based on

Fig. 4. RANKPROP on the UC Santa Cruz Gene Sorter. The web interface allows the user to rank homologs of any protein in the human gen-

ome by RANKPROP activation score. The figure shows the ranking of proteins related to the p53 tumor suppressor gene.
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pairwise alignments. We also plan to augment the

ranking output with a probabilistic score, allowing

users to set a score threshold a priori. With these mod-

ifications, we expect that rankprop will provide fast,

high-quality, user-friendly protein sequence database

search results.
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