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will fail to identify that match if we choose 
also to search the human database. This is 
ironic, because the only potential gain we 
achieve by searching the human database is 
an identification that we have no interest in 
and will ultimately discard.

Many mass spectrometrists, when 
presented with this idea, would likely 
express concern that the spectrum 
identifications produced by this simpler 
protocol will be contaminated with human 
spectra. The reasoning goes like this: even if 
spectrum s obtained a score that exceeds a 
given threshold when we searched it against 
the Plasmodium database, that spectrum 
might have received an even larger score 
if we had searched it against the combined 
Plasmodium  and human databases. 
Although this statement is certainly true, it 
misses the point of our statistical confidence 
estimation procedure, which is to accurately 
estimate the FDR associated with a given 
collection of identified spectra. Well-
calibrated statistical confidence estimates 
should allow us to skip the testing of these 
extraneous hypotheses.

One potential source of confusion in 
the assignment of confidence estimates 
to identified spectra is that the most 
commonly used assignment method—
assigning FDRs using target-decoy 
competition—does not explicitly make use 
of P values. It is not obvious, therefore, that 
notions such as Bonferroni adjustment and 
multiple-hypothesis testing are applicable in 
this domain. The following two case studies, 
which I carried out using target-decoy FDR 
estimation, illustrate that these concepts 

Over the past decade, perhaps the most 
significant trend in the analysis of mass 
spectrometry–based shotgun proteomics 
data has been the increasing statistical 
rigor of most analysis pipelines. No longer 
are reviewers or editors satisfied with 
spectrum identifications defined with 
respect to arbitrary score thresholds or by 
using ‘rules of thumb’ based on multiple 
thresholds. Most proteomics journals now 
require that statistical confidence estimates 
be reported. A variety of methods have 
been devised for assigning confidence 
estimates to individual matches, using 
parametric1 or exact procedures2,3. Perhaps 
most importantly, target-decoy analysis4,5 
provides a straightforward method for 
estimating the false discovery rate (FDR), 
defined as the percentage of incorrect 
identifications, associated with nearly any 
data set and scoring procedure.

However, despite these advances in 
statistical confidence estimation, I believe 
that one problematic protocol remains in 
common use. The protocol is quite general 
and involves testing more hypotheses than 
we are actually interested in. To illustrate the 
idea, consider the analysis of mass spectra 
derived from the erythrocytic cycle of the 
malaria parasite Plasmodium falciparum. 
Because erythrocytic Plasmodium parasites 
inhabit human red blood cells,  any 
Plasmodium proteomics experiment will 

inevitably generate spectra from a mixture 
of human and Plasmodium peptides. It is 
therefore common to search the observed 
spectra against a combined database of 
human and Plasmodium peptides and then 
to discard the spectra that match to human 
peptides.

From a statistical perspective, I believe 
that this protocol is suboptimal, in the 
sense that it needlessly sacrifices statistical 
power. In particular, at a fixed FDR 
threshold, we can obtain a larger set of 
identifications by searching the spectra 
against only the Plasmodium peptides. 
To understand why this is the case, we 
need only consider a single spectrum s 
searched against either the Plasmodium 
database or the ‘Plasmodium+human’ 
database. If the spectrum has an associated 
precursor mass of, say, 2,000 Da, and if we 
search the databases using a tolerance of 
10 p.p.m., then the Plasmodium database 
yields 17 candidate peptides and the 
Plasmodium+human database yields 29 
candidate peptides. Let us assume that we 
are using a method such as MS-GF+2 that 
assigns a P value to each possible match. 
After selecting the best-scoring candidate 
peptide (i.e., the one with the smallest 
P value), a Bonferroni adjustment requires 
that, to achieve a statistical significance 
of P < 0.01, we must observe a P value of 
0.01/17 = 5.9 × 10–4 from the Plasmodium 
database but a P value of 0.01/29 = 3.4 × 10–4 
from the Plasmodium+human database. 
Thus, whenever our best-scoring match 
against the Plasmodium database receives 
a P value in between these two values, we 
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spectra deemed irrelevant to the scientific hypothesis being tested. To improve statistical power, I propose 
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these peptides to spectra and then discarding the matches.
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This practice of sacrificing statistical 
power by considering irrelevant hypotheses 
is common. For example, I propose that 
any proteomics experiment that targets 
a particular pathway or set of pathways 
would benefit from using a protein 
database consisting of only the proteins 
of interest. Similarly, any study that 
aims to identify only phosphorylation 
sites could gain statistical power by 
not searching for unphosphorylated 
peptides. When searching for cross-linked 
peptides, uninteresting species such as 
non-cross-linked, self-loop and dead-end 
peptides should be left out of the database. I 
believe a good rule of thumb is that if you are 
going to do a post-filtering step to eliminate 
some of the matches from your analysis, 
and if those matches are not relevant to 
the scientific hypothesis you are testing, 
then you should consider eliminating those 
peptides beforehand to avoid having to 
correct for these extra statistical tests.

A practical follow-up question to both 
the Plasmodium  and SP-A examples 
is how the magnitude of the loss in 
statistical power varies as a function of the 
number of irrelevant proteins included 
in the search. To address this question 
empirically, I carried out searches using a 
series of randomly downsampled human 
databases. For the Plasmodium data set, I 
observed a rapid loss of power even when 
only 10,000 human proteins are added to 
the database: at a 1% FDR threshold, the 
number of spectra assigned to Plasmodium 
peptides drops by 3.2%, from 2,729 to 2,643 
(Fig. 2a). Power continues to drop relatively 
smoothly as the database grows larger. In 
the SP-A case, the initial drop in power is 

do indeed apply. Any valid confidence 
estimation procedure, even one that does 
not make explicit use of P values, must take 
into account the large number of peptides 
in the database and the large number of 
spectra in a given experiment.

Two case studies
To illustrate the loss of statistical power 
associated with searching a large database, I 
analyzed two recently published collections 
of mass spectra (see also Supplementary 
Methods and Supplementary Data 1–3). 
The first contains 12,478 high-resolution 
Plasmodium spectra6. I searched the 
spectra against a Plasmodium database, 
with and without the human database 
appended (Supplementary Data 1). I used 
the MS-GF+ search engine2 and estimated 
FDRs using target-decoy competition5. 
Searching the combined database always 
yielded fewer Plasmodium identifications 
across FDR thresholds up to 10% (Fig. 1a). 
In particular, at an FDR threshold of 1%, 
the combined search assigned Plasmodium 
peptides to 2,339 spectra,  whereas 
the Plasmodium-only search assigned 
2,530 such spectra, an increase of 8.2%. 
Furthermore, only 2 of the 2,530 spectra 
identified in the Plasmodium-only search 
received a better score in the corresponding 
Plasmodium+human search, indicating that 
the Plasmodium-only results are not highly 
contaminated with spurious matches due to 
the presence of human-derived spectra.

A potential complication arises when 
peptides are shared between Plasmodium 
and human. In a tryptic digestion with 
no missed cleavages and no variable 
modifications, the Plasmodium and human 

databases contain 221,567 and 432,840 
peptides, respectively, with an overlap of 
916 peptides. One risk associated with 
searching only the Plasmodium database 
is that human peptides from this overlap 
set might be misidentified as Plasmodium 
peptides. I propose that the solution to this 
problem is to check whether any of the 
identified Plasmodium peptides occur in 
human, and to handle these identifications 
accordingly. Indeed, one might wish to 
eliminate these overlapping peptides from 
the Plasmodium database a priori, thereby 
further reducing the multiple-testing burden.

I also analyzed a collection of 1,503 
fragmentation spectra generated during 
an investigation of coding variants 
and isoforms of pulmonary surfactant 
protein  A (SP-A)7 (Supplementar y 
Data 2). SP-A proteins were purified from 
bronchial lavage fluid and subjected to 
tandem mass spectrometry analysis. The 
purification procedure was necessarily 
imperfect, however. In that study, the 
resulting spectra were searched against 
the entire human proteome, augmented 
with a collection of six known SP-A 
variants. I repeated this analysis by 
searching with Tide3 against the combined 
‘human+SP-A’ database as well as against 
only the known variants of SP-A. Similar 
to the Plasmodium analysis, my analysis 
here showed that searching against only 
the proteins of interest yields much 
better statistical power (Fig. 1b). At a 
1% FDR threshold, the combined search 
assigned 345 spectra to peptides from 
SP-A, whereas the search against the 
SP-A database identified 448 spectra, an 
increase of 29.9%.

Figure 1 | Boosting statistical power by eliminating irrelevant hypotheses. (a) The number of accepted peptide-spectrum matches (PSMs) as a function 
of FDR threshold for the Plasmodium data set. Searching a combined database of Plasmodium and human sequences yields more identified spectra 
overall (blue) but fewer Plasmodium identifications (violet) than does searching just the Plasmodium database (green). (b) Analysis of isoforms of SP-A 
by searching an SP-A variant database alone or by searching a database consisting of the entire human proteome plus SP-A variants. Source data are 
available in Supplementary Data 4.
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which led them to conclude that such 
viruses are associated with collapsed 
colonies8. The analysis involved searching 
the spectra against a database containing 
only bacterial and viral sequences, without 
including the honeybee proteins that are 
expected to match the majority of the 
spectra. A total of 3,000 peptides were 
confidently identified from over 900 
different microbial species. Three critiques 
of this study were subsequently published 
by two different research groups, pointing 
out various problems with the reported 
results and with the analysis procedures9–11. 
Knudsen and Chalkley9 hypothesized that 
the tool PeptideProphet12 was provided 
with an input data set containing no correct 
identifications, and as a result the tool gave 
invalid results. Both critical reassessments 
claimed that had Bromenshenk et al. 
included the honeybee proteins in their 
initial database search, mistakes could have 
been avoided.

To investigate this claim, I reanalyzed the 
full set of 262,572 spectra from the original 
Bromenshenk et al. study (Supplementary 
Data 3). As with the Plasmodium and SP-A 
case studies, I searched the spectra against 
a viral database, a honeybee database and 
a concatenation of the two. At an FDR 
threshold of 1%, the Tide search engine 
identified 36,371 spectra by searching the 
honeybee database. Searching the viral 
database, on the other hand, identified 
only 152 spectra. These viral identifications 
correspond to only nine distinct peptides 
(Table 1). In agreement with previous 
reanalyses of this data set9,11, none of the 
nine peptides comes from the Varroa 
destructor 1, Kakugo or invertebrate 

more dramatic. Even adding 1,000 human 
peptides reduces power by 13.4% (434 to 
376 peptides) at 1% FDR (Fig. 2b). The 
reason for this behavior is that, in this case, 
less than half (709 of 1,503) of the observed 
spectra have associated precursor m/z 
values that lie within ±3 m/z of the mass of 
at least one peptide in the SP-A database. 
The remaining 794 spectra are therefore not 
matched at all in the SP-A search. When we 
add human proteins to the database, most 
of those 794 spectra match at least one 
candidate peptide. Thus, in this case, adding 
human peptides to the database increases 
the multiple-testing burden in two ways: 
by increasing (i) the number of candidate 
peptides per spectrum and (ii) the total 
number of spectra under consideration.

Beyond maximizing statistical power
In practice, simply maximizing statistical 
power may not be the only or even the 
primary concern; applying the approach I 
propose above may not be the best choice 
for every situation. For example, focusing an 
experiment on a small, targeted collection 

of peptides necessarily eliminates the 
possibility of serendipitous, unexpected 
discoveries. Indeed, one of the great powers 
of tandem mass spectrometry is its depth 
of coverage, with the potential to query a 
large proportion of the proteome in a single 
experiment.

A second important consideration is 
that the analysis of otherwise irrelevant 
peptides can provide a useful sanity check. 
For example, common contaminants such 
as human keratin should probably always 
be included in any search. Overall, the total 
number of such contaminants is generally 
quite small, and their presence in the 
database will likely have a negligible impact 
on statistical power.

Irrelevant peptides can also be helpful 
for identifying problems with the statistical 
analysis. For example, Bromenshenk et al. 
reported an analysis of honeybee-derived 
spectra that yielded sequences from two 
previously unreported RNA viruses—
Varroa destructor virus 1 and Kakugo 
virus—in North American honeybees as 
well as an invertebrate iridescent virus, 

Figure 2 | Loss of statistical power as a function of database size. The Plasmodium and SP-A data sets were searched, using Tide, against a series of databases 
containing various numbers of human proteins. (a,b) The plots show the number of Plasmodium (a) and SP-A (b) proteins identified at various FDR thresholds 
as a function of the number of human proteins included in the database. Results are averaged over ten different decoy databases, and error bars correspond to 
standard deviation. Source data are available in Supplementary Data 5.

Table 1 | Viral peptides identified in the honeybee data set
Spectra Viral Honeybee Combined Species
52 IWHHTFYNELR Same Both Honeybee

46 HKGVMVGMGQK HQGVMVGMGQK Both Honeybee

17 LAVNMVPFPR Same Both Honeybee

7 IIAQVVSSITASLR LIGQIVSSITASLR Honeybee Honeybee

3 SYELPDGQVIKIGSER SYELPDGQVITIGNER Honeybee Honeybee

16 IGPISEVASGVK Various (6 decoys) Viral Kashmir bee virus

6 DYMSYLSYLYR Various (5 decoys) Viral Acute bee paralysis virus

4 IDTPMAQDTSSAR Various (4 decoys) Viral Acute bee paralysis virus and 
Kashmir bee virus

1 VNNLHEYTK NVNITFPQGK Viral Sacbrood virus
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statistical power. Thus, a clear avenue for 
future work at the interface of statistics and 
proteomics lies in the application of existing 
protocols for stratified multiple-testing 
control18.

Note: Any Supplementary Information and Source  
Data files are available in the online version of the 
paper (doi:10.1038/nmeth.3450).
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iridescent viruses. Two of the nine peptides 
occur in both the honeybee and viral 
databases, and one occurs in both databases 
but differs by a substitution of isobaric 
amino acids (lysine → glutamine). Together, 
these three shared peptides account for 115 
of the 152 spectra. Among the remaining 
six viral peptides, four appear to be matches 
to actual viral sequences from the Kashmir 
bee virus, the acute bee paralysis virus and 
the sacbrood virus. Only two peptides that 
were identified as viral in the initial search, 
corresponding to ten distinct spectra, have 
a better match to a homologous honeybee 
peptide in the combined search.

My analysis suggests two conclusions. 
First, in rare cases, leaving irrelevant 
peptides out of the database may lead to 
incorrectly identified spectra owing to 
homology between the proteins in the 
database and the left-out proteins: in this 
case, 10 identifications out of 152. Thus, 
the risk of such false positive identifications 
must be weighed against the potential gain 
in statistical power (loss of false negatives) 
when deciding upon an analysis strategy. 
Second, in the particular case of the 
honeybee data set, the choice of protein 
database does not explain the incorrect 
results obtained by Bromenshenk et al.8. 
Instead, the problem apparently lay in how 
the analysis was performed.

Challenges and future directions
One chal lenge associated with my 
proposed rule of thumb is that if we use a 
decoy-based estimation procedure, and 
if our database consists of only a handful 
of proteins, then the resulting confidence 
estimates will likely be inaccurate. Indeed, 
one published standard explicitly warns 
about the difficulty of achieving accurate 
confidence estimates when the database 
contains fewer than 1,000 proteins13. 
Three points are worth considering with 
respect to this problem. First, any empirical 
confidence estimation protocol such as 
target-decoy competition yields intrinsic 
variance due to the stochastic generation 
of decoys. This variance is not removed 
by using a deterministic decoy-generation 
scheme such as reversing peptides. 

Furthermore, as the confidence estimates 
get small, the relative magnitude of the 
variance increases relative to the magnitude 
of the estimate (Fig. 2). Second, if we use 
a shuffling procedure to generate decoys, 
then it is possible to reduce the variance 
in our confidence estimates substantially  
by repeating the target-decoy competition 
many t imes14.  Such an approach is 
particularly applicable when the protein 
database is small, because the cost of 
repeated searches is relatively low. Third, 
the use of analytic methods to compute 
exact P values with respect to a particular 
null model avoids the variance associated 
with empirical confidence-estimation 
schemes2,3.

An alternative protocol to the one I 
propose here involves first searching the 
spectra against a database containing only 
the irrelevant peptides and eliminating 
from the data set all spectra that match this 
‘garbage’ database with high confidence. The 
remaining spectra could then be searched 
against the database of interesting peptides. 
For stringent FDR thresholds, I believe that 
this approach is likely to yield slightly better 
power than the simple strategy proposed 
here, at the expense of being somewhat 
more complicated to implement.

Thus far, I have focused on assigning 
confidence estimates to peptide-spectrum 
matches. Confidence estimation at the level 
of peptides—taking into account multiple 
spectra matching to the same peptide—or 
at the level of proteins—taking into account 
the many-to-many mapping between 
peptides and proteins—is considerably 
more challenging. Nonetheless, existing 
methods for assigning peptide- and protein-
level confidence estimates typically do so by 
aggregating spectrum-level evidence15–17; 
hence, any gains in statistical power at the 
spectrum level achieved by leaving out 
irrelevant peptides should in principle yield 
concomitant gains in power at the peptide 
and protein levels.

The relatively simple idea I propose here, 
of limiting the hypothesis space to only 
hypotheses of interest, is an expression of a 
more general statistical goal: to explore the 
hypothesis space in a fashion that maximizes 
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