
Modeling the Evolution of Motivation

John Batali� and William Noble Grundyy

Evolutionary Computation 4(3):235-270, 1996.

Abstract

In order for learning to improve the adaptiveness of an animal's behavior and thus direct
evolution in the way Baldwin suggested, the learning mechanism must incorporate an
innate evaluation of how the animal's actions inuence its reproductive �tness. For
example, many circumstances that damage an animal, or otherwise reduce its �tness
are painful and tend to be avoided. We refer to the mechanism by which an animal
evaluates the �tness consequences of its actions as a \motivation system," and argue
that such a system must evolve along with the behaviors it evaluates.

We describe simulations of the evolution of populations of agents instantiating a
number of di�erent architectures for generating action and learning, in worlds of dif-
fering complexity. We �nd that in some cases, members of the populations evolve
motivation systems that are accurate enough to direct learning so as to increase the
�tness of the actions the agents perform. Furthermore, the motivation systems tend to
incorporate systematic distortions in their representations of the worlds they inhabit;
these distortions can increase the adaptiveness of the behavior generated.

�Department of Cognitive Science; University of California at San Diego; 9600 Gilman Drive; La Jolla, CA 92903-
0515; (619) 534-7308; batali@cogsci.ucsd.edu

yDepartment of Computer Science and Engineering; University of California at San Diego; 9600 Gilman Drive;
La Jolla, CA 92903-0114; (619) 453-4364; bgrundy@cs.ucsd.edu

1





1

1 Introduction

In his presentation of what he calls \a new factor" in evolution, James Mark Baldwin (1896)
points out that \those congenital or phylogenetic adaptations are kept in existence, which tend
themselves to intelligent, imitative, adaptive, and mechanical modi�cation during the lifetime of
creatures which have them." The ability to undergo such \ontogenetic adaptation," Baldwin argues,
allows evolution to follow \certain lines of determinate phylogenetic variation in the directions of
the determinate ontogenetic adaptation of the earlier generation."

In this way, evolution and the various \ontogenetic agencies" Baldwin discusses | in partic-
ular, learning | can work synergistically. Those animals capable of improving their behavior by
learning will have an advantage over those that cannot, and those better able to improve will be
at a correspondingly greater advantage. Furthermore, the advantages of possessing the speci�c
improvements that learning enables can also result in the selection of those animals that possess
the improved traits innately. Therefore, the species will evolve \in the directions thus rati�ed by
intelligence," even though there is no inheritance of acquired characteristics.

\How," Baldwin then asks, \does the organism secure, from the multitude of possible ontoge-
netic changes which it might and does undergo, those which are adaptive?" His answer is that it
is a

. . . fact of physiology . . . that the organism concentrates its energies upon the locality
stimulated, for the continuation of the conditions, movements, stimulations, which are
vitally bene�cial, and for the cessation of the conditions, movements, stimulations,
which are vitally depressing and harmful.

The pleasure received from such \bene�cial" stimulations results in their being repeated, and
ultimately made habitual:

This form of concentration of energy upon stimulated localities, with the resulting
renewal by movements of conditions that are pleasure-giving and bene�cial, and the
subsequent repetitions of the movements is . . . the adaptive process in all life, and this
process is that with which the development of mental life has been associated.

This proposal closely resembles the \law of e�ect," suggested contemporaneously by Thorndike
(1898), which states that animals will tend to repeat those actions that lead to \satisfying" states
of a�airs and avoid those that lead to \annoying" ones.

Of course Baldwin was not the �rst to suggest that feelings of pleasure and pain often motivate
animal behavior. Aristotle makes the capacities of sensation and movement the de�ning properties
of animals and posits that expectations of pleasure and pain guide their movements. (See Hamlyn,
1968; Robinson, 1989.)

Often left unspoken in such proposals is the observation that the capacity to experience feelings
of pleasure and pain is quite an evolutionary achievement. Baldwin, in a passage cited above,
conjoins \pleasure-giving" and \bene�cial," but of course the two are not equivalent. Pleasure and
pain are not objective features of the physical environment. Somehow the animal must evolve the
tendency to feel pleasure in those conditions that are bene�cial to its reproductive �tness and pain
in those that are deleterious. Some mechanism that can evaluate how the animal's actions inuence
its �tness must underlie these feelings of pleasure and pain.

We refer to this mechanism as a \motivation system" because the animal will, as a result of
learning, tend to perform those actions which are favorably evaluated by the system. The motivation
system may also be involved in the selection of actions, with the animal performing those actions



2 1 INTRODUCTION

that it expects to be favorably evaluated. In either case, the evaluations of the motivation system
must be at least somewhat correlated with the actual �tness consequences of the animal's actions
for its behavior to be adaptive.

Such an evaluation is in general not a simple calculation. Many physiological and environmental
factors can be involved, and can interact in intricate ways. Subtle changes in the animal's physio-
logical state or its environment can have extreme �tness consequences, especially for animals and
environments of any signi�cant complexity.

Researchers writing about motivation disagree about the de�nition of the term. Most admit
that motivation involves causation | the initiation of and persistence in performing actions. How-
ever, Toates (1986) and, to a lesser extent, Colgan (1989) include goal-directedness as an aspect
of motivation. Toates contrasts this cognitive de�nition of motivation with the behaviorist one
o�ered by Hull (1952), in which learning theory accounts for purposive action, leaving motivation
to describe more immediate drives. Like Toates, Epstein (1982) treats motivation cognitively. Ac-
cording to Epstein, the a�ective expectancy of motivation is a primary characteristic distinguishing
it from instinct.

In what follows, we remain uncommitted concerning the cognitive nature of motivation, primar-
ily because the simplicity of the models to be discussed precludes any but metaphorical applications
of cognitive terms. Some of the models may be considered to be goal-directed, but only in a very
limited sense, since they make predictions only about the immediate future.

Our de�nition of motivation coincides most strongly with that of McFarland and B�osser (1993)
who describe motivation systems in terms of \expected utility." McFarland and B�osser go on to
discuss planning as an essential aspect of motivation. Again, we omit such discussion only because
of the simplicity of our models.

Whether we speak of �tness consequences or expected utility, the required evaluation requires
an innate component. If an animal's behavior is modi�ed by learning, the learning must itself be
guided by an evaluation of the �tness consequences of the modi�cations performed, that is, by
another motivation system. In order to avoid an in�nite regress, at least one such system cannot
be learned.

Animals whose actions are guided by a motivation system will be under strong selection pressure
for those systems to be accurate. If its motivation system incorrectly favors actions with negative
�tness consequences, an animal will tend to perform those actions and will be less likely to pass its
genes, including those specifying its motivation system, to subsequent generations.

In real animals, the motivation system is highly distributed, incorporating aspects of the an-
imal's nervous and sensory systems as well as its physiology and biochemistry (Colgan, 1989,
chapter 3; Thompson, 1986). This is not surprising, since motivation systems profoundly a�ect the
evolution of adaptive behavior in even the simplest organisms.

Motivated by these issues, we explore the questions of whether and how motivation systems can
evolve, how they can be incorporated into the generation of adaptive behavior, and how the innate
and learned components of mechanisms for generating behavior relate to each other.

Our explorations involve computational simulations of the evolution of simple agents whose
reproductive �tness is based on the actions they perform in simple worlds. An agent can a�ect the
world by its actions, and some e�ects, in some states of the world, are better for the agent's �tness
than others. Some of our agents contain learning components that modify the agents' behaviors as
they interact with the world.

We look for e�ects of the sort Baldwin described, in particular, for simulations in which agents
learn adaptive behaviors in early generations, but for whom those behaviors become increasingly
innate in later generations. We �nd, in some of our worlds, that populations of learning agents



3

outperform populations of agents whose behavior is innate, and learning enables such agents to
acquire increasingly adaptive innate behaviors as the simulations progress. On the other hand, not
all of the simulations showed such results. Details of the worlds, and of the agents' architectures,
strongly inuence the evolutionary dynamics of populations of such agents.

When our populations are successful in evolving motivation systems, such systems are able to
evaluate the �tness consequences of actions with fairly high accuracy. However, the motivation sys-
tems tend to incorporate systematic distortions in their representations of the worlds they inhabit.
These distortions often increase the likelihood that the behavior of the agents is adaptive. They
do so by exploiting regularities in the world, facilitating the learning of important features of the
worlds, and encoding adaptive behavioral strategies.

In the next section we summarize related research. Section 3 presents our abstract model of
worlds and the di�culty measures that apply to them. Section 4 describes the agent architectures
we use and the algorithms they incorporate for action selection and learning. Our evolutionary
simulation methodology is explained in section 5. Section 6 presents the results of our simulations;
these results are compared and discussed in section 7.

2 Related Work

A number of other research projects have explored the relations between learning and evolution,
and our investigations are inspired by, and build on, their results.

Hinton and Nowlan (1987) present a succinct model of the Baldwin e�ect, which demonstrates
how, in their model at least, changes in an organism during learning can a�ect the evolutionary dy-
namics of populations of organisms capable of learning. However, like Baldwin, Hinton and Nowlan
do not account for the evolution of the motivation system that evaluates the �tness consequences
of changes to the organism. Indeed, in the Hinton and Nowlan model the evaluation was performed
by the experimenter, who not only determined the �tness of genotypes, but also determined when
the learning mechanism had reached the solution and should cease its operations. In this regard,
the model of Hinton and Nowlan resembles a number of experiments in which populations of neural
networks are incorporated into some variety of evolutionary computations and selected according
to their performance after training on some �xed task (Belew, 1989; Chalmers, 1991; Belew, et al.,
1991; Batali, 1994).

Littman (1996) describes several projects in which the evolution of something like a motivation
system is more explicitly addressed. For example, Ackley and Littman (1992) describe the experi-
mental paradigm (\Evolutionary Reinforcement Learning") that we adopt | a population of agents
with two evolved neural networks, one that generates actions, and the other that evaluates results
of the actions and controls the training of the �rst network. However, in Ackley and Littman's
experiment, the motivation evaluation is fairly simple, since the evaluation network is given input
signals representing the \health" and \energy" of the agent. These two quantities determine which
agents reproduce and which die. We are interested in whether the agents can evolve to correctly
evaluate the �tness of consequences of actions given much less easily interpretable input.

Todd and Miller (1991) describe simulations of entities capable of responding to a number of
sensory signals, and which evolve the ability to detect features of the environment correlated with
�tness. The agents in these simulations consist of very simple neural networks, each containing only
three nodes. Yet even these simple agents, given a task appropriately tailored for their architecture,
manage to both learn and evolve. In addition to illustrating an interesting U-shaped relationship
between the use of the internally generated reinforcement and the accuracy of that reinforcement,
Todd and Miller's work provides an example of a simulation in which the learning architecture and



4 3 WORLDS

the learned task are closely linked.
Nol� and Parisi (1993) describe simulations in which learning agents evolve internal \auto-

teaching" nodes. These nodes, which are integrated with the agents' neural network architectures,
evolve to approximate a teaching input of the sort used in supervised learning algorithms. Although
Nol� and Parisi's agent architecture di�ers signi�cantly from the ones described here, some of their
results, including the gradual transformation from learned behaviors to innate behaviors and the
unpredictable but nonetheless useful signals generated by the auto-teaching nodes, coincide with
ours.

Each of these projects was carried out in a single world with one or two architectures, and
each experiment employed a relatively simple �tness function. One primary goal of our work is to
begin to systematically explore various alternative learning architectures and tasks. Accordingly, in
addition to describing learning architectures, we need an abstract framework with which to describe
learning tasks. That framework is the subject of the next section.

3 Worlds

Our analysis and experiments use an abstract model of simple worlds in which a solitary agent's
actions a�ect its environment and its reproductive �tness.

A number of existing models of the evolution of behavior and the interactions between learning
and evolution make use of fanciful world models in which a two-dimensional grid representing
physical space is populated by \food" and \poison" and \predators" and so forth. The available
actions involve moving around in the space, eating the food or the poison, and avoiding or killing the
predators. While such models have a certain intuitive appeal, and have led to deep insights about
the evolution of behavior, it is often unclear the degree to which details of the models inuence
the results of evolutionary simulations involving those models. We developed the abstract world
model presented here so that we could systematically explore such issues by varying world models
and agent architectures. We can, for example, characterize di�erent worlds in terms of measures of
di�culty, and see how the characterization of the di�culty of a world inuences how well di�erent
agent architectures can evolve to behave in it, as well as how learning and evolution interact in
that world.

3.1 A World Model

In our model, a world is characterized as a set E of environments, a set A of actions available
to an agent in that world, and two functions:

physics (E �A) ! E

�tness (E) ! R

The physics function takes an environment{action pair to the environment that results from
performing the given action in the given environment. The �tness function takes an environment
to a real number representing the �tness increment due to being in that environment. In general,
both of these functions could be stochastic, though we focus on deterministic (and very simple)
worlds in this paper.

Intuitively, an animal's actions can a�ect the external world as well as its internal state (for
example, by eating something). In our model, we do not explicitly di�erentiate between the internal
and external environments of an agent. There should be no way, a priori, for the agent to determine
which aspects of the environment a�ect �tness. Providing an explicit delineation of the agent's body



3.2 Three Worlds 5

from the rest of the environment would constitute a strong clue as to which environmental features
are relevant to �tness.

Despite its highly abstract nature, this framework can model many of the types of worlds used in
other simulations of the evolution of behavior. For example, environment states may be interpreted
as positions of the agent on a grid, together with the presence of food, predators, and other items,
and perhaps features like the health of the agent. Actions can be interpreted as motion on the grid,
or as ingesting items, each with �tness consequences that depend on the environment in which it
is performed.

3.2 Three Worlds

Each of the three simple worlds we used in our experiments has sixteen di�erent environment states
and four actions. The physics and �tness functions of the worlds are speci�ed in �gure 1, and are
presented in tabular form in table 1.

The physics function of the world count-ip is obtained by inverting a bit in the binary
representation of the environment's number; the bit that is ipped depends on the action chosen.
The �tness function of the count-ip world depends on the number of 1's in the binary representation
of the environment's number. If the number of 1's is 3 or 4, the �tness of the state is �1. If the
number of 1's is 2, the �tness of the state is +1. Otherwise, the �tness of the state is 0. This world
is designed to be relatively easy for a neural network to master | a good action strategy in this
world would be to count the number of 1's in the current environment; If that number is low, an
action that ips a 0 to 1 should be performed; If the number of 1's is high, a 1 should be ipped
to a 0. (More precise characterizations of the \di�culty" of the worlds will be described shortly.)

The physics function of the world mod-inc is obtained by adding the number of the action
to the number of the current environment and taking the result modulus the total number of
environment states. The �tness function of mod-inc is obtained by computing the number of the
state modulus 3 and subtracting 1 from the result. This world is designed to be relatively di�cult,
as both the physics and �tness functions for this world involve computations in binary arithmetic.

The world small-world is designed to have relatively simple �tness and physics functions.
Both functions have short cycles (modulus 3 and modulus 4). However the composition of the two
functions is relatively di�cult because the two cycles are out of phase.

3.3 Di�culty Measures

To characterize the di�culty of worlds quantitatively, we consider the task of learning either the
physics function of the world, or the �tness function of the world, or the function from an environ-
ment state to the best available action in that state (i.e., the action that leads to the state with
the highest �tness). We would expect the di�culty of these learning tasks to correlate with the
unpredictability of the functions to be learned. Intuitively, if similar environments have similar
�tness values, or if the actions performed in similar environments lead to environments that are
similar, it ought to be relatively easy for the agents to develop adaptive behaviors for those worlds.

To make this intuition precise, we need a way to quantify the \di�erence" between environment
states. Because of its abstractness, our model imposes no particular di�erence metric. Since the
binary representation of the environment state number is used as input to the neural networks in
our evolutionary simulations, we use the Hamming distance between the two state numbers (the
number of bits where they di�er) as a measure of the di�erence between the states. Other distance
metrics, if they were appropriate for a given simulations, could be used in our measures of the
di�culty of worlds.



6 3 WORLDS

For all worlds:

E = f0; 1; 2; : : : ; 15g

A = f0; 1; 2; 3g

Let e 2 E and a 2 A,

count-ip

physics (e; a) = e
 2a

�tness (e) =

8><
>:
�1 if

P
ei = 3 or 4

0 if
P
ei = 0 or 1

+1 if
P
ei = 2


 is the bitwise exclusive{or operator;
ei are the bits of state e.

mod-inc

physics (e; a) = (e+ a) mod 16
�tness (e) = (e mod 3)� 1

small-world

physics (e; a) = (e+ ((e+ a) mod 3) + 1) mod 16

�tness (e) =

8><
>:
�1 if (e mod 4) = 1
0 if (e mod 4) = 2 or 3
+1 if (e mod 4) = 0

Figure 1: Speci�cation of the worlds used to model the evolution of behavior.



7

We de�ne the following three di�culty measures:

The �tness di�culty of a world is the root mean square average of the di�erence between the
�tness values of each pair of environments divided by the distance between the environments:

vuuut 1

jEj(jEj � 1)

X
ei

X
ej 6=ei

 
�tness(ei)� �tness(ej)

H[ei; ej ]

!
2

(1)

where jEj is the number of di�erent environments, and H[ei; ej ] is the Hamming distance between
the state numbers ei and ej . In a world with low �tness di�culty, one can often accurately generalize
from partial knowledge of the �tness function to values for states that haven't been seen yet.

The physics di�culty of an environment state is de�ned as the average of the distances
between all pairs of states reachable from the given state in one action. The physics di�culty of a
world is the average of the physics di�culties of all of its states:

1

jEj

X
e

0
@ 1

jAj(jAj � 1)

X
ai

X
aj 6=ai

H[physics(e; ai); physics(e; aj)]

1
A (2)

where jAj is the number of actions. In a world with low physics di�culty, most of the actions
performed in most states lead to similar environments.

The action di�culty of an environment state is the root mean square average of the di�erence
between the �tness values of all of the states reached from that state in one action. The action
di�culty of a world is the average of the action di�culties of all its states:

1

jEj

X
e

vuut 1

jAj(jAj � 1)

X
ai

X
aj 6=ai

[�tness(physics(e; ai))� �tness(physics(e; aj))]
2 (3)

The action di�culty takes into account both the physics and �tness functions of the world, and
measures the degree to which it is important to �nd the right action in each state. If this value is
high, it means that there are lots of states for which one or more of the outcomes has a higher or
lower �tness value than the alternatives. Note that this measure does not require a notion of the
distance between states.

The di�culty measures for the worlds we used are given in table 2. The worlds count-ip
and mod-inc have physics and �tness functions of relatively equal di�culty, but count-ip's action
di�culty is much less than that of mod-inc. In small-world, the physics and �tness functions alone
are relatively easy, but the action di�culty of small-world is intermediate between that of count-ip
and mod-inc. The progress of evolution of agents in these worlds will be inuenced by how well
the agents' architectures handle these di�erences.

4 Agent Architectures

The agents that populate our simulated worlds each consist of one or more neural networks. All
of the networks contain three layers and are fully-connected, and each network uses the logistic
activation function for all its nodes. (See Haykin, 1994; chapter 6.) The agents also incorporate
mechanisms for determining which action to perform in a given environment state and, in some of
the architectures described below, mechanisms for learning.



8 4 AGENT ARCHITECTURES

count-ip

env �t a0 a1 a2 a3

0 0 1 2 4 8
1 0 0 3 5 9
2 0 3 0 6 10
3 1 2 1 7 11
4 0 5 6 0 12
5 1 4 7 1 13
6 1 7 4 2 14
7 -1 6 5 3 15
8 0 9 10 12 0
9 1 8 11 13 1

10 1 11 8 14 2
11 -1 10 9 15 3
12 1 13 14 8 4
13 -1 12 15 9 5
14 -1 15 12 10 6
15 -1 14 13 11 7

mod-inc

env �t a0 a1 a2 a3

0 -1 0 1 2 3
1 0 1 2 3 4
2 1 2 3 4 5
3 -1 3 4 5 6
4 0 4 5 6 7
5 1 5 6 7 8
6 -1 6 7 8 9
7 0 7 8 9 10
8 1 8 9 10 11
9 -1 9 10 11 12

10 0 10 11 12 13
11 1 11 12 13 14
12 -1 12 13 14 15
13 0 13 14 15 0
14 1 14 15 0 1
15 -1 15 0 1 2

small-world

env �t a0 a1 a2 a3

0 1 1 2 3 1
1 -1 3 4 2 3
2 0 5 3 4 5
3 0 4 5 6 4
4 1 6 7 5 6
5 -1 8 6 7 8
6 0 7 8 9 7
7 0 9 10 8 9
8 1 11 9 10 11
9 -1 10 11 12 10

10 0 12 13 11 12
11 0 14 12 13 14
12 1 13 14 15 13
13 -1 15 0 14 15
14 0 1 15 0 1
15 0 0 1 2 0

Table 1: Physics and �tness functions of the worlds used to model the evolution of behavior. The
columns headed env list the environment states. The columns headed �t give the value of the �tness
increment for each environment. The columns a0, a1, a2 and a3 indicate the environment that
results from performing the corresponding action in the given environment. Thus in the count-ip
world, the �tness of state 3 is 1, and performing action 3 in state 3 results in state 11.

world �tness physics action

count-ip 0.57 1.00 0.59
mod-inc 0.60 0.98 0.92
small-world 0.42 0.76 0.73

Table 2: Di�culty values for the three worlds.



4.1 FF-Innate 9

A neural network's behavior is determined by the numerical values of the connection weights
between its nodes. Connection weight values appropriate for a given computation may be com-
puted by a number of di�erent methods, including backpropagation (Rumelhart, et al., 1986) and
evolutionary simulations. The latter approach has been explored by Montanta and Davis (1989),
Fogel, et al., (1990) and Whitley, et al., (1990). Neural networks are a useful tool for modeling
the interaction between evolution and learning because they allow the combination of these two
methods for determining connection weight values (Chalmers, 1991; Belew, et al., 1991).

In each time step of its interaction with a world, an agent receives as input a representation of the
current environment state as a binary number. It then produces as output a binary representation
of one of the possible actions for the world. The physics function of the world determines which
environment state occurs next. The value of the �tness function applied to the new environment
state is added to a running total. If the agent's architecture includes a learning component, it will
modify the weights of one of the agent's networks. This process then repeats in a new environment.
After some predetermined number of interactions, the total �tness value accumulated by the agent
is divided by the number of interactions, and the resultant average is recorded.

For agents that do not include a learning component (the \innate" architectures below), each
agent is exposed to each environment state once; we shall refer to this as one epoch of interactions.
One epoch is enough to assess the �tness of an agent without a learning component because its
behavior will be the same each time it sees the same state. For agents that do include a learning
component, the agents interact with each environment state for several hundred epochs. Since the
�tness recorded for an agent is the average over all of its actions, the number of epochs the agent
experiences doesn't by itself reduce an agent's �tness. However, those agents that must spend time
learning to perform well will su�er a penalty compared with those agents that require no learning.

4.1 FF-Innate

The �-innate agent architecture, shown in �gure 2, contains a single feed-forward neural network.
It consists of three layers of nodes, with four nodes in the input layer, six in the hidden layer, and
two nodes in the output layer.

A binary representation of the environment state is given to the net as input. Activation values
are propagated forward through the network, and the resultant output activation values are used
to determine which action to perform. For each output node, if its activation value is greater than
0:5, the corresponding bit in the action's number is 1, otherwise it is 0.1 The resulting binary
number is interpreted as the action.

This architecture does not include a learning component. It is used to explore the evolution of
simple \stimulus-response" instinctual action.

4.2 FF-Learn

The �-learn architecture, shown in �gure 3, incorporates two neural networks. An action net-

work takes as input the binary representation of the environment state, and its outputs are used
to determine the action to perform. A reinforcement network takes as its input the binary
representation of the resultant environment state, and computes a signal that is used to modify
the weights of the action network. The weights of the reinforcement network, on the other hand,
are not changed as the agent interacts with the world. This architecture is similar to the one used
in (Ackley and Littman, 1991), except that it has three layers of nodes. It is also similar to the

1Recall that the activation values of nodes in neural networks that use the logistic activation function always lie
between 0.0 and 1.0.



10 4 AGENT ARCHITECTURES

environment action

Figure 2: The �-innate architecture. Bits representing the environment are given to the net as
input, and resulting output activations are used to determine the action to perform. The weights
of the network are �xed.

environment action

new

environment

reinforcement

signal

Figure 3: The �-learn architecture. The action network (top) is used to select actions, based on
input from the environment. The output units are shaped like a pair of dice to signify that their
values are interpreted stochastically. The reinforcement network (bottom) computes a signal from
the resultant environment. This signal is used to direct the modi�cation of the weights of the action
network by means of a reinforcement learning algorithm (signi�ed by a fuzzy bar). The weights of
the reinforcement network are �xed.



4
.2

F
F
-L
ea
rn

11

0.0

0.2

0.4

0.6

0.8

1.00.0
0.2

0.4
0.6

0.8
1.0

Stretched activation

A
ctivation

F
igu

re
4:

T
h
e
e�
ect

of
th
e
stretch

factor
on

activation
valu

es.
V
alu

es
of
th
e
ex
p
ression

in
eq
u
ation

4
are

p
lotted

w
ith

�
=
5.

\ad
ap
tive

h
eu
ristic

critic"
arch

itectu
re

em
p
loyed

b
y
(B
arto,

et
al.,

1990),
ex
cep

t
th
at

th
eir

\critic"
is
train

ed
d
irectly,

w
h
ereas

ou
r
rein

forcem
en
t
n
etw

ork
evolves.

T
h
e
activation

valu
es

of
th
e
ou
tp
u
t
layer

of
th
e
action

n
etw

ork
are

in
terp

reted
sto

ch
astically

to
d
eterm

in
e
w
h
ich

action
to

p
erform

.
F
or

each
ou
tp
u
t
u
n
it,

let
�
i
b
e
th
e
valu

e
of

a
ran

d
om

variab
le

u
n
iform

ly
d
istrib

u
ted

b
etw

een
0.0

an
d
1.0.

L
et

o
i
b
e
th
e
activation

valu
e
of

th
e
ou
tp
u
t
u
n
it.

T
h
e

corresp
on
d
in
g
b
it
in

th
e
action

ch
osen

is
1
if:o

i �

o
i �
+
(1
�
o
i )
�
>
�
i

(4)

an
d
is
0
oth

erw
ise.

T
h
e
q
u
an
tity

�
is
a
n
u
m
erical

\stretch
factor".

F
or

ou
r
ex
p
erim

en
ts,

�
=
5.

In
terp

retin
g
th
e
ou
tp
u
ts

th
is
w
ay,

rath
er

th
an

w
ith

th
e
sim

p
le
th
resh

old
in
g
fu
n
ction

u
sed

in
th
e
�
-in

n
ate

arch
itectu

re,
h
as

th
e
con

seq
u
en
ce

th
at

if
ou
tp
u
t
activation

s
are

n
ear

0.5,
th
e
b
its

gen
erated

(an
d
h
en
ce

th
e
action

s
p
erform

ed
)
are

essen
tially

ran
d
om

.
T
h
is

allow
s
th
e
agen

t
to

ex
p
lore

altern
ative

action
s
early

in
its

in
teraction

s
w
ith

th
e
w
orld

.
A
s
th
e
action

n
etw

ork
is
train

ed
,

its
ou
tp
u
t
activation

s
w
ill

ten
d
to

d
iverge

from
0.5

tow
ard

s
eith

er
1.0

or
0.0.

T
h
e
stretch

factor
accen

tu
ates

th
is
d
ivergen

ce
an
d
m
akes

th
e
agen

t's
b
eh
av
ior

m
ore

d
eterm

in
istic.

F
or

ex
am

p
le
w
ith

�
=

5,
an

ou
tp
u
t
activation

of
0.6

h
as

a
0.88

ch
an
ce

of
b
ein

g
in
terp

reted
as

a
1.0.

A
p
lot

of
th
e

e�
ect

of
th
e
stretch

factor
on

activation
valu

es
is
sh
ow

n
in

�
gu
re

4

A
fter

an
action

is
gen

erated
,
th
e
n
ew

en
v
iron

m
en
t
is
fed

in
to

th
e
rein

forcem
en
t
n
etw

ork
,
w
h
ich

com
p
u
tes

a
sin

gle
ou
tp
u
t.
T
h
is
sign

al
is
u
sed

to
d
irect

th
e
m
o
d
i�
cation

of
th
e
w
eigh

ts
of
th
e
action

n
etw

ork
accord

in
g
to

th
e
\com

p
lem

en
tary

rein
forcem

en
t
b
ack

-p
rop

agation
"
(C
R
B
P
)
algorith

m
d
escrib

ed
b
y
(A

ck
ley

an
d
L
ittm

an
,
1990).

C
R
B
P

can
b
e
u
sed

to
train

n
etw

ork
s
w
h
ose

ou
tp
u
t

u
n
its

are
in
terp

reted
sto

ch
astically,

w
h
en

th
e
on
ly

in
form

ation
availab

le
is
w
h
eth

er
th
e
ou
tp
u
ts

are
correct

(in
w
h
atever

sen
se

is
ap
p
rop

riate
to

th
e
d
om

ain
)
or

n
ot.

If
th
e
n
etw

ork
's
ou
tp
u
ts

are
correct,

th
e
w
eigh

ts
of

th
e
n
etw

ork
are

m
o
d
i�
ed

to
in
crease

th
e
likelih

o
o
d
th
at

th
e
n
etw

ork
w
ill

gen
erate

th
e
sam

e
ou
tp
u
t
w
h
en

it
sees

th
e
sam

e
in
p
u
t.

If
th
e
n
etw

ork
's
ou
tp
u
ts

are
n
ot

correct,
th
e
w
eigh

ts
are

m
o
d
i�
ed

to
d
ecrease

th
e
ch
an
ce

th
at

it
w
ill

gen
erate

th
e
sam

e
ou
tp
u
ts

w
h
en

it
sees

th
e
sam

e
in
p
u
t,
b
y
train

in
g
th
e
n
etw

ork
tow

ard
s
th
e
com

p
lem

en
t
of
th
e
in
correct

ou
tp
u
t.
T
h
e

action
n
etw

ork
's
ou
tp
u
t
is
taken

as
correct

if
th
e
rein

forcem
en
t
n
etw

ork
's
ou
tp
u
t
on

th
e
su
b
seq

u
en
t

en
v
iron

m
en
t
state

is
greater

th
an

0.5.
W
e
u
se

a
learn

in
g
rate

of
1.0

for
correct

ou
tp
u
ts,

an
d
0.1

for



12 4 AGENT ARCHITECTURES

incorrect outputs.

Of course \correct" outputs according to the reinforcement network do not necessarily corre-
spond to actions which lead to states of high �tness. The agents never receive any information at
all about the �tness values of the states they encounter. The only way that learning could improve
an agent's performance, therefore, is if its reinforcement network's outputs are correlated with the
�tness values of the environment states as a consequence of evolutionary selection.

4.3 RP-Innate

The rp-innate architecture, illustrated in �gure 5, is another agent architecture for generating
innate actions. A single feed-forward prediction network takes as input a representation of an
environment and an action, and generates a single output value. In a given environment, the action
is chosen that, when presented as input to the network along with the environment, results in the
maximal activation value of the output node.2

The intuition behind this architecture, and the versions of it that incorporate learning, is that
the single output value can be thought of as the predicted value of a reinforcement signal (the name
\rp" stands for \reinforcement prediction"). The agent is thus choosing the action for which the
predicted reinforcement is highest. In this architecture there is no actual reinforcement signal to
predict; such a signal appears in the next architecture we describe.

4.4 RP-Learn

Learning is added to the reinforcement prediction method of selecting actions in the rp-learn
architecture, illustrated in �gure 6. The prediction network takes as input a representation of the
current environment and possible actions. For a given environment, each action i results in an
activation value of oi on the output node. For each action, a random variable �i is taken from
a uniform distribution between 0.0 and oi

�, and the action for which �i is maximum is chosen.
The same stretch factor � = 5 used in the �-learn architecture is used in this one. As in that
architecture, the stretch factor enables the agents to explore the domain in their early interactions,
while allowing their behavior to become more deterministic as a result of learning.

After the action is performed, a representation of the resultant environment is fed into the
reinforcement network, which computes a single output value. This value is then used to train the
prediction network's output with the backpropagation algorithm. A learning rate of 1.0 is used.
Thus the prediction network is trained to more accurately predict the output of the reinforcement
network. To the degree that the reinforcement network's outputs are correlated with the �tness
values of environment states, learning will cause the agent to select those actions leading to states
with high �tness values.

4.5 Model-Learn

The model-learn architecture, shown in �gure 7, also combines reinforcement prediction and
learning. In this architecture, a model network takes as inputs both environments and actions.
Its output is fed into a reinforcement network which produce a single output value.

2As there are only four actions in the worlds we examine, the action is selected by iterating over all of them.
If there were too many actions for this method to be practical, the maximal action inputs could be located by a
gradient-ascent search. The gradient of a feed-forward network's output as a function of its input activations is
computed by setting the error value of the output unit to 1.0, and then applying the backpropagation algorithm to
the network, with a learning rate of 0.0. The error value that is thus propagated to an input node equals the gradient
of the network's output with respect to that node's value.



4.5 Model-Learn 13

environment

action
Iterate

Max

Figure 5: The rp-innate architecture. The network takes as input binary representations of both the
environment and potential actions, and computes a single output value. For a given environment,
the action chosen is the one for which the output value is maximum. The weights of the network
are �xed.

environment

action

new

environment

Iterate

Max

Figure 6: The rp-learn architecture. The prediction network (top) iterates over possible actions in a
given environment to locate the one which yields the maximum output of the network. The output
unit is interpreted stochastically. This action is then performed, and the resultant environment is
presented to the reinforcement network (bottom), whose output is used to train the action network
to generate the same value, with the backpropagation algorithm (signi�ed by the small gray circle).
The weights of the reinforcement network are �xed.



14 5 EVOLUTIONARY SIMULATIONS

environment

action
Iterate

Max

new
environment

Figure 7: The model-learn architecture. The model network (left), takes representations of the
current environment and actions as input and produces as output a representation of an environ-
ment. The output values of the model network are fed into the reinforcement network (right), which
generates a single output value. Actions are selected by choosing the one for which the output of
the reinforcement network (interpreted stochastically) is maximal. The model network is trained
by using the environment that results from the action performed. The weights of the reinforcement
network are �xed.

Actions for a given environment are selected by iterating over the possible actions. For each
action, the corresponding model network outputs are copied directly into the reinforcement network
inputs. The action is then selected for which the reinforcement network yields the maximum output,
using the same stochastic interpretation procedure as in the rp-learn architecture, again with the
stretch factor � = 5.

After the action is performed, a representation of the resultant environment is used to train
the model network with the backpropagation algorithm, using a learning rate of 1.0. Thus the
model network will learn the physics function of the world. If the reinforcement network's output
is correlated with the �tness values of environment states, the agent will be able to better select
bene�cial actions as it improves its predictions of the next states.

We also explore a model-innate agent architecture, which is identical to the one pictured in
�gure 7 except that the weights of both networks are �xed, and the output of the reinforcement
network is not interpreted stochastically.

In summary, we investigate six di�erent agent architectures. Three of the architectures contain
learning components, and three do not. The architectures also di�er in how actions are selected,
either as the output of a feed-forward network, or as the result of determining which action input
leads to the maximum value of a network's single output. A further distinction involves the learning
components. One architecture, �-learn, uses reinforcement training on its action network, based
on its reinforcement network's evaluation of the resultant states. The rp-learn architecture uses
backpropagation to train its prediction network to duplicate the output of its reinforcement network.
Finally, the model-learn architecture uses backpropagation to train its model network to accurately
predict the consequences of its actions.

5 Evolutionary Simulations

Each of our simulations is begun by selecting one of the worlds illustrated in table 1, and one of
the agent architectures described above. An initial population of 60 agents with that architecture
is created. For each of its networks, each agent possesses a vector of numbers equal in length to
the total number of connection weights of that network. This set of vectors will be referred to as



15

the agent's initial weights. The values of the initial weights of the agents of the �rst generation
of each simulation are generated randomly from a uniform distribution between +2:5 and �2:5.

In each generation of a simulation, the connection weights of each agent's networks are assigned
the values from the agent's initial weight vectors. The agent then interacts with the world for some
number of epochs, as described in section 3.

After all of the agents interact with the world, a new population of agents is constructed. The
values of the initial weight vectors of the agents in the new population are obtained from the initial
weight values of selected members of the current population. For most of the new population, the
weights are obtained by selecting an agent from the current generation with a relative probability
given by the �tness values the agents achieve in their interactions with the world. The initial
weights of the selected agent are copied to the new agent, and are then modi�ed by adding to each
value a random number normally distributed with a standard deviation of 0:5. This modi�cation
simulates the e�ects of mutations. In agents with two networks, the initial weights of both networks
of the new agent are obtained from the same agent 75% of the time. In the remaining 25% of the
cases, two agents are selected, and the new agent gets one vector of initial weights from each agent.
This limited form of crossover allows for the possibility that the initial weights of the di�erent
networks in an agent could have separable e�ects. Crossover is not allowed to combine the weights
of single networks because a network's performance depends on non-local patterns of its connection
weights. To maintain some diversity in the population, 25% of the new population's initial weights
are copied exactly from randomly selected members of the current population.

This two-step process of interacting with the world and constructing a new population is then
repeated for several hundred generations. Note that although the weights of an agent's networks
may change as it interacts with the world, only the values of its initial weight vectors will be
transmitted to the next generation.

The speci�c choices we made for the numerical parameters described above are, for the most
part, the result of trial and error. The parameters we used are chosen because they yield a high
rate of increase in �tness in all of our simulations. With the exception of the mutation parameter,
qualitative aspects of the results described below are una�ected by using di�erent values. If the
mutation value is too high (greater than 1.0 or so), o�spring of highly �t networks are so unlike
their parents that they have little �tness advantage over randomly initialized networks. With the
mutation value too low (much less than 0.1), the lack of diversity in the population can lead to
premature convergence of the simulations.

Our evolutionary simulations are most similar to the evolution strategies approach of Schwefel
(see B�ack and Schwefel, 1993), and the evolutionary programming approach of Fogel (1992), in
which inherited information is represented by vectors of real numbers. This representation is more
useful for specifying the initial weights of neural networks than that used by the genetic algorithm
(Holland, 1975; Goldberg, 1989), in which inherited information is represented by strings of binary
digits.

6 Results

In this section, we describe the results of our simulations. We �rst compare runs involving the innate
architectures in all three worlds and �nd that the simulations roughly conform to predictions based
on our di�culty measures. Also, the performance of the rp-innate agents is found to be somewhat
better than the other two architectures in all three worlds.

We then consider how the learning architectures perform in the di�erent worlds with di�ering
amounts of learning. We �nd that only in small-world does learning reliably improve the perfor-



16 6 RESULTS

mance of the agents. The simulations involving small-world also show an e�ect of the sort Baldwin
describes, namely that the agents' innate behavior improves as evolution proceeds. Examination of
the reinforcement networks in evolved agents shows that their outputs are not perfectly correlated
with the �tness of environment states, but are distorted in a useful way.

Finally, we describe simulations of the model-learn architecture, for which learning is also ben-
e�cial in small-world. Even though the model networks are trained directly on the physics function
of the world they inhabit, the networks acquire a distorted version of the physics function. Rather
than degrading the agent's performance, however, the distortions in the model network turn out to
be useful in guiding actions.

In �gures 8, 9, and 10, results from a number of simulations are presented. Each plot shows
the average from ten runs with a speci�c world and agent architecture. Although some runs lasted
1000 generations, only the �rst 200 generations are shown, as these best illustrate the di�erences
between the various architectures in the di�erent worlds. Statistics of these runs are summarized
in table 3.

6.1 Innate Architectures

The top row of �gure 8 shows the results of a number of evolutionary simulations of the �-innate
architecture in the three worlds. As can be seen, in all cases the populations are able to improve
over the performance of the initial populations as a result of evolution. The populations reached the
highest level of average �tness in the count-ip world, consistent with its having the lowest action
di�culty of the three worlds. Though mod-inc has a higher action di�culty than small-world,
populations in mod-inc reach a slightly higher �tness value than do those in small-world.

The di�erence between the average �tness at generation 200 of the �-innate agents in count-ip
and mod-inc is signi�cant3 as is the di�erence between the average �tness at generation 200 of
the �-innate agents in count-ip and small-world. The di�erence between the average �tness at
generation 200 of the �-innate agents in mod-inc and small-world is not signi�cant.

The top row of �gure 9 shows simulations of the rp-innate architecture in the three worlds.
Again the populations do best in count-ip. The di�erences between the performances between
count-ip and mod-inc, and between count-ip and small-world, are both signi�cant. The di�erence
in performance of rp-innate agents in mod-inc and small-world is not signi�cant.

The top row of �gure 10 shows shows simulations of the model-innate architecture in the three
worlds. The results are consistent with those of the other two innate architectures. The di�erences
between the performances between count-ip and mod-inc, and between count-ip and small-world,
are both signi�cant. The di�erence in performance of model-innate agents in mod-inc and small-
world is not signi�cant.

Populations of rp-innate agents perform signi�cantly better than model-innate agents in all
three worlds. The performance of rp-innate agents is signi�cantly better than those of �-innate
in mod-inc and small-world, but not in count-ip. The �-innate agents signi�cantly outperform
model-innate agents only in mod-inc.

The rp-innate architecture can do better than the �-innate architecture because its method of
choosing which action to perform is built in. It does not even need to be especially accurate in

3In this and the following statistical comparisons, the results from two sets of ten runs are compared. A t{
distribution for independent samples with eighteen degrees of freedom is used for a two-tailed comparison of the
means of the average �tness values at the last generation of the runs. Unless otherwise indicated, di�erences whose
con�dence level p < :005 will be referred to as \signi�cant," and di�erences whose con�dence level p > :02 will be
referred to as \not signi�cant." All of the data used for these comparisons are presented in table 3.



6.1 Innate Architectures 17

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

ff-innate; count-flip

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200
F

itn
es

s

Generations

ff-innate; mod-inc

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

ff-innate; small

(a) (b) (c)

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

ff-learn; count-flip; 100

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

ff-learn; mod-inc; 100

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

ff-learn; small; 100

(d) (e) (f)

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

ff-learn; count-flip; 500

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

ff-learn; mod-inc; 500

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

ff-learn; small; 500

(g) (h) (i)

Figure 8: Simulation runs of the �-innate and �-learn architectures. The mean value over ten runs
of the average �tness of the members of the population at each generation is plotted, with bars
indicating the standard deviation. For the simulations of �-learn agents, the average correlation
between the agent's reinforcement network outputs and �tness values of environment states is
plotted with dotted lines.



18 6 RESULTS

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

rp-innate; count-flip

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200
F

itn
es

s

Generations

rp-innate; mod-inc

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

rp-innate; small

(a) (b) (c)

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

rp-learn; count-flip; 100

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

rp-learn; mod-inc; 100

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

rp-learn; small; 100

(d) (e) (f)

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

rp-learn; count-flip; 500

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

rp-learn; mod-inc; 500

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

rp-learn; small; 500

(g) (h) (i)

Figure 9: Simulation runs of the rp-innate and rp-learn architectures. The mean value over ten
runs of the average �tness of the members of the population at each generation is plotted, with bars
indicating the standard deviation. For the simulations of rp-learn agents, the average correlation
between the agent's reinforcement network outputs and �tness values of environment states is
plotted with dotted lines.



6.1 Innate Architectures 19

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

model-innate; count-flip

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200
F

itn
es

s
Generations

model-innate; mod-inc

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

model-innate; small

(a) (b) (c)

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

model-learn; count-flip; 100

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

model-learn; mod-inc; 100

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

model-learn; small; 100

(d) (e) (f)

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

model-learn; count-flip; 500

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

model-learn; mod-inc; 500

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

model-learn; small; 500

(g) (h) (i)

Figure 10: Simulation runs of the model-innate and model-learn architectures. The mean value
over ten runs of the average �tness of the members of the population at each generation is plotted
with solid lines, with bars indicating the standard deviation. The average correlation between
the agent's reinforcement network outputs and �tness values of environment states is plotted with
dotted lines. The average error between the agent's model network output for a given state and
action, and the bits of the resultant environment state, is plotted with dashed lines.



20 6 RESULTS

�-innate; count-ip
50 100 150 200

av .449 .554 .666 .685
sd .042 .074 .085 .071

�-innate; mod-inc
50 100 150 200

av .192 .305 .374 .447
sd .052 .069 .061 .081

�-innate; small
50 100 150 200

av .179 .307 .381 .441
sd .039 .053 .042 .037

�-learn; count-ip; 100
50 100 150 200

av .390 .456 .511 .598
sd .040 .059 .052 .079

�-learn; mod-inc; 100
50 100 150 200

av .191 .345 .437 .461
sd .065 .067 .060 .070

�-learn; small; 100
50 100 150 200

av .315 .448 .536 .576
sd .041 .083 .072 .069

�-learn; count-ip; 500
50 100 150 200

av .364 .491 .566 .627
sd .052 .050 .075 .032

�-learn; mod-inc; 500
50 100 150 200

av .220 .379 .448 .499
sd .082 .089 .080 .087

�-learn; small; 500
50 100 150 200

av .408 .523 .572 .632
sd .063 .054 .054 .063

rp-innate; count-ip
50 100 150 200

av .426 .636 .684 .771
sd .084 .087 .076 .062

rp-innate; mod-inc
50 100 150 200

av .223 .403 .506 .594
sd .074 .089 .056 .062

rp-innate; small
50 100 150 200

av .252 .400 .466 .536
sd .083 .088 .078 .081

rp-learn; count-ip; 100
50 100 150 200

av .461 .584 .655 .699
sd .051 .043 .059 .058

rp-learn; mod-inc; 100
50 100 150 200

av .212 .364 .459 .520
sd .064 .076 .094 .086

rp-learn; small; 100
50 100 150 200

av .217 .346 .438 .517
sd .081 .072 .058 .104

rp-learn; count-ip; 500
50 100 150 200

av .327 .446 .544 .616
sd .050 .067 .071 .056

rp-learn; mod-inc; 500
50 100 150 200

av .212 .340 .418 .430
sd .080 .090 .088 .107

rp-learn; small; 500
50 100 150 200

av .393 .472 .518 .545
sd .041 .046 .061 .066

model-innate; count-ip
50 100 150 200

av .227 .393 .453 .534
sd .077 .098 .076 .119

model-innate; mod-inc
50 100 150 200

av .085 .179 .266 .333
sd .048 .085 .108 .091

model-innate; small
50 100 150 200

av .092 .220 .288 .383
sd .044 .078 .101 .088

model-learn; count-ip; 100
50 100 150 200

av .275 .342 .395 .429
sd .096 .076 .057 .078

model-learn; mod-inc; 100
50 100 150 200

av .086 .145 .213 .287
sd .061 .058 .091 .065

model-learn; small; 100
50 100 150 200

av .310 .321 .395 .452
sd .042 .061 .075 .083

model-learn; count-ip; 500
50 100 150 200

av .332 .340 .428 .479
sd .042 .051 .062 .050

model-learn; mod-inc; 500
50 100 150 200

av .140 .190 .218 .294
sd .030 .044 .045 .064

model-learn; small; 500
50 100 150 200

av .349 .419 .479 .545
sd .039 .069 .082 .113

Table 3: Summary of the simulation runs. Each table contains the mean population �tness (av)
and its standard deviation (sd) at the indicated generation, for ten simulation runs of a speci�c
architecture, world, and number of epochs of interaction.



6.2 Learning Architectures 21

predicting the �tness consequences of actions, so long as the ordering of their relative �tness values
is correct. The �-innate agent, by contrast, must acquire a mapping from each environment state
to the action to perform therein.

The inferiority of model-innate relative to the other two architectures is probably a result of
its using an additional network. This addition requires that about 35% more weights be speci�ed.
The evolutionary search thus takes place in a signi�cantly higher-dimensional space than that of
the other two innate networks. It is therefore slower, even though it uses the same method of action
selection as rp-innate.

6.2 Learning Architectures

The bottom two rows of �gures 8, 9 and 10 show simulations of the three learning architectures,
with either 100 or 500 epochs of interactions, in each of the three worlds.

For the �-learn agents in count-ip, 100 epochs of learning leads to a slight (p < :05) decrease
in performance relative to the innate architecture. The di�erence between the innate architecture
and the learning version with 500 epochs of interaction is not signi�cant. In mod-inc, learning for
either 100 or 500 epochs of interaction does not result in a signi�cant di�erence between the �-learn
and the �-innate architectures.

Like the �-learn agents, the rp-learn agents perform slightly worse than their innate counterparts
in count-ip with 100 epochs of interaction, but the di�erence is signi�cant (p < :001) with 500
epochs of interaction. This also happens in mod-inc. In small-world, learning has no signi�cant e�ect
on the performance of rp-learn agents. For the model-learn agents, learning leads to a signi�cant
improvement in performance only for small-world with 500 epochs of interaction.

Part of the reason that the learning architectures fail to perform better than the innate ar-
chitectures has to do with the inherent disadvantage already mentioned: since �tness is assessed
after each action, those agents whose innate behaviors are adaptive will have higher �tness than
agents that take some time to learn, even if the learning agents ultimately achieve the same level of
performance. The fact that the learning architectures perform approximately as well as the innate
ones in some of the worlds suggests that learning is having a bene�cial e�ect; however, this e�ect
is not large enough to overcome the disadvantage inherent in the architectures.

Learning is bene�cial only in small-world because its �tness di�culty and physics di�culty are
low relative to its action di�culty. (See table 2.) Of these three measures, the action di�culty
provides the best measure of the overall di�culty of a world, since only the action di�culty incor-
porates information from both the physics and the �tness functions. For example, the count-ip
world's action di�culty of 0.59 is relatively low compared to the other two worlds (0.73 for small-
world and 0.92 for mod-inc). The relative simplicity of count-ip explains why most architectures
perform better there than in the other two worlds.

However, high action di�culty does not imply correspondingly high physics and �tness di�-
culties. Judged in terms of action di�culties, the mod-inc world is the most di�cult, and the
count-ip world is the simplest. However, the �tness and physics di�culties of these two worlds
are almost identical (0.57 and 1.0 for count-ip; 0.60 and 0.98 for mod-inc). By contrast, although
small-world's action di�culty lies midway between the action di�culties of the count-ip and mod-
inc worlds, small-world's �tness and physics di�culties (0.42 and 0.76) are considerably lower than
either of the other two worlds.

To evolve adaptive behaviors in mod-inc, an agent must either acquire an accurate reinforcement
network, or good innate action strategies, or both. The high �tness di�culty of the world impedes
progress on the �rst solution; the high action di�culty of the world impedes the second.

The relative simplicity of small world's physics and �tness functions explains why learning is



22 6 RESULTS

bene�cial in this world. Learning allows the agent to separate the problem of survival into two
subtasks. The innate motivation system \learns" via evolution to evaluate the relative �tness of
various environments. This evolved system then allows the agent's learning to focus only upon the
physics of the world. For example, in these agents, evolution can �nd weights for the reinforcement
network to mimic the �tness function, and then the prediction or action network can learn to
generate the appropriate actions. In small-world, but not in the count-ip or mod-inc world, this
decomposition of functions results in an easier task overall, as indicated by the small world's lower
physics and �tness di�culties relative to the action di�culty.

The graphs of the simulations of the learning architectures (�gures 8 d{i, 9 d{i, and 10 d{i),
include plots of the correlation between the output of the reinforcement network, when given as
input a representation of an environment state, and the �tness value of that state. We shall refer
to this value as the reinforcement correlation of an agent.

In the early generations of the simulations, while the reinforcement correlation is low, the agents
whose networks initial weight values encode good action strategies perform best. Since the output
of the reinforcement network is used to train the other network of the �-learn and rp-learn agents,
it would seem that a high reinforcement correlation value is necessary for learning to bene�t an
agent. However, as we shall see, learning can be bene�cial even with a relatively low reinforcement
correlation.

The reinforcement correlation values for the �-learn agents rise early in the simulations but
then level o�. In the count-ip simulations of the �-learn agents (�gure 8 d), with 100 epochs of
interaction, the reinforcement correlation levels o� near 0.25. For the mod-inc world (�gure 8 e),
the reinforcement correlation value reaches 0.4 late in the simulation. In small-world (�gure 8 f),
it reaches 0.6 by generation 50 and improves to just over 0.7 by generation 200. The reinforcement
correlation values do not rise any higher even when the agents are allowed 500 epochs of interaction
in all three worlds.

For the rp-learn agents with 100 epochs of learning, on the other hand, the reinforcement
correlations in count-ip and mod-inc barely attain positive values (�gure 9 d{e). This suggests that,
for these worlds, the rp-learn agents are acquiring innate action strategies and are not bene�ting
from learning at all. Recall that the innate version of this architecture performed best of the three
innate architectures, and performs better than the learning version also. Apparently the superiority
of this architecture in acquiring innate action strategies is manifest even when learning is allowed
to modify its network's weights.

With 500 epochs of interaction (�gure 9 g{i), rp-learn agents acquire a positive reinforcement
correlation value in all three worlds, although their performance is worse than that of rp-innate
agents in all but small-world. This result supports the suggestion that the primary reason for
the improvement in the performance of rp-learn agents is their acquiring innate action strategies.
Learning only inhibits this process.

The fact that reinforcement correlation reaches the highest value in small-world for the �-learn
and model-learn agents is consistent with small-world having the lowest �tness di�culty of the
three (0.42 for small-world, versus 0.57 for count-ip and 0.60 for mod-inc).

The graphs of the model architectures (�gure 10) also include plots of the average root mean
square error between an agent's model network output, when it is given a state and action as input,
and the environment state that results from performing the given action in the given state. This
value shall be referred to as the model error for an agent. The model architectures are based on
the intuition that adaptive behavior might involve having good models of the world. For model-
innate and model-learn agents, this could be accomplished by having the model network accurately



6.2 Learning Architectures 23

model the physics function of the world, and the reinforcement network accurately model the �tness
function of the world. Neither happens in the case of model-innate agents. Their reinforcement
correlation never rises much above zero. Indeed in the count-ip world the average reinforcement
correlation for model-innate agents is negative throughout the simulations. (See �gure 10 a{c.)

In all of the simulations of the model-learn architecture, the agents acquire a positive rein-
forcement correlation. For model-learn agents, however, the reinforcement network is not used for
training but is used to select actions. In model-learn agents, the model network is trained directly
on the new environment that results from performing an action in a given environment. Since the
backpropagation learning algorithm is supposed to reduce error, it is somewhat surprising that in
each run of the model-learn agents, this error actually increases slightly, even while the performance
of the agents improves. This phenomenon will be discussed below.

To explore whether the improvement in performance observed in the simulations of the learning
architectures depends on learning, as opposed to the acquisition of innate responses, we performed
a set of simulation runs in which the weights of the trained networks are not inherited. Instead, the
initial weights of the action networks (in the case of the �-learn agents) or the prediction networks
(in the case of the rp-learn agents) are randomly initialized to values between �2:5 and +2:5 before
the agent interacts with the world for 100 epochs. Thus, the agents cannot acquire innate behaviors
and can improve their performance only as a result of learning. The results are shown in �gure 11.

For the �-learn agents, the lack of inherited weights for their action networks resulted in �tness
values signi�cantly less than agents whose weights are inherited (�gure 8 d{f), even though the
reinforcement correlation rises to about the same level as for the agents with inherited action
network weights. So while learning is important for these agents, so is the ability to acquire innate
adaptive behavior.

For the rp-learn agents, the lack of inherited prediction network weights is even more devas-
tating. Interestingly however, the networks acquire higher reinforcement correlation values than
they do when their prediction network weights are inherited (�gure 9 d{f). Since they cannot ac-
quire innate actions, these agent must improve their performance by acquiring relatively accurate
reinforcement networks.

The fact that learning can improve performance in small-world suggests that one of the e�ects
Baldwin describes might be observed there, namely an improvement in the innate performance
of the agents. Each series in �gure 12 represents the learning pro�le of a di�erent generation of
a simulation, showing how, at a particular generation, the average �tness of the members of a
population changes as a result of learning. A plot of each of the three learning architectures is
shown. In all three simulations, the agents interacted with small-world for 100 epochs.

The data indicate that the members of the �rst generation do not improve at all with learning,
which is not surprising, since their reinforcement networks produce essentially random outputs. By
generation 20, however, the performance of the agents in all three worlds improves as a result of
learning, consistent with the positive reinforcement correlation values for the agents.

In subsequent generations, the agents' performance improves still further with learning, but
the untrained performance of the agents also improves. By generation 400 of the simulation of
the rp-learn agents, for example, the agents' initial performance is better than the performance of
the agents in generation 20 after 100 epochs of learning. What once was mostly learned has now
become largely innate, as Baldwin suggested it would.

Suppose, for example, that an agent has a reinforcement network that is fairly well correlated
with the �tness functions of its world. If the agent's innate action network weights are already
near the values where learning will take them, it will have to spend less time learning than would



24 6 RESULTS

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

ff-learn; count-flip; 100; ni

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

ff-learn; mod-inc; 100; ni

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

ff-learn; small; 100; ni

(a) (b) (c)

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

rp-learn; count-flip; 100; ni

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

rp-learn; mod-inc; 100; ni

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

F
itn

es
s

Generations

rp-learn; small; 100; ni

(d) (e) (f)

Figure 11: Simulation runs of two of the learning architectures, �-learn (top), and rp-learn (bottom),
in the three worlds, without inherited weights of trained networks. The agents have 100 epochs of
interaction with the world.



6.3 Learned Action Strategies 25

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100

F
itn

es
s

Epochs

ff-learn; small; 100

200
150
100
50
20
10
1

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100
Epochs

rp-learn; small; 100

1000
700
400
200
100
20
10
1

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100
Epochs

mod-learn; small; 100

200
150
100
50
20
10
1

Figure 12: Learning pro�les during the evolution of agents in small-world. Each series shows the
average �tness of the members of the population after the indicated number of learning rounds.
Di�erent series show the performance of subsequent generations. The simulation of the rp-learn
agents was continued for 1000 generations.

an agent with randomly initialized action network weights, and will thereby achieve a correspondly
higher overall �tness value. So a population of agents whose reinforcement correlation values are
equally high will be under selective pressure to improve their innate performance. The acquisition
of an innate motivation system (in this case, instantiated in the weights of the agent's reinforcement
network), �rst makes improvement by learning possible, and then reduces its necessity.

6.3 Learned Action Strategies

In the following three subsections, we investigate the behavior of individual agents that emerged in
simulations of the learning architectures.

6.3.1 FF-Learn

Table 4 presents the outputs of the networks of a �-learn agent from the 200th generation of a
simulation in small-world with 100 epochs of interaction, along with a summary of the actions
it performs. Recall that the action network is given as input a representation of the current
environment state, and the output of the agent's action network is interpreted as a binary number,
which is the action performed. (See section 4.2.)

Before learning, the agent's actions aren't very adaptive. It performs the action 0 in most
environment states | even in some states where this action leads to states with �tness �1. In
state 9, though, the naive agent chooses action 2, which leads to state 12, with �tness +1.

After learning, the network has acquired a near-optimal set of responses to the world. In state 0
it chooses action 1, leading to state 3, which has �tness 0, but it thereby avoids performing actions
0 or 3, both of which lead to state 1, with �tness �1. In state 1 it performs action 1, which leads
to state 4, with �tness +1. In every environment state in which a state with �tness of +1 can be
reached, this agent usually chooses an action that does so, except for states 7 and 11, and the agent
is very unlikely to choose an action that leads to a state with �tness �1.

Due the the stochastic interpretation of the action network output bits, however, the agent will
occasionally choose actions that lead to states with �tness values of �1. This could happen in state
7, for example, where the output activation of one of the nodes is 0.863, and therefore could be



26 6 RESULTS

action output
env (innate)

0 0.002 0.068
1 0.000 0.000
2 0.066 0.001
3 0.000 0.000
4 0.002 0.233
5 0.000 0.001
6 0.000 0.082
7 0.000 0.000
8 1.000 0.020
9 0.980 0.009

10 0.980 0.021
11 0.001 0.004
12 0.018 0.266
13 0.134 0.008
14 0.949 0.019
15 0.010 0.007

reinforce
env output

0 1.000
1 0.004
2 0.992
3 0.001
4 1.000
5 0.000
6 0.145
7 0.000
8 1.000
9 0.261

10 1.000
11 0.001
12 0.984
13 0.005
14 0.745
15 0.000

action output
env (learned)

0 0.184 0.932
1 0.000 0.922
2 0.918 0.052
3 0.001 0.103
4 0.440 0.960
5 0.000 0.159
6 0.087 0.909
7 0.000 0.863
8 1.000 0.023
9 0.923 0.008

10 0.991 0.914
11 0.000 0.041
12 0.105 0.888
13 0.000 0.963
14 0.978 0.054
15 0.002 0.093

innate result learned result
env action �tness action �tness

0 0 -1 1 0
1 0 0 1 1
2 0 -1 2 1
3 0 1 0 1
4 0 0 1 0
5 0 1 0 1
6 0 0 1 1
7 0 -1 1 0
8 2 0 2 0
9 2 1 2 1

10 2 0 3 1
11 0 0 0 0
12 0 -1 1 0
13 0 0 1 1
14 2 1 2 1
15 0 1 0 1

small-world

env �t a0 a1 a2 a3

0 1 1 2 3 1
1 -1 3 4 2 3
2 0 5 3 4 5
3 0 4 5 6 4
4 1 6 7 5 6
5 -1 8 6 7 8
6 0 7 8 9 7
7 0 9 10 8 9
8 1 11 9 10 11
9 -1 10 11 12 10

10 0 12 13 11 12
11 0 14 12 13 14
12 1 13 14 15 13
13 -1 15 0 14 15
14 0 1 15 0 1
15 0 0 1 2 0

Table 4: Network outputs and action strategies for a �-learn agent that has evolved in small-world
with 100 epochs of interaction. The table on the top left contains the responses of the agent's action
network before it is trained. For each environment state, the networks output values are shown.
The table in the middle shows the reinforcement network output for each environment state. The
table on the top right shows the responses of the agent's action network after learning. The table
on the bottom left summarizes the agent's innate and learned action strategies. For each state, the
most likely action performed by the network in that state is shown, followed by the �tness of the
environment state that results. The speci�cation of small-world is reproduced from table 1 on the
bottom right.



6.3 Learned Action Strategies 27

interpreted as 0. (Though with the stretch factor � = 5, the chance of this happening is 2� 10�4.)
If both bits are interpreted as 0, the agent will end up in state 9, with �tness �1.

The training of the action network is controlled by the innate reinforcement network, whose
output is also shown in table 4. For each of the environment states that have �tness of +1, the
reinforcement network output is near 1.0, and for each of the states that have a �1 �tness, the
reinforcement network output is near 0.0. Recall from �gure 8 f, however, that the reinforcement
correlation for this type of agent only rises to about 0.7. This is seen in the fact that the reinforce-
ment network has outputs near 1.0 for some environment states whose �tness values are 0, namely
states 2, 10 and 14. The reinforcement network thus trains the action network to choose actions
that lead to those states.

While a state whose �tness values is 0 doesn't provide as much bene�t to an agent as a state with
�tness +1, it is better for the agent to visit states with 0 �tness than states with �1 �tness. The
inaccurate reinforcement network prevents the agent from choosing such actions by over-valuing
some states. For example, from state 12 no state that has a �tness of +1 can be reached. But either
action 0 or 3 leads to state 13, with �tness �1. The reinforcement network, by responding to state
14 as if it had a high �tness, trains the network to choose action 1 in state 12, thus avoiding the two
harmful actions. More examples of how inaccurate reinforcement network outputs can nevertheless
lead to adaptive behavior will be seen below.

6.3.2 RP-Learn

Table 5 presents the network outputs for an rp-learn agent from generation 200 of a simulation in
small-world with 100 epochs of interaction. Recall that rp-learn agents use a network that takes
as input a representation of both an environment state and an action. For a given environment,
the agent chooses an action to perform by determining which action, when given as input to
the prediction network along with the environment state, yields the highest output value. (See
section 4.4.)

For this agent, the innate responses are a bit better than for the �-learn agent examined above.
Though it also might choose action 0 in state 0, leading to state 1, with �tness �1, this agent tends
to choose action 1 in state 1, which leads to state 4, with �tness +1. In state 2 it chooses action 2,
which also leads to state 4. In state 3 it will choose actions 0 or 3, both of which lead to state 4.

Learning enhances these innate responses and modi�es some harmful ones. For example, after
learning the network chooses action 1 in state 0, which leads to state 2, with �tness 0. On the other
hand, no action from state 0 leads to a state with a �tness of +1, and actions 1 and 4, neither of
which the trained agent will likely choose, leads to state 1, with �tness �1.

For environment states 8 and 9, however, learning has no e�ect. Both before and after training,
the prediction network's output is zero for all actions in these two states. The agent will therefore
choose actions randomly in those states, and occasionally will choose action 1 in state 8, leading
to state 9, with �tness �1.

The rp-learn agent's prediction network is trained on the output of its reinforcement network.
The output of this agent's innate reinforcement network is shown in the top center of table 5. Like
the �-learn agent discussed above, this agent's reinforcement network's outputs are not completely
consistent with the �tness values of the states. Indeed the output of this agent's reinforcement
network and the one shown in table 4 are almost identical. As with the �-learn agent, the high
reinforcement outputs for states 2, 10 and 14 have the e�ect of training the agent to avoid actions
leading to states with �tness �1.

Another result of the mismatch between the �tness function and reinforcement network output
is that by giving otherwise neutral states high predicted reinforcement, the innate network assures



28 6 RESULTS

prediction output (innate)
env a0 a1 a2 a3

0 0.001 0.001 0.000 0.000
1 0.000 0.758 0.000 0.000
2 0.302 0.000 0.996 0.139
3 0.188 0.001 0.000 0.149
4 0.056 0.001 0.157 0.101
5 0.004 0.031 0.000 0.131
6 0.252 0.004 0.144 0.141
7 0.002 0.000 0.999 0.000
8 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000

10 0.999 0.182 0.000 0.054
11 0.000 0.182 0.000 0.000
12 0.497 0.214 0.000 0.000
13 0.000 0.108 0.000 0.000
14 0.267 0.141 0.999 0.144
15 0.999 0.002 0.000 0.999

reinforce
env output

0 1.000
1 0.000
2 1.000
3 0.000
4 1.000
5 0.006
6 0.008
7 0.000
8 0.919
9 0.000

10 0.895
11 0.000
12 0.922
13 0.000
14 0.905
15 0.000

prediction output (learned)
env a0 a1 a2 a3

0 0.000 0.955 0.000 0.000
1 0.000 0.998 0.000 0.000
2 0.215 0.453 0.994 0.059
3 0.949 0.043 0.000 0.918
4 0.013 0.065 0.007 0.089
5 0.088 0.116 0.000 0.964
6 0.196 0.913 0.059 0.059
7 0.002 0.040 0.980 0.001
8 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000

10 0.999 0.212 0.000 0.001
11 0.000 0.954 0.000 0.000
12 0.061 0.974 0.000 0.000
13 0.000 0.994 0.000 0.000
14 0.064 0.066 0.994 0.059
15 1.000 0.005 0.000 0.999

innate result learned result
env action �tness action �tness

0 0, 1 -1, 0 1 0
1 1 1 1 1
2 2 1 2 1
3 0, 3 1, 1 0, 3 1, 1
4 2 -1 1, 3 0, 0
5 3 1 3 1
6 0 0 1 1
7 2 1 2 1
8 0, 1, 2, 3 0, -1, 0, 0 0, 1, 2, 3 0, -1, 0, 0
9 0, 1, 2, 3 0, 0, 1, 0 0, 1, 2, 3 0, 0, 1, 0

10 0 1 0 1
11 1 1 1 1
12 0 -1 1 0
13 1 1 1 1
14 2 1 2 1
15 0, 3 1, 1 0, 3 1, 1

small-world
env �t a0 a1 a2 a3

0 1 1 2 3 1
1 -1 3 4 2 3
2 0 5 3 4 5
3 0 4 5 6 4
4 1 6 7 5 6
5 -1 8 6 7 8
6 0 7 8 9 7
7 0 9 10 8 9
8 1 11 9 10 11
9 -1 10 11 12 10

10 0 12 13 11 12
11 0 14 12 13 14
12 1 13 14 15 13
13 -1 15 0 14 15
14 0 1 15 0 1
15 0 0 1 2 0

Table 5: Network outputs and action strategies for an rp-learn agent that has evolved in small-world
with 100 epochs of interaction. The table at top left contains the responses of the agent's prediction
network before it is trained. For each environment state and action, the network's output is shown.
The table in the middle shows the reinforcement network output for each environment state. The
table at top right shows the responses of the agent's prediction network after learning. The table
on the bottom left summarizes the agent's action strategies. Actions likely to be performed by the
agent are shown, both before and after learning, followed by the �tnesses of the resulting states.
The speci�cation of small-world is reproduced from table 1 on the bottom right



6.3 Learned Action Strategies 29

that the agent will tend to visit those states, and thereby better learn the consequences of being
in them. By limiting the states that the agent learns as it explores the environment, the innate
reinforcement network makes the task of learning easier.

6.3.3 Model-Learn

Table 6 presents network outputs for a model-learn agent from generation 200 of a simulation in
small-world with 100 epochs of interaction. The model network outputs before and after training
are shown, as well as the outputs of the agent's reinforcement network. For each environment and
action, the correct bits of the resultant environment (as given by the physics function of small-world)
are shown, followed by the outputs of the model network when given the environment as input.
The upper left table shows the outputs of the model network before learning; the upper right table
shows the outputs after 100 epochs of learning. Only the outputs for the �rst four environments
are shown. A summary of the agent's actions for all sixteen states is shown in table 7.

As described in section 4.5, these agents select actions to perform by feeding a representation of
the current environment and an action into their model network. The output of the model network
is then fed into the agent's reinforcement network, and the action is chosen for which the output of
the reinforcement network is highest. After the action is performed the model network is trained
directly on the new state.

The model network in table 6 has inherited a very strong bias to make its �rst output bit 1.
Learning doesn't modify this tendency. But for small-world, this bias has the e�ect of collapsing
the sixteen di�erent environments into eight, and, as it turns out for small-world, the �tness of
each pair of states thus collapsed is the same. The model network's innate bias thus incorporates
a regularity in small-world that it will not have to spend time learning.

Furthermore, the model network, when trained, has distorted its picture of the world even
further. For almost all inputs, the network's outputs are wrong, but they are wrong in useful ways.
The model's distortions, combined with those of the reinforcement network, enable the agent to
select appropriate actions.

In state 0, the trained model network predicts that state 9 will result from action 0, state 10
from action 1, state 9 from action 2, and state 9 from action 3. Of states 9 and 10, the latter has a
higher reinforcement value, and hence action 1 is chosen. This leads to state 2, with �tness 0. On
the other hand, actions 0 and 3, both leading to state 1, with �tness �1, are avoided.

In state 1, the trained model network predicts that state 10 will result from actions 0 and 2,
state 8 from action 1, and state 9 from action 3. The reinforcement network's output for state 8 is
high, hence the agent chooses action 1, leading to state 4, with �tness +1.

In state 2, the trained model network predicts that state 9 will follow action 0, and state 8
will follow actions 1, 2 and 3. It therefore chooses one of these actions, even though action 3 leads
to state 5, with �tness �1. But before learning the model network predicted that the same state
would follow every action, and so the agent might have performed any action in state 2, landing
in state 5 about half the time. Furthermore, the output values of the model network in state 2
suggest that with a bit more training (or evolution), the network would predict that state 8 will
follow only action 2, which leads to state 4.

In state 3, the trained model network predicts that state 8 will follow actions 0, 2, and 3. Two
of these lead to state 4, and the other leads to state 6, with �tness 0. Action 0, leading to state 5,
is avoided.

The reinforcement network output for this agent only gives a relatively high value to states
whose actual �tness is high in two cases, states 8 and 12. But the model network never shows the
reinforcement network states below 8, so the reinforcement network's outputs for such states will



30 6 RESULTS

new model outputs (innate)
env act env e0 e1 e2 e3
0 0 0001 1.000 0.000 0.199 0.983

1 0010 1.000 0.775 0.987 0.002
2 0011 1.000 0.001 0.183 0.996
3 0001 1.000 0.984 0.176 0.875

1 0 0011 1.000 0.000 0.995 0.005
1 0100 1.000 0.032 0.998 0.118
2 0010 1.000 0.000 0.485 0.915
3 0011 1.000 0.000 0.689 0.872

2 0 0101 1.000 0.000 0.044 0.884
1 0011 1.000 0.011 0.082 0.879
2 0100 1.000 0.000 0.125 0.995
3 0101 1.000 0.017 0.037 0.888

3 0 0100 1.000 0.000 0.801 0.059
1 0101 1.000 0.034 0.887 0.567
2 0110 1.000 0.000 0.934 0.000
3 0100 1.000 0.000 0.081 0.998

new model outputs (learned)
env act env e0 e1 e2 e3
0 0 0001 1.000 0.000 0.008 0.954

1 0010 1.000 0.001 0.920 0.000
2 0011 1.000 0.000 0.013 0.980
3 0001 1.000 0.003 0.050 0.806

1 0 0011 1.000 0.000 0.947 0.002
1 0100 1.000 0.000 0.125 0.038
2 0010 1.000 0.000 0.900 0.000
3 0011 1.000 0.000 0.025 0.560

2 0 0101 1.000 0.000 0.045 0.695
1 0011 1.000 0.000 0.104 0.464
2 0100 1.000 0.000 0.011 0.014
3 0101 1.000 0.000 0.098 0.453

3 0 0100 1.000 0.000 0.033 0.008
1 0101 1.000 0.000 0.007 0.962
2 0110 1.000 0.000 0.432 0.000
3 0100 1.000 0.000 0.009 0.013

reinforce
env output

0 0.0041
1 0.0000
2 0.0000
3 0.0000
4 0.0016
5 0.0002
6 0.0030
7 0.0000
8 0.2147
9 0.0001

10 0.0014
11 0.0000
12 0.2235
13 0.0002
14 0.0087
15 0.0000

small-world

env �t a0 a1 a2 a3

0 1 1 2 3 1
1 -1 3 4 2 3
2 0 5 3 4 5
3 0 4 5 6 4
4 1 6 7 5 6
5 -1 8 6 7 8
6 0 7 8 9 7
7 0 9 10 8 9
8 1 11 9 10 11
9 -1 10 11 12 10

10 0 12 13 11 12
11 0 14 12 13 14
12 1 13 14 15 13
13 -1 15 0 14 15
14 0 1 15 0 1
15 0 0 1 2 0

Table 6: Output of the model network of an agent from the last generation of a simulation of the
model-learn architecture in small-world with 100 epochs of interaction. For each environment and
each action, the correct bits of the new environment are shown, followed by the output of the model
network for that environment and action. The table at the bottom left shows the output of the
reinforcement network. The speci�cation of small-world is reproduced on the bottom right.



6.3 Learned Action Strategies 31

innate new predicted result
env action state state �tness

0 1 2 14 0
1 0, 1 3, 4 10, 10 0, 1
2 0, 1, 2, 3 5, 3, 4, 5 9, 9, 9, 9 -1, 0, 1, -1
3 0, 2 4, 6 10, 10 1, 0
4 0, 1 6, 7 10, 10 0, 0
5 0, 1, 3 8, 6, 8 10, 10, 10 1, 0, 1
6 0, 1, 2, 3 7, 8, 9, 7 9, 9, 9, 9 0, 1, -1, 0
7 1 10 10 0
8 0, 2 11, 10 10, 10 0, 0
9 0, 1, 2 10, 11, 12 10, 10, 10 0, 0, 1

10 0, 2 12, 11 10, 10 1, 0
11 0, 1, 2, 3 14, 12, 13, 14 10, 10, 10, 10 0, 1, -1, 0
12 1 14 8 0
13 0, 1, 2 15, 0, 14 10, 10, 10 0, 1, 0
14 0, 2 1, 0 10, 10 -1, 1
15 0, 2 0, 2 10, 10 1, 0

learned new predicted result
env action state state �tness

0 1 2 10 0
1 1 4 8 1
2 1, 2, 3 3, 4, 5 8, 8, 8 0, 1, -1
3 0, 2, 3 4, 6, 4 8, 8, 8 1, 0, 1
4 0, 1, 3 6, 7, 6 10, 10, 10 0, 0, 0
5 0, 3 8, 8 8, 8 1, 1
6 0, 1, 2, 3 7, 8, 9, 7 8, 8, 8, 8 0, 1, -1, 0
7 2 8 8 1
8 2 10 10 0
9 0, 1, 2, 3 10, 11, 12, 10 10, 10, 10, 10 0, 0, 1, 0

10 3 12 8 1
11 1, 3 12, 14 8, 8 1, 0
12 1 14 10 0
13 1 0 8 1
14 1, 2, 3 15, 0, 1 8, 8, 8 0, 1, -1
15 0, 3 0, 0 8, 8 1, 1

Table 7: Action strategies for the model-learn agent whose network outputs are shown in table 6.
For each environment state, the actions chosen by the agent are shown, followed by the new states
that result from the actions chosen, the states that the agent's model network predicts would follow
those actions, and the �tness values of the states that result from the agent's actions.



32 6 RESULTS

new model outputs (learned)
env act env e0 e1 e2 e3

0 0 0000 0.206 0.542 0.190 0.118
1 0001 1.000 0.091 0.881 0.990
2 0010 1.000 0.140 0.977 0.000
3 0011 1.000 0.811 0.437 0.021

1 0 0001 0.986 1.000 1.000 0.000
1 0010 1.000 0.200 1.000 0.045
2 0011 1.000 1.000 1.000 0.026
3 0100 1.000 1.000 0.992 0.994

2 0 0010 1.000 0.000 0.825 0.042
1 0011 1.000 0.000 0.000 0.997
2 0100 1.000 0.149 0.019 0.000
3 0101 1.000 0.000 0.158 0.004

3 0 0011 1.000 1.000 1.000 0.000
1 0100 1.000 0.165 1.000 0.008
2 0101 1.000 1.000 1.000 0.000
3 0110 1.000 1.000 0.999 0.000

reinforce
env output

0 0.0000
1 0.0000
2 0.0000
3 0.0000
4 0.0000
5 0.0000
6 0.0000
7 0.0000
8 0.0439
9 0.0000

10 0.9992
11 0.9988
12 0.0000
13 0.0000
14 0.0000
15 0.0000

mod-inc

env �t a0 a1 a2 a3
0 -1 0 1 2 3
1 0 1 2 3 4
2 1 2 3 4 5
3 -1 3 4 5 6
4 0 4 5 6 7
5 1 5 6 7 8
6 -1 6 7 8 9
7 0 7 8 9 10
8 1 8 9 10 11
9 -1 9 10 11 12

10 0 10 11 12 13
11 1 11 12 13 14
12 -1 12 13 14 15
13 0 13 14 15 0
14 1 14 15 0 1
15 -1 15 0 1 2

Table 8: Network outputs for a model-learn agent evolving in mod-inc world. On the left, outputs
of the model network after learning. In the center, outputs of the reinforcement network. The
speci�cation of mod-inc is reproduced on the right.

never a�ect the agent's behavior. Furthermore, the output of the model network after learning
never has a value much above zero in the second position. Therefore the reinforcement network
will never be shown state 12 either.

By collapsing the representations of the states it presents to the reinforcement network, the
reinforcement network needs to evolve accurate values for fewer states. Furthermore, the model
network has incorporated a simpli�cation of the real physics function, and has also modi�ed it in
ways that make performing actions in small-world easier and less risky. The combination of the
inaccuracies of the reinforcement network and the model network enable the agent to ignore some
aspects of the environment and easily learn the remainder.

Similar systematic distortions are observed in simulations in other worlds. In table 8 the network
outputs for a model-learn agent that evolved in the mod-inc world are presented. Again the model
network collapses the states of the world by outputting a 1 in the top bit of almost all states.
Furthermore, the reinforcement network only has a strong response to two states: state 10, which
has an actual �tness value of 0, and state 11, with �tness +1. The model network's outputs are also
grossly distorted from the actual physics function. As in the previous example, the combination of
the distortions enables the agent to select bene�cial actions most of the time.

In the simulation runs of the model-innate agents (�gure 10 a{c), the reinforcement correlation
never achieves substantially positive values, and the model-error is always high. Thus these net-
works never acquire accurate models of either the physics or �tness functions of their worlds. A
similar e�ect is observed in simulations of rp-innate agents. Although the output of their predic-
tion networks is used to select actions based on which yields the highest \predicted reinforcement,"
the correlation between the outputs of these networks and the �tness of environment states never
attains positive values. But neither of these results prevented the agents from acquiring adaptive
innate behaviors. As with the representations in the networks of the learning agents described
above, the distortions introduced by the networks can be put to bene�cial use.

Recall from �gure 10 d{i, that the average model-error of the agents increases over the simulation



33

run, even though the model network is being trained directly on the world states. The decrease in
accuracy is not o�set by even 500 epochs of learning.

The model network's distorted representation of the physics function seems to derive from
the fact that in early generations of the simulation, none of the reinforcement networks' outputs
correlate well with the �tness function. As a result, model networks capable of learning accurately
are at no advantage. Instead, those model networks that learn a distorted version of the �tness
function, such that the distortions, when fed to an inaccurate reinforcement function, allow the two
networks together to �nd good actions to perform, are better o�. Therefore, model networks with
tendencies to introduce distortions will be selected. In subsequent generations, the reinforcement
networks will always receive input from distorting model networks and will therefore be selected
not for their accuracy, but for how well they allow the distorted model network's output to guide
actions. Meanwhile, the bene�cial e�ects of the distorted mappings | to avoid dangerous states,
to focus learning, and to encode action strategies | decrease the accuracy of the networks still
further, while the �tness of the agents increases.

7 Discussion

Our approach | of comparing the performance of di�erent architectures, in abstract worlds whose
di�erences can be quanti�ed, with a common simulation and assessment methodology | is intended
to provide for the systematic exploration of a wide range of models of the evolution of adaptive
behavior. In this work we explore only three very simple worlds; therefore, any generalizations
based on our simulations must be provisional. Even so, our results illustrate some of the richness
of the interactions between learning and evolution.

The e�ects Baldwin predicted can be observed in some of our simulations. In simulations involv-
ing small-world, populations of agents that incorporate learning evolve more quickly and achieve
higher levels of performance than those whose behavior is innate. In addition, the adaptive behavior
that must be learned by early generations tends to become increasingly innate. Furthermore, this
process can occur while the agents evolve motivation systems to direct the learning of the networks
that generate actions.

We also observe, however, situations in which learning o�ers little or no advantage. Details of
the worlds, and the architectures of the agents that evolve in them, can have profound e�ects on
whether and how learning can be bene�cial. Learning seems to be most advantageous when, by
separating the �tness function of the world from its physics function, the two learning tasks are
easier than their composition. This is the case in small-world, but in mod-inc and count-ip the
independent tasks are both di�cult relative to their composition. Most previous simulations of the
Baldwin e�ect were performed in worlds in which this separation is bene�cial.

The distortions introduced by the reinforcement and model networks illustrate a crucial aspect
of the way that evolution interacts with learning. Such distortions appear in every simulation we
have performed. There seems, in our worlds, to be no adaptive bene�t to accurate representations.

In the case of the �-learn and rp-learn architectures, a distorted reinforcement function has
advantages over an accurate one. Such distortions can enable an agent to avoid harmful states,
encode action strategies, limit its exploration of the world, and thereby learn a subset of it more
accurately.

In the case of the model-learn agents, the distortions are more intriguing. Even though the
networks are trained directly on the world they are supposed to model, they inherit strong innate
biases to learn inaccurate mappings. As we described above, this is a consequence of the evolu-
tionary histories of the reinforcement and model networks, neither of which ever receives accurate



34 8 CONCLUSIONS

information information from the other, and hence is never under selective pressure to produce
accurate information. Once introduced, the distortions are put to bene�cial use by evolution, with
the networks' biases encoding regularities in the worlds and simplifying the task of learning to
behave in it.

We intend to explore more architectures in more complex worlds. We are especially interested
in worlds whose physics and �tness functions are stochastic, and which contain state information
that is not available to the agents. These agents will therefore have to contain recurrent networks
(Jordan, 1988; Elman, 1990) to model their worlds accurately. Such a project could have practical
relevance, speci�cally in those domains where \temporal di�erence learning" (Barto et al., 1990)
methods have been applied. An important problem in such domains is that of determining how an
individual output of a network should be reinforced, given that the task involves generating good
sequences of outputs. It is possible that for some domains, an evolutionary computation could �nd
the weights of a reinforcement network that could encode a good solution to this problem.

We are also interested in worlds whose environment states and actions are represented as vectors
of real numbers, rather than as discrete binary digits, as these are more realistic biologically. We
intend to continue comparing our results with, and drawing inspiration from, what is known about
the interactions between evolution, learning, and the mechanisms of action selection in animals
(Kupfermann, et al, 1970; Epstein, 1982; Thompson, 1986; Toates, 1986; Colgan, 1989; McFarland
and Bosner, 1993; Montague, et al, 1995).

8 Conclusions

Baldwin's analysis of the interactions between evolution and learning relied on an assumed \fact
of physiology" that animals tend to repeat actions that are bene�cial and avoid those that are
harmful. But this tendency requires that animals can tell the di�erence. In this work we have
examined this assumption more closely. We found that a motivation system can indeed coevolve
with the learning of the behaviors it evaluates.

However, the evolved motivation systems are not very accurate. The synergy between learning
and evolution introduces systematic distortions into the representations of the world that the mo-
tivation systems compute. These distortions are often highly bene�cial, as they can incorporate
regularities in the world, simplify the learning task, and encode strategies for adaptive behavior.

Acknowledgments

The authors thank the reviewers of this paper for their thoughtful and valuable suggestions and
comments. William Grundy is funded by the National Defense Science and Engineering Graduate
Fellowship Program.

References

D. H. Ackley and M. L. Littman. Generalization and scaling in reinforcement learning. In D. S.
Touretzky, editor, Advances in Neural Information Processing Systems 2, pages 550{557, San
Mateo, CA, 1990. Morgan Kaufmann.

D. H. Ackley and M. L. Littman. Interactions between learning and evolution. In C. G. Langton,
C. Taylor, J.D. Farmer, and S. Rasmussen, editors, Arti�cial Life II, volume X of Santa Fe



REFERENCES 35

Institute Studies in the Sciences of Complexity, pages 487{507, Reading, MA, 1992. Addison
Wesley.

Thomas B�ack and Hans-Paul Schwefel. An overview of evolutionary algorithms for parameter
optimization. Evolutionary Computation, 1(1):1{23, 1993.

James Mark Baldwin. A new factor in evolution. American Naturalist, 30:441{451, 1896.

Andrew G. Barto, Richard S. Sutton, and Christopher J. C. H. Watkins. Learning and sequen-
tial decision making. In Michael Gabriel and John Moore, editors, Learning and Computa-

tional Neuroscience: Foundations of Adaptive Networks, chapter 13, pages 539{602. Bradford
Books/MIT Press, 1990.

John Batali. Innate biases and critical periods: Combining evolution and learning in the acquisition
of syntax. In Rodney Brooks and Pattie Maes, editors, Proceedings of the Fourth Arti�cial

Life Workshop, pages 160{171, Cambridge, MA, 1994. The MIT Press.

R. K. Belew. When both individuals and populations search: Adding simple learning to the
genetic algorithm. In J. D. Shaefer, editor, Proceedings of the 3rd International Conference

on Genetic Algorithms. Morgan Kaufman, 1989.

R. K. Belew, J. McInerney, and N. N. Schraudolph. Evolving networks: Using the genetic algorithm
with connectionist learning. In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen,
editors, Arti�cial Life II: SFI Studies in the Sciences of Complexity, Volume X, pages 511{
547, 1991.

D. J. Chalmers. The evolution of learning: An experiment in genetic connectionism. In D. S.
Touretzky, J. L. Elman, T. J. Sejnowski, and G. E. Hinton, editors, Proceedings of the 1990

Connectionist Models Summer School, San Mateo, CA, 1990. Morgan Kaufmann.

Patrick Colgan. Animal Motivation. Chapman and Hall, 1989.

Je�rey L. Elman. Finding structure in time. Cognitive Science, 14:179{211, 1990.

A. N. Epstein. Instinct and motivation as explanation for complex behaviour. In D. W. Pfa�,
editor, The Physiological Mechanisms of Motivation, pages 25{28. Springer, 1982.

D. B. Fogel. An analysis of evolutionary programming. In D. B. Fogel and J. W. Atmar, editors,
Proceedings of the First Annual Conference on Evolutionary Programming, 1992.

D. B. Fogel, L. J. Fogel, and V.W. Porto. Evolving neural networks. Biol. Cybern., 63:487{493,
1990.

D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-
Wesley, Reading, Mass., 1989.

D. W. Hamlyn. Aristotle's De Anima. Clarendon/Oxford University Press, 1968.

Simon Haykin. Neural Networks: A Comprehensive Foundation. Macmillan, New York, 1994.

G. Hinton and S. J. Nowlan. How learning can guide evolution. Complex Systems, pages 495{501,
1987.

J. H. Holland. Adaptation in Natural and Arti�cial Systems. University of Michigan Press, Ann
Arbor, 1975.

C. L. Hull. A Behaviour System. Yale University Press, 1952.



36 8 CONCLUSIONS

Michael Jordan. Serial order: a parallel distributed processing approach. Technical Report ICS
Report No. 8604, Institute for Cognitive Science; University of California at San Diego, 1986.

I. Kupfermann, V. Castellucci, H. Pinsker, and E. Kandel. Neuronal correlates of habituation and
dishabituation of the gill withdrawal reex in aplysia. Science, 14(167):1743{1745, 1970.

Michael Littman. Simulations combining evolution and learning. In R. K. Belew and M. Mitchell,
editors, Adaptive Individuals in Evolving Populations. Addison-Wesley, 1996.

David McFarland and Thomas B�osner. Intelligent Behavior in Animals and Robots. MIT Press,
Cambridge, MA, 1993.

P. R. Montague, R. Dayan, C. Person, and T. Sejnowsky. Bee foraging in uncertain environments
using predictive Hebbian learning. Nature, 377:725{728, October 1995.

D. Montana and L. Davis. Training feedforward neural networks using genetic algorithms. In
Proceedings of the 11th IJCAI, 1989.

S. Nol� and D. Parisi. Auto-teaching: networks that develop their own teaching input. In J. L.
Deneubourg, H. Bersini, S. Goss, G. Nicolis, and R. Dagonnier, editors, Proceedings of the

Second European Conference on Arti�cial Life, Brussels, 1993.

Daniel N. Robinson. Aristotle's Psychology. Columbia University Press, New York, 1989.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by er-
ror propagation. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed
Processing, volume 1. MIT Press, Cambridge, MA, 1986.

R. F. Thompson. The neurobiology of learning and memory. Science, 233:941{947, 1986.

Edward L. Thorndike. Animal Intelligence. Macmillan, New York, 1898.

Frederick Toates. Motivational Systems. Cambridge University Press, 1986.

P. M. Todd and G. F. Miller. Exploring adaptive agency II: Simulating the evolution of associative
learning. In J. A. Meyer and S. W. Wilson, editors, From Animals to Animats: Proceedings

of the First International Conference on Simulation of Adaptive Behavior, pages 306{315,
Cambridge, MA, 1991. Bradford Books/MIT Press.

D. Whitley, T. Starkweather, and C. Bogart. Genetic algorithms and neural networks | optimizing
connections and connectivity. Parallel Computing, 14(3): 347{361, August 1990.


