
BioMed CentralBMC Bioinformatics

ss
Open AcceProceedings
SVM-Fold: a tool for discriminative multi-class protein fold and
superfamily recognition
Iain Melvin1,2, Eugene Ie3, Rui Kuang4, Jason Weston1,
William Noble Stafford5 and Christina Leslie*2,6

Address: 1NEC Laboratories of America, Princeton, NJ, USA, 2Center for Computational Learning Systems, Columbia University, New York, NY,
USA, 3Department of Computer Science, UCSD, San Diego, CA, USA, 4Department of Computer Science and Engineering, University of
Minnesota, Minneapolis, MN, USA, 5Department of Genome Sciences, University of Washington, Seattle, WA, USA and 6Center for Computational
Biology and Bioinformatics, Columbia University, New York, NY, USA

Email: Iain Melvin - imelvin@gmail.com; Eugene Ie - tie@cs.ucsd.edu; Rui Kuang - rkuang@cs.umn.edu;
Jason Weston - jaseweston@gmail.com; William Noble Stafford - noble@gs.washington.edu; Christina Leslie* - cleslie@cs.columbia.edu

* Corresponding author

Abstract
Background: Predicting a protein's structural class from its amino acid sequence is a fundamental problem in
computational biology. Much recent work has focused on developing new representations for protein sequences, called
string kernels, for use with support vector machine (SVM) classifiers. However, while some of these approaches exhibit
state-of-the-art performance at the binary protein classification problem, i.e. discriminating between a particular protein
class and all other classes, few of these studies have addressed the real problem of multi-class superfamily or fold
recognition. Moreover, there are only limited software tools and systems for SVM-based protein classification available
to the bioinformatics community.

Results: We present a new multi-class SVM-based protein fold and superfamily recognition system and web server called
SVM-Fold, which can be found at http://svm-fold.c2b2.columbia.edu. Our system uses an efficient implementation of a
state-of-the-art string kernel for sequence profiles, called the profile kernel, where the underlying feature representation
is a histogram of inexact matching k-mer frequencies. We also employ a novel machine learning approach to solve the
difficult multi-class problem of classifying a sequence of amino acids into one of many known protein structural classes.
Binary one-vs-the-rest SVM classifiers that are trained to recognize individual structural classes yield prediction scores
that are not comparable, so that standard "one-vs-all" classification fails to perform well. Moreover, SVMs for classes at
different levels of the protein structural hierarchy may make useful predictions, but one-vs-all does not try to combine
these multiple predictions. To deal with these problems, our method learns relative weights between one-vs-the-rest
classifiers and encodes information about the protein structural hierarchy for multi-class prediction. In large-scale
benchmark results based on the SCOP database, our code weighting approach significantly improves on the standard
one-vs-all method for both the superfamily and fold prediction in the remote homology setting and on the fold
recognition problem. Moreover, our code weight learning algorithm strongly outperforms nearest-neighbor methods
based on PSI-BLAST in terms of prediction accuracy on every structure classification problem we consider.

Conclusion: By combining state-of-the-art SVM kernel methods with a novel multi-class algorithm, the SVM-Fold system
delivers efficient and accurate protein fold and superfamily recognition.

from The Second Automated Function Prediction Meeting
La Jolla, CA, USA. 30 August – 1 September 2006

Published: 22 May 2007

BMC Bioinformatics 2007, 8(Suppl 4):S2 doi:10.1186/1471-2105-8-S4-S2

<supplement> <title> <p>The Second Automated Function Prediction Meeting</p> </title> <editor>Ana PC Rodrigues, Barry J Grant, Adam Godzik and Iddo Friedberg</editor> <note>Proceedings</note> <url>http://www.biomedcentral.com/content/pdf/1471-2105-8-S4-info.pdf</url> </supplement>

This article is available from: http://www.biomedcentral.com/1471-2105/8/S4/S2

© 2007 Melvin et al; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 15
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8/S4/S2
http://creativecommons.org/licenses/by/2.0
http://svm-fold.c2b2.columbia.edu
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2007, 8(Suppl 4):S2 http://www.biomedcentral.com/1471-2105/8/S4/S2
Background
Many statistical, homology-based methods have been
developed for detecting protein structural classes from
protein primary sequence information alone. These meth-
ods can be categorized into three major types: pairwise
sequence comparison algorithms [1,2], generative models
for protein families [3,4], and discriminative classifiers [5-
9]. Many recent studies have shown that discriminative
classifiers, such as support vector machines (SVMs), out-
perform the other two types of protein classification
methods [10] in the context of binary remote homology
detection – prediction of whether a sequence belongs to a
single structural class or not – especially when incorporat-
ing unlabeled protein data [11,12]. However, it is uncer-
tain how to combine these predictive binary classifiers
properly in order to tackle the multi-class problem of clas-
sifying protein sequences into one of many structural
classes.

In this work, we present the SVM-Fold protein classifica-
tion web server and software package, which combines a
state-of-the-art string kernel based on protein sequence
profiles [13] with a novel multi-class classification algo-
rithm designed for the protein structural hierarchy. We
outline the main machine learning ideas behind our
multi-class approach, which we call adaptive codes, and
present large-scale benchmark experiments based on the
SCOP hierarchy [14] for two difficult protein classifica-
tion problems: remote homology detection and fold rec-
ognition. The SVM-Fold server is trained to perform multi-
class SCOP fold and superfamily recognition and is avail-
able at [15].

In the machine learning literature, two main strategies
have been devised to tackle multi-class prediction. The
first strategy is to train a "single machine" to directly pro-
duce multi-class outputs. This approach includes multi-
class formulations of the well-known binary support vec-
tor machine optimization problem [16,17]. However,
complex multi-class optimization problems are often
computationally expensive and impractical when the
number of classes is large. A second and more tractable
strategy is to solve a set of binary classification problems
and process the binary predictions to obtain a multi-class
prediction [18,19]. This approach assigns to each test
example a vector of real-valued discriminant scores or
binary prediction rule scores, which we call the output vec-
tor for the example. This second class of methods includes
widely-used approaches such as one-vs-all, all-vs-all, and
error-correcting output codes. In the standard one-vs-all
approach, one trains N one-vs-the-rest classifiers to obtain
a length-N output vector and then predicts the class with
the largest margin. Standard all-vs-all is similar, except
that one trains all pairwise binary classifiers to obtain a
length N(N - 1)/2 output vector [18]. One can also repre-

sent different classes by binary vectors or output codes in
the output vector space (We will use the terms "output
space" and "code space" interchangeably for the output
vector space.) and predict the class based on which output
code is closest to the binary output vector for the example
[19,20]. While this approach, called error-correcting out-
put codes (ECOC), generalizes the other standard meth-
ods, a recent empirical study suggests that the one-vs-all
approach performs as well or better in most cases [21].
One failing of one-vs-all is that it assumes that the mar-
gins of the component binary classifiers are comparable,
so that the individual classifier with the largest prediction
corresponds to the best class. This assumption is often
invalid in practice and in particular for SVM classifiers,
since SVM prediction scores are not probabilistic and can-
not be readily interpreted aa class conditional probabili-
ties or converted to p-values. One proposed method for
computing probabilities from SVM outputs is to fit a sig-
moid function to the predicted margins for each classifier
[22]. After this procedure, the output probabilities rather
than the margins are compared in one-vs-all. However, in
many applications, the training data may be insufficient
to fit the sigmoids accurately, or the sigmoids may be poor
models for the margin distributions. Moreover, one-vs-all
and the other standard output vector approaches do not
take advantage of known relationships between classes,
such as hierarchical relationships in the protein structural
taxonomy. Here, we present a simple but effective multi-
class method for protein fold recognition that combines
the predictions of state-of-the-art one-vs-the-rest SVM pro-
tein classifiers by learning in the output space. In order to
solve the problem that prediction scores from different
classifiers are not on the same scale, we solve an optimiza-
tion problem to learn a weighting of the real-valued
binary classifiers that make up the components of the out-
put code. Instead of using ad hoc or random output codes
as in ECOC, we design codes that are directly related to the
structural hierarchy of a known taxonomy, such as the
manually curated Structural Classification of Proteins
(SCOP) [14], with components that correspond to fold
and superfamily detectors. In large-scale benchmark
experiments based on SCOP, we find that our adaptive
codes method significantly outperforms one-vs-all in
both the remote homology detection and the fold recog-
nition setting. Moreover, we find that our method success-
fully exploits hierarchical information in the remote
homology setting, in that multi-class prediction perform-
ance continues to increase as we add more code elements
corresponding to more levels of the SCOP hierarchy. We
also dramatically outperform a nearest-neighbor
approach based on PSI-BLAST in terms of multi-class pre-
diction accuracy for every structural classification problem
that we consider.
Page 2 of 15
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 4):S2 http://www.biomedcentral.com/1471-2105/8/S4/S2
The current work is an expanded version of a conference
proceedings paper [23], with larger scale experiments of
the adaptive codes method. This work also describes our
web server implementation, SVM-Fold, which is available
for use at SVM-Fold [15]. A companion paper that focuses
more on the algorithmic details of code learning will
appear elsewhere.

Results and discussion
Remote homology detection and fold recognition in a
multi-class setting
In this work, we focus on two protein classification prob-
lems that have long been studied but are still considered
unsolved: remote homology detection and fold recogni-
tion. In remote homology detection, we wish to recognize
when a new protein sequence has a distant evolutionary
relationship to a protein sequence in a database (e.g., one
whose structure is known). Due to a distant common
ancestor, the protein sequences exhibit subtle sequence
similarities (remote homology) that cannot generally be
detected by statistical, alignment-based methods [1,24].
In fold recognition, we wish to recognize when a new pro-
tein sequence will exhibit the same fold as a protein from
the structure database, even if is there is no evidence of
any evolutionary relationship between the proteins.

We base our experiments on SCOP, a manually curated
hierarchical classification system for known protein struc-
tures. At the top level of the hierarchy are SCOP very
broad structural classes. These are subdivided into folds,
consisting of sequences that have the same general 3D
structural architecture. SCOP folds are divided into super-
families, containing sequences that are at least remotely
homologous (evolutionarily related). Finally, each super-
family is further divided into families, consisting of
homologous sequences with an easily detectable level of
sequence similarity. We can design experiments based on
the SCOP hierarchy to test performance on both the
remote homology detection and the fold recognition
problem, as depicted in Figure 1.

To test our final fielded system, we assembled benchmark
data sets for the remote homology detection and fold rec-
ognition problems using sequences from the SCOP 1.65
protein database. We used ASTRAL [25] to filter these
sequences so that no two sequences share greater than
95% identity. Note that the actual database used on the
web server differs from these datasets, as there is no
requirement for a test set.

Benchmark data sets
For the fold recognition problem, we designed our bench-
mark experiments so that the test set consists of held-out
superfamilies belonging to folds that are represented in
the training data. We prepared a data set by first removing

all superfamilies that have less than 5 sequence examples.
We then removed all folds that have less than 3 super-
families. We selected superfamilies for testing at random
from the remaining superfamilies such that the test set for
the superfamily contains no more than 40% of the
remaining sequences for the fold. If at least one suitable
superfamily could not be found, then the fold was
removed from the experiment. The resulting fold detec-
tion data set contains of 26 folds, 303 superfamilies, and
652 families for training. We completely hold out 614
sequences from 46 superfamilies for testing.

For the remote homology detection, the test set should
contain held-out families belonging to superfamilies that
are represented in the training data. One can evaluate per-
formance for multi-class prediction of fold or superfamily
levels, and it is natural to try different codes for these two
tasks; therefore, we prepared a separate data set for remote
homology superfamily and fold detection. For the super-
family data set, we used the same selection scheme as for
fold recognition, except the minimum number of
sequences for the children of the superfamilies is relaxed
to 3, and we selected random families for testing instead
of superfamilies. The resulting superfamily detection data
set contains of 74 superfamilies, and 544 families for
training. We completely hold out 802 sequences from 110
families for testing.

For the remote homology fold detection data set, we first
removed all superfamilies with less than 2 families. We
then selected families from the remaining superfamilies
for testing. We selected families at random from each
superfamily such that we never selected more than 40% of
the parent superfamily for testing. If no such families were
found then the superfamily was removed from the data
set. If a fold was then found to have no superfamilies with
held out families for testing, it was removed from the data
set. The resulting remote homology detection set contains
44 folds, 424 superfamilies, and 809 families for training.
We completely hold out 381 sequences from 136 families
for testing.

When training base classifiers, we only use negative data
from outside of the target class of the experiment. For fold
recognition, this means that when we train superfamily or
family detectors, we exclude negative example sequences
that come from the parent fold.

Training workflow for benchmark experiments

To set up the adaptive codes optimization problem during
training, we use a cross-validation scheme to embed pro-
tein sequences in an output space, representing each pro-
tein as a vector of SVM discriminant scores. Suppose the
number of superfamilies and folds in a SCOP-based data
set is k and q respectively, and suppose we are interested
Page 3 of 15
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 4):S2 http://www.biomedcentral.com/1471-2105/8/S4/S2
in codes that incorporate fold and superfamily levels of
the hierarachy, for example. Then our approach for solv-
ing the multi-class protein classification problem involves

producing a real-valued output vector (x) = (f1(x),...,

fk+q(x)) for each test sequence x, where the fi are binary

SVM superfamily or fold detectors trained using profile
string kernels [11], and using (k + q)-length code vectors
Cj that encode the superfamily and fold of a protein class

as a bit vector. We use training data to learn a weight vec-
tor W = (W1,...,Wk+q) to perform multi-class predictions

with the weighted code prediction rule, = arg maxj(W *

(x))·Cj, where W * (x) denotes component-wise

multiplication. We learn W by a cross-validation set-up on
the training set, using a ranking perceptron. The full meth-
odology consists of five steps: (1) split the training data
into 10 cross-validation sets; (2) learn fold- and super-
family-level detectors from the partitioned training set –
performing fold recognition and superfamily recognition
on the held-out cross-validation sets, thereby generating
training data for code weight learning; (3) use the ranking
perceptron algorithm for learning the optimal weighting
of classifiers in code space; (4) re-train superfamily and
fold detectors on the full training set; and (5) test on the
final untouched test set. Figure 2 shows a summary of the
above steps, and Figure 3 shows the cross-validation
scheme for learning W.

Benchmark results
Remote homology detection performance
For the remote homology detection data sets, where the
test set consists of held-out protein families that belong to

superfamilies represented in the training data, we evaluate
performance both for the superfamily-level and fold-level
prediction tasks. Results for multi-class superfamily and
fold prediction are provided in Tables 1 and 2, respec-
tively. We compare our adaptive codes method to PSI-
BLAST, a standard homology detection method based on
sequence alignment, as well as simple one-vs-all, sigmoid
fitting, using various choices of code vectors. In addition
to reporting classification loss and balanced loss results,
we give "top 5" classification and balanced loss perform-
ance, which evaluates whether the correct class was found
in the top 5 class predictions. The motivation for top 5
loss results is that a structural biologist might be willing to
investigate a small number of false positives if it was likely
that the list also contained the true structural class. We
also report results based on the false detection (FDR) rate
for each of the methods. We report the percentage of true
positives recovered when we set the threshold such that
FDR = FP/(FP + TP) is equal to 0.01 or 0.05, where FP, TN
and TP are the number of false positives, true negatives
and true positives, respectively. Because these are multi-
class methods, the real-valued output for each possible
output label y and each test example x is considered an
individual prediction (which is either right or wrong) and
a single threshold is chosen over all predictions. A similar
procedure is conducted for PSI-BLAST. Here, the motiva-
tion is to compare how well the methods detect true
remote homologs or recognize true fold members at a
high confidence level.

For the superfamily prediction task, we find that the adap-
tive codes method significantly outperforms one-vs-all
both in terms of classification and balanced error, even
when superfamily-only codes are used, and performance
improves as more elements are added to the codes. We

f

ŷ

f f

Two protein classification problemsFigure 1
Two protein classification problems. (Left) In the SCOP database, we simulate the remote homology detection problem
by holding out a test family (shown in dark gray) from a superfamily and using the other families as positive training data (shown
in light gray). The task is to correctly predict the superfamily or fold membership of the held-out sequences. (Right) We simu-
late the fold recognition problem by holding out a test superfamily (dark gray) from a fold and using the other superfamilies as
training data (light gray). The task is to correctly recognize the fold of the held-out sequences.

SCOP

Fold 1.1 Fold 1.2 ... Fold 2.1 ...

Superfam 1.2.1 Superfam 1.2.2 Superfam 1.2.3

Fam 1.2.1.1 Fam 1.2.1.2 Fam 1.2.1.3

SCOP

Fold 1.1 Fold 1.2 ... Fold 2.1 ...

Superfam 1.2.1 Superfam 1.2.2 Superfam 1.2.3

Fam 1.2.1.1 Fam 1.2.1.2 Fam 1.2.1.3

Remote homology detection Fold recognition
Page 4 of 15
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 4):S2 http://www.biomedcentral.com/1471-2105/8/S4/S2

Page 5 of 15
(page number not for citation purposes)

Summary of the main stages of the adaptive code methodology for multi-class protein classificationFigure 2
Summary of the main stages of the adaptive code methodology for multi-class protein classification. The figure
gives an overview of the training workflow for the adaptive codes method. The box for learning weights is illustrated in detail
in Figure 3.

The mechanism for learning code weightsFigure 3
The mechanism for learning code weights. The figure shows the cross-validation set-up for supervised learning of the
weight vector W.

BMC Bioinformatics 2007, 8(Suppl 4):S2 http://www.biomedcentral.com/1471-2105/8/S4/S2
also note that sigmoid fitting gives substantially worse
performance than one-vs-all for this task. When compared
to the widely-used PSI-BLAST method, even simple one-
vs-all outperforms PSI-BLAST strongly in terms of classifi-
cation error and slightly in terms of balanced error; adap-
tive codes outperforms PSI-BLAST very strongly by both
measures and also when considering "top 5" prediction
performance. In terms of the detection rate at low false
discovery rates (FDR = 1% or 5%), all SVM-based meth-
ods significantly outperform PSI-BLAST, and in particular
at FDR = 5%, there is a trend of greater detection rates as
the code length increases. For the fold prediction task, we
use a different set of codes, including code elements cor-
responding to protein fold detectors. We observe a similar
trend, with adaptive codes again beating one-vs-all with
respect to classification and balanced loss when fold-only
codes are used and performance continuing to improve as
the length of the codes increases. The best result for adap-
tive codes is significantly better than PSI-BLAST. Finally,
sigmoid fitting slightly degrades performance as com-
pared to one-vs-all. At low false positive rates, we again
observe that adaptive codes has a greater detection rates as
code elements are added, and results for the longest codes
are significantly better than one-vs-all. However, for this
problem, unlike the superfamily prediction task, PSI-
BLAST has better detection performance at low false posi-
tive rates than the adaptive codes method, showing that
PSI-BLAST is doing relatively well at high confidence pre-
dictions even though the overall error rates are worse.

Overall, we observe that when the individual code ele-
ments are helpful, as seems to be the case in remote
homology detection, our adaptive codes method can suc-
cessfully improve performance by adding elements with-
out overfitting.

Fold recognition results
For the more difficult fold recognition task, where the data
set consists of held-out superfamilies from protein folds
represented in the training data, we expect that code ele-

ments from subclasses (i.e. superfamilies and families)
will provide less information, since protein sequences
from different superfamilies in principle have no detecta-
ble sequence similarity.

Results for the fold recognition problem are provided in
Table 3. Note first that the errors for PSI-BLAST, even for
the top 5 fold predictions, are very high, underscoring the
difficulty of the problem. Sigmoid fitting appears to
slightly help reduce one-vs-all error in this case, though
balanced error is unaffected. We find that the adaptive
codes method can again beat one-vs-all and strongly out-
perform PSI-BLAST in terms of prediction accuracy, but
we see no trend of improvement as more code elements
are added, with various length codes leading to similar
error rates. At low false discovery rates, the adaptive codes
method has much higher fold recognition rates than PSI-
BLAST and also outperforms one-vs-all. Interestingly, here
the best high confidence detection rate does occur for the
longest codes, though the trend is unclear. We conclude
that in this case, since the code elements corresponding to
subclasses are not as helpful, the adaptive codes method
cannot consistently leverage longer codes to achieve much
higher accuracy. However, the weight learning approach
does significantly outperform one-vs-all and greatly out-
perform PSI-BLAST by all evaluation measures.

The SVM-Fold web server
In this section, we describe some details of the web server
that implements our system, which is available at SVM-
Fold [15]. The server can perform both superfamily and
fold detection but performs fold detection by default. One
can switch between the two modes using a link on the
front page. The coverage for each mode, that is, the set of
folds or superfamilies that a given query sequence is
ranked against, is given via a link named "coverage" on
the front page. Users of the website can enter raw
sequence data in FASTA format data directly into a form
on the web-page, or select a local FASTA file to upload to
the server (see Figure 4). Alternatively, the user can supply

Table 1: Results for multi-class superfamily prediction in the remote homology detection set-up. Results for the adaptive codes
method are reported for a SCOP benchmark data set (67 folds, 74 superfamilies, 544 families, with 802 test sequences).

Method (and optimization target) Error Balanced Error Top 5 Error Balanced Top 5 Error Detection Rate at fdr = 1% Detection Rate at fdr = 5%

PSI-BLAST 0.3990 0.4571 0.2731 0.3654 0.3229 0.4214
one-vs-all: Sfams 0.2706 0.4454 0.1047 0.1973 0.4239 0.5549
one-vs-all: Sfams, Fams 0.2706 0.4454 0.1097 0.2070 0.4239 0.5549
Sigmoid Fitting: Sfams 0.3678 0.5561 0.2020 0.3724 0.3641 0.4726
Adaptive Codes: Sfams (zero-one) 0.2444 0.3805 0.0960 0.1591 0.4264 0.5711
Adaptive Codes: Sfams (balanced) 0.2481 0.3723 0.1110 0.1634 0.4289 0.5673
Adaptive Codes: Sfams, Fams (zero-one) 0.2369 0.3739 0.0948 0.1561 0.4352 0.5698
Adaptive Codes: Sfams, Fams (balanced) 0.2394 0.3632 0.1047 0.1558 0.4302 0.5698
Adaptive Codes: Sfams, Fams, Fams (zero-
one)

0.2219 0.3401 0.0910 0.1359 0.4277 0.5723

Adaptive Codes: Sfams, Fams, Fams
(balanced)

0.2195 0.3273 0.1047 0.1516 0.4327 0.5910
Page 6 of 15
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 4):S2 http://www.biomedcentral.com/1471-2105/8/S4/S2
a PSI-BLAST profile file (output of blastpgp -Q) instead. In
the advanced options on the main page one can select
either zero-one or balanced loss optimized SVMs, or alter-
natively just use standard PSI-BLAST ranking.

The server will then add the query to a queue and compute
the results (See Figure 5). A query currently takes approx-
imately 6 minutes from when it starts processing on a 2
Ghz AMD Opteron processor with 8 GB memory. Approx-
imately 5 minutes of this computation is actually comput-
ing the profile using PSI-BLAST for use with the profile
kernel. On completion, the user is presented with a table
showing the resulting SCOP-Fold ranking of their
sequence along with an empirically estimated confidence
value (see Methods) and SCOP derived comments relat-
ing to the fold or superfamily (See Figure 6). The results
table also contains links to pages detailing results for each
target SCOP class. These pages link to the relevant pages
on the SCOP website and show both PSI-BLAST E-values
and profile kernel scores (see Methods) between the query
protein and the set of proteins from the SCOP class in the
training set. For each protein in these rankings, we can go
to a full SCOP definition or to a molecule rendering of
that protein. The molecule renderer uses OpenRasMol on
the server-side to deliver small animated 3D renders,
without the need for a browser plugin. There are controls

on this page to rotate the molecule and to alter the render
style (see Figure 7).

For fold detection, the website currently ranks a list of 65
SCOP folds, using detectors for 65 folds, 560 super-
families and 1126 families. For superfamily detection, the
website ranks a list of 174 SCOP superfamilies, using
detectors for 174 superfamilies and 1036 families.

Conclusion
In this article, we have described the fielded protein super-
family and fold recognition system, SVM-Fold. SVM-Fold
uses the discriminative support vector machine algorithm
with a state-of-the-art string kernel based on PSI-BLAST
profiles to leverage unlabeled data. Binary one-vs-the-rest
SVM classifiers that are trained to recognize individual
structural classes yield prediction scores that are incompa-
rable, so that standard "one-vs-all" classification performs
suboptimally when the number of classes is very large, as
in this case. To deal with this challenging problem, we
have developed an adaptive multi-class codes algorithm
that learns relative weights between one-vs-the-rest classi-
fiers and, further, encodes information about the protein
structural hierarchy for multi-class prediction. In large-
scale benchmark results based on the SCOP database, our
system significantly improves on the prediction accuary of

Table 3: Results for multi-class fold prediction in the fold recognition set-up. Results for the adaptive codes method are reported on a
SCOP benchmark data set (26 folds, 303 superfamilies, 614 test sequences).

Method (and optimization target) Error Balanced Error Top 5 Error Balanced Top 5 Error Recognition Rate at fdr = 1% Recognition Rate at fdr = 5%

PSI-BLAST 0.6482 0.7029 0.5179 0.5431 0.0814 0.0961
one-vs-all: Folds 0.4625 0.6282 0.1450 0.2345 0.1368 0.2704
one-vs-all: Folds, Sfams 0.4625 0.6282 0.1450 0.2345 0.1368 0.2704
Sigmoid Fitting: Folds 0.4446 0.6103 0.1547 0.2960 0.1336 0.2166
Adaptive Codes: Folds (zero-one) 0.4023 0.5556 0.1059 0.1543 0.1906 0.2655
Adaptive Codes: Folds (balanced) 0.3664 0.5158 0.1075 0.1387 0.1612 0.2785
Adaptive Codes: Folds, Sfams (zero-one) 0.4104 0.5525 0.1107 0.1719 0.2003 0.2329
Adaptive Codes: Folds, Sfams (balanced) 0.3616 0.5153 0.1010 0.1263 0.2068 0.2508
Adaptive Codes: Folds, Sfams, Fams (zero-one) 0.4007 0.5427 0.1075 0.1788 0.2068 0.2557
Adaptive Codes: Folds, Sfams, Fams (balanced) 0.3648 0.5000 0.1091 0.1453 0.2134 0.3013

Table 2: Results for multi-class fold prediction in the remote homology detection set-up. Results for the adaptive codes method are
reported for a SCOP benchmark data set (44 folds, 424 superfamilies, 809 families, with 381 test sequences).

Method (and optimization target) Error Balanced Error Top 5 Error Balanced Top 5 Error Detection Rate at fdr = 1% Detection Rate at fdr = 5%

PSI-BLAST 0.4094 0.4428 0.2966 0.3666 0.3123 0.3412
one-vs-all: Folds 0.3307 0.4565 0.1260 0.1954 0.2073 0.2493
one-vs-all: Folds, Sfams 0.3307 0.4565 0.1260 0.1954 0.2073 0.2336
Sigmoid Fitting: Folds 0.3465 0.4973 0.1706 0.3407 0.2178 0.2283
Adaptive Codes: Folds (zero-one) 0.3018 0.3769 0.1286 0.1862 0.2073 0.2362
Adaptive Codes: Folds (balanced) 0.3281 0.3766 0.1680 0.1702 0.2073 0.2362
Adaptive Codes: Folds, Sfams (zero-one) 0.2808 0.3749 0.1155 0.1770 0.2283 0.2493
Adaptive Codes: Folds, Sfams (balanced) 0.2887 0.3659 0.1260 0.1427 0.2231 0.2388
Adaptive Codes: Folds, Sfams, Fams (zero-
one)

0.2493 0.3474 0.1024 0.1726 0.2231 0.2677

Adaptive Codes: Folds, Sfams, Fams
(balanced)

0.2703 0.3445 0.1155 0.1418 0.2283 0.2703
Page 7 of 15
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 4):S2 http://www.biomedcentral.com/1471-2105/8/S4/S2
both a baseline use of PSI-BLAST and the standard one-vs-
all method on every structure classification problem we
consider. The SVM-Fold web server now makes a state-of-

the-art SVM-based protein classification system available
to the bioinformatics community. In future work, we plan
to increase the coverage of SCOP folds and superfamilies

SVM-Fold home pageFigure 4
SVM-Fold home page. A screen capture of the SVM-Fold home page.
Page 8 of 15
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 4):S2 http://www.biomedcentral.com/1471-2105/8/S4/S2
represented in our system and eventually extend our sys-
tem to other structural taxonomies, such as CATH [26].
We will also develop and implement discriminative

approaches to the problem of segmenting multi-domain
protein sequences into domains by using SVM-based clas-
sifiers as domain recognizers.

SVM-Fold processing pageFigure 5
SVM-Fold processing page. A screen capture of the SVM-Fold processing page.
Page 9 of 15
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 4):S2 http://www.biomedcentral.com/1471-2105/8/S4/S2
Methods
Profile-based string kernel SVM
As a base for our multi-class protein classifier, we use pro-
file-based string kernel SVMs [11] that are trained to per-
form binary classifications on the fold and superfamily
levels of SCOP. The profile kernel is a function that meas-
ures the similarity of two protein sequence profiles based
on their representation in a high-dimensional vector
space indexed by all k-mers (k-length subsequences of
amino acids). Specifically, for a sequence x and its
sequence profile P(x) (e.g. PSI-BLAST profile), the posi-
tional mutation neighborhood is defined by the corre-
sponding block of the profile P(x):

Note that the emission probabilities, pj+i(b), i = 1...k, come
from the profile P(x) – for notational simplicity, we do
not explicitly indicate the dependence on x . Typically, the
profiles are estimated from close homologs found in a
large sequence database; however, these estimates may be
too restrictive for our purposes. Therefore, we smooth the
estimates using background frequencies, q(b), b ∈ Σ, of
amino acids in the training data set via

where t is a smoothing parameter. We use the smoothed

emission probabilities i(b) in place of pi(b) in defining

the mutation neighborhoods.M P x j j k b b b p bk k j i i
i

k

(,)(([:])) { ... : log () }.σ β σ+ + = = − <+
=
∑1 1 2

1

p b
p b tq b

t
i xi

i()
() ()

, ... ,=
+
+

=
1

1

p

SVM-Fold results pageFigure 6
SVM-Fold results page. A screen capture of the SVM-Fold results page.
Page 10 of 15
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 4):S2 http://www.biomedcentral.com/1471-2105/8/S4/S2
We now define the profile feature mapping as where the coordinate ϕβ(P(x[j + 1 : j + k])) = 1 if β belongs
to the mutation neighborhood M(k,σ)(P(x[j + 1 : j + k])),
and otherwise the coordinate is 0. Note that the profile
kernel between two protein sequences is simply defined
by the inner product of feature vectors:

Φ Σ(,)
...

(()) ((([:])))k
j x k

P x P x j j k kσ β βφProfile = + + ∈
= −

∑ 1
0

SVM-Fold molecule viewFigure 7
SVM-Fold molecule view. SVM-Fold provides links to views of representative 3D structures.
Page 11 of 15
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 4):S2 http://www.biomedcentral.com/1471-2105/8/S4/S2
The use of profile-based string kernels is an example of
semi-supervised learning, since unlabeled data in the form
of a large sequence database is used in the discrimination
problem. Moreover, profile kernel values can be effi-
ciently computed in time that scales linearly with input
sequence length. Equipped with such a kernel mapping,
one can use SVMs to perform binary protein classification
on the fold level and superfamily level. We call these
trained SVMs fold detectors and superfamily detectors.

Adaptive code-learning

Suppose that we have trained q fold detectors. Then for a
protein sequence, x, we form a prediction discriminant

vector, (x) = (f1(x),...,fq(x)). The simple one-versus all

prediction rule for multi-class fold recognition is = arg

maxj fj(x). The primary problem with this prediction rule

is that the discriminant values produced by the different
SVM classifiers are not necessarily comparable. While
methods have been proposed to convert SVM discrimi-
nant scores into probabilistic outputs, for example using
sigmoid fitting [22], in practice there may be insufficient
data to estimate the sigmoid, or the fit may be poor. Our
approach, in contrast, is to learn the optimal weighting for

a set of classifiers, thereby scaling their discriminant val-
ues and making them more readily comparable. We also
incorporate information available from the superfamily
detectors for doing multi-class superfamily and fold rec-
ognition by designing output codes.

We construct our codes to incorporate knowledge about
the known structural hierarchy provided by SCOP. Define
for superfamily classes j ∈ {1,...,k}, code vectors Cj =
(superfamj, foldj), where superfamj and foldj are vectors
with length equal to the number of known superfamilies
(k) and folds (q), and each of these two vectors has exactly
one non-zero component corresponding to structural
class identity. Each component in Cj is known as a code ele-
ment and represents the discriminant value given by the
corresponding classifier.

We adapt the coding system to fit the training data by
learning a weighting of the code elements (or classifiers).

The final multi-class prediction rule is = arg maxj(W *

(x))·Cj, where * denotes the component-wise multipli-

cation between vectors. To learn the weight vector W, we
formulate a hard margin optimization problem as

, subject to (W * (xi))·(Cyi
 - Cj) ≥ 1, ∀j ≠ yi.

K P x P y P xk k k(,) (,) (,)((), ()) (()),σ σ σ
Profile Profile Profile= Φ Φ ((()) .P y

f

ŷ

ŷ

f

minW W 2
2 f

Pseudocode for the ranking perceptron algorithm used to learn code weightingFigure 8
Pseudocode for the ranking perceptron algorithm used to learn code weighting. In the pseudocode, ν is the learn-
ing rate; ni = |{yj : yj = yi}| for balanced-loss, and ni = 1 for zero-one loss.

(A) Code weights learning

1: Define F (x , y) = W · (�f(x) ∗Cy)

2: Input ν:

3: W← �0

4: for i = 1 to n do

5: k = argmaxp∈{Y −yi} F (xi, p)

6: if F (xi, yi)−m < F (xi, k) then

7: W←W+νn−1
i

(
�f(xi) ∗Cyi − �f(xi) ∗Ck

)

8: end if

9: end for

10: Return W

(B) Class prediction

1: Define F (x , y) = W · (�f(x) ∗Cy)

2: Input W, xi:

3: Return ŷ ← arg maxj F (xi, j)
Page 12 of 15
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 4):S2 http://www.biomedcentral.com/1471-2105/8/S4/S2
Intuitively, our problem is to find an optimal re-weighting
of the discriminant vector elements such that a weighted
embedding of the discriminant vector in code space R k+q

will exhibit large margins to discriminate between correct
and incorrect codes (i.e., class identity).

The ranking perceptron algorithm [27] is a variant of the
well-known perceptron linear classifier [28]. In our exper-
iments, the ranking perceptron receives as input the discri-
minant vectors for training sequences and produces as
output a weight vector W which is a linear combination of
the input vectors projected onto code space. We modify
the ranking perceptron algorithm such that it will learn
our weight vector W by satisfying n constraints:

W·((xi) * - (xi) * Cj) ≥ m, ∀j ≠ yi (1)

where m is the size of the margin we enforce (Figure 8).

The update rule of the ranking perceptron algorithm can
be different depending on what kind of loss function one
is aiming to optimize. In standard zero-one loss (or classifi-
cation loss), one counts all prediction mistakes equally,

The final zero-one empirical loss is . In bal-

anced loss, the cost of each mistake is inversely propor-
tional to the true class size,

f Cyi
f

l y y
y y

z(,)
;

.
=

≠⎧
⎨
⎩

1

0

if

otherwise

1
n

l y yz i ii
(,)∑

l y y y y y
y y

b i i(,) :
;

.

= =
≠⎧

⎨
⎪

⎩
⎪

1

0

if

otherwise

SVM-Fold fold detection confidenceFigure 9
SVM-Fold fold detection confidence. Confidence vs. ranking score for fold detection on the SVM-Fold server.

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -2 0 2 4

P
ro

ba
bi

lil
ty

Ranking Score f(x)

Confidence Histograms for Fold Prediction on SVM-fold

"a.1"
"a.102"
"a.118"
"a.137"

"a.2"
"a.24"
"a.25"
"a.28"
"a.29"
"a.39"
"a.4"
"a.5"

"a.60"
"a.7"
"a.8"
"b.1"

"b.121"
"b.2"
"b.3"

"b.30"
"b.34"
"b.40"

"b.42"
"b.43"
"b.44"
"b.49"
"b.52"
"b.61"
"b.69"
"b.7"

"b.77"
"b.80"
"b.82"
"b.84"
"b.85"

"c.1"
"c.10"
"c.23"
"c.26"
"c.51"
"c.55"
"c.56"
"c.6"

"c.72"

"c.78"
"c.8"

"c.92"
"d.110"
"d.129"
"d.142"
"d.15"
"d.17"
"d.26"
"d.41"
"d.58"
"d.68"
"d.79"
"d.87"
"d.92"

"f.1"
"f.21"
"f.23"
"f.4"

"g.3"
"g.41"

""
Page 13 of 15
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 4):S2 http://www.biomedcentral.com/1471-2105/8/S4/S2
The final balanced empirical loss is ,

where Y denotes the set of output labels.

Balanced loss is relevant to protein structure prediction
because class sizes are unbalanced, and we do not want to
perform well only on the largest classes. The particular
ranking perceptron training and prediction algorithms
that we use are summarized in the pseudocode in Figure
8, including update rules for both zero-one and balanced
loss.

Relation to other approaches
We note that Rätsch et al. [29] considered a more general
and difficult problem of adapting codes and embeddings,
that is, learning both the code vectors and the embedding
of the vector of prediction scores in output space via a
non-convex optimization problem. In addition, Crammer
and Singer [20] formulated another more general prob-
lem of learning a mapping of all inputs to all outpus. By
restricting ourselves to the simpler problem of reweight-
ing the output space so that our fixed codes perform well,
we are able to define a convex large-margin optimization
problem that can be efficiently solved with recent meth-
ods and is tractable in very large scale settings. Unlike the
other two approaches, we can also choose which loss
function we wish to optimize – for example, in protein
classification, we can use the balanced loss, so that per-
formance on the large classes does not dominate the
results – and we can make use of hierarchical labels.

Confidence scores
In the results table for the webserver, we also provide a
confidence score for each target class, which is the empir-
ical probability that the ranking score is correct. This is
achieved by performing a cross-validation on the training
set and and creating a histogram of probabilities for each
class given the ranking scores and their correct labels.
These are shown in Figure 9.

Optimizations
The profile kernel for the entire training set can be effi-
ciently computed using a trie data structure [11]. To do
this, one performs a lexical traversal of all instances of k-
mers that appear in the dataset. Hence, the tree is a rooted
tree of depth k where each internal node has 20 branches,
each labeled with an amino acid. A leaf node represents a
fixed k-mer in our feature space, obtained by concatenat-
ing branch symbols along the path from root to leaf. We
perform a depth-first traversal of the data structure, and at
each step we maintain the list of k-mers, and the proteins
that they are derived from, that appear in the training set
which are in the positional mutation neighborhood of the
current node in the tree. Each passage from parent node to

child node reduces the size of this list; as soon as this list
is empty, further branches from this node are not
explored. If a leaf node is reached we can update the ker-
nel matrix using the remaining k-mers in the list.

The profile kernel method employed by the webserver is
optimized to produce one row of the kernel matrix. This
is implemented as above except one only needs to traverse
nodes that contain k-mers from the query sequence. A fur-
ther refinement is that the webserver caches the tree of k-
mers found in the training dataset to the first three levels
of the tree, taking approximately 8 GB of memory. On
receving a query, the server process forks and completes
the tree with respect to the query. Caching the tree reduced
the profile kernel portion of the query processing time in
a typical example from 3 min 43 s to 1 min 18 s.

Authors' contributions
IM implemented the webserver, SVM-Fold, conducted the
computer experiments described here, and helped draft
the manuscript. EI conducted the earlier research and
experiments described in the conference version of this
work. RK developed the profile kernel SVM which we use
for SVM-Fold. JW helped develop the adaptive code tech-
nique. WSN and CL coordinated the research, helped
design the experiments and draft the manuscript.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
We would like to thank Asa Ben-Hur for helpful comments. This work was
supported by NSF grant EIA-0312706, by NIH grant GM74257, and by the
National Institutes of Health Roadmap Initiative, National Centers for Bio-
medical Computing Grant 1U54CA121852.

This article has been published as part of BMC Bioinformatics Volume 8, Sup-
plement 4, 2007: The Second Automated Function Prediction Meeting. The
full contents of the supplement are available online at http://www.biomed
central.com/1471-2105/8?issue=S4.

References
1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: A basic local

alignment search tool. Journal of Molecular Biology 1990,
215(3):403-410.

2. Smith T, Waterman M: Identification of common molecular
subsequences. Journal of Molecular Biology 1981, 147:195-197.

3. Krogh A, Brown M, Mian IS, Sjölander K, Haussler D: Hidden
Markov models in computational biology: Applications to
protein modeling. Journal of Molecular Biology 1994,
235:1501-1531.

4. Park J, Karplus K, Barrett C, Hughey R, Haussler D, Hubbard T, Cho-
thia C: Sequence comparisons using multiple sequences
detect twice as many remote homologues as pairwise meth-
ods. Journal of Molecular Biology 1998, 284(4):1201-1210.

5. Jaakkola T, Diekhans M, Haussler D: A discriminative framework
for detecting remote protein homologies. Journal of Computa-
tional Biology 2000, 7(1–2):95-114.

6. Leslie C, Eskin E, Weston J, Noble WS: Mismatch string kernels
for SVM protein classification. Advances in Neural Information
Processing Systems 2002, 15:1441-1448.

1
Y

l y yb i ii
(,)∑
Page 14 of 15
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8?issue=S4
http://www.biomedcentral.com/1471-2105/8?issue=S4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7265238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7265238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8107089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8107089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8107089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9837738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9837738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9837738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10890390
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10890390

BMC Bioinformatics 2007, 8(Suppl 4):S2 http://www.biomedcentral.com/1471-2105/8/S4/S2
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

7. Liao L, Noble WS: Combining pairwise sequence similarity and
support vector machines for remote protein homology
detection. Proceedings of the 6th Annual International Conference on
Research in Computational Molecular Biology 2002:225-232.

8. Ben-Hur A, Brutlag D: Remote homology detection: a motif
based approach. Proceedings of the Eleventh International Conference
on Intelligent Systems for Molecular Biology 2003, 19(suppl 1):i26-i33.

9. Saigo H, Vert JP, Ueda N, Akutsu T: Protein homology detection
using string alignment kernels. Bioinformatics 2004,
20(11):1682-1689.

10. Leslie C, Eskin E, Cohen A, Weston J, Noble WS: Mismatch string
kernels for discriminative protein classification. Bioinformatics
2004, 20(4):467-476.

11. Kuang R, Ie E, Wang K, Wang K, Siddiqi M, Freund Y, Leslie C: Profile
kernels for detecting remote protein homologs and discrim-
inative motifs. Journal of Bioinformatics and Computational Biology
2005. [To appear]

12. Weston J, Leslie C, Zhou D, Elisseeff A, Noble WS: Cluster Kernels
for Semi-supervised Protein Classification. Advances in Neural
Information Processing Systems 2003, 17:.

13. Kuang R, Ie E, Wang K, Wang K, Siddiqi M, Freund Y, Leslie C: Pro-
file-based string kernels for remote homology detection and
motif extraction. In 3rd International IEEE Computer Society Compu-
tational Systems Bioinformatics Conference IEEE Computer Society;
2004:152-160.

14. Murzin AG, Brenner SE, Hubbard T, Chothia C: SCOP: A struc-
tural classification of proteins database for the investigation
of sequences and structures. Journal of Molecular Biology 1995,
247(4):536-540.

15. SVM-Fold [http://svm-fold.c2b2.columbia.edu]
16. Vapnik VN: Statistical Learning Theory John Wiley and Sons, New York;

1998.
17. Weston J, Watkins C: Support vector machines for multiclass

pattern recognition. Proceedings of the 7th European Symposium On
Artificial Neural Networks 1999.

18. Allwein EL, Schapire RE, Singer Y: Reducing Multiclass to Binary:
A Unifying Approach for Margin Classifiers. In Proceedings of
the 17th International Conference on Machine Learning Morgan
Kaufmann, San Francisco, CA; 2000:9-16.

19. Dietterich TG, Bakiri G: Solving Multiclass Learning Problems
via Error-Correcting Output Codes. Journal of Artificial Intelli-
gence Research 1995, 2:263-286.

20. Crammer K, Singer Y: On the Learnability and Design of Out-
put Codes for Multiclass Problems. Computational Learning The-
ory 2000:35-46.

21. Rifkin R, Klautau A: In Defense of One-Vs-All Classification.
Journal Machine Learning Research 2004, 5:101-141.

22. Platt J: Probabilities for Support Vector Machines. Advances in
Large Margin Classifiers 1999:61-74.

23. Ie E, Weston J, Noble WS, Leslie C: Multi-class protein fold rec-
ognition using adaptive codes. Proceedings of the 22nd Interna-
tional Conference on Machine Learning 2005.

24. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lip-
man DJ: Gapped BLAST and PSI-BLAST: A new generation of
protein database search programs. Nucleic Acids Research 1997,
25:3389-3402.

25. Brenner SE, Koehl P, Levitt M: The ASTRAL compendium for
sequence and structure analysis. Nucleic Acids Research 2000,
28:254-256.

26. Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton
JM: CATH – A Hierarchic Classification of Protein Domain
Structures. Structure 1997:1093-1109.

27. Collins M, Duffy N: New Ranking Algorithms for Parsing and
Tagging: Kernels over Discrete Structures, and the Voted
Perceptron. Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics 2002:263-270.

28. Rosenblatt F: The perceptron: A probabilistic model for infor-
mation storage and organization in the brain. Psychological
Review 1958, 65:386-407.

29. Rätsch G, Smola AJ, Mika S: Adapting codes and embeddings for
polychotomies. Advances in Neural Information Processing Systems
2002, 15:513-520.
Page 15 of 15
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14988126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14988126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14990442
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14990442
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7723011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7723011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7723011
http://svm-fold.c2b2.columbia.edu
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9309224
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9309224
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13602029
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13602029
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

