
Journal of Machine Learning Research 8 (2007) 1557-1581 Submitted 8/06; Revised 4/07; Published 7/07

Multi-class Protein Classification Using Adaptive Codes

Iain Melvin∗ IAIN@NEC-LABS.COM

NEC Laboratories of America
Princeton, NJ 08540, USA

Eugene Ie∗ TIE@UCSD.EDU

Department of Computer Science and Engineering
University of California
San Diego, CA 92093-0404, USA

Jason Weston JASONW@NEC-LABS.COM

NEC Laboratories of America
Princeton, NJ 08540, USA

William Stafford Noble NOBLE@GS.WASHINGTON.EDU

Department of Genome Sciences
Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195, USA

Christina Leslie CLESLIE@CS.COLUMBIA.EDU

Center for Computational Learning Systems
Columbia University
New York, NY 10115, USA

Editor: Nello Cristianini

Abstract
Predicting a protein’s structural class from its amino acid sequence is a fundamental problem in
computational biology. Recent machine learning work in this domain has focused on develop-
ing new input space representations for protein sequences, that is, string kernels, some of which
give state-of-the-art performance for the binary prediction task of discriminating between one class
and all the others. However, the underlying protein classification problem is in fact a huge multi-
class problem, with over 1000 protein folds and even more structural subcategories organized into
a hierarchy. To handle this challenging many-class problem while taking advantage of progress
on the binary problem, we introduce an adaptive code approach in the output space of one-vs-
the-rest prediction scores. Specifically, we use a ranking perceptron algorithm to learn a weight-
ing of binary classifiers that improves multi-class prediction with respect to a fixed set of out-
put codes. We use a cross-validation set-up to generate output vectors for training, and we de-
fine codes that capture information about the protein structural hierarchy. Our code weighting
approach significantly improves on the standard one-vs-all method for two difficult multi-class
protein classification problems: remote homology detection and fold recognition. Our algorithm
also outperforms a previous code learning approach due to Crammer and Singer, trained here us-
ing a perceptron, when the dimension of the code vectors is high and the number of classes is
large. Finally, we compare against PSI-BLAST, one of the most widely used methods in pro-
tein sequence analysis, and find that our method strongly outperforms it on every structure clas-

∗. The first two authors contributed equally to this work.

c©2007 Iain Melvin, Eugene Ie, Jason Weston, William Stafford Noble and Christina Leslie.

MELVIN, IE, WESTON, NOBLE AND LESLIE

sification problem that we consider. Supplementary data and source code are available at http:
//www.cs.columbia.edu/compbio/adaptive.

Keywords: multi-class classification, error-correcting output codes, structured outputs

1. Introduction

Numerous statistical and supervised learning methods have been developed for detecting protein
structural classes from primary sequence information alone. These methods can be categorized into
three major types of approaches: pairwise sequence comparison algorithms (Altschul et al., 1990;
Smith and Waterman, 1981), generative models for protein families (Krogh et al., 1994; Park et al.,
1998), and discriminative classifiers (Jaakkola et al., 2000; Leslie et al., 2002b; Liao and Noble,
2002; Ben-Hur and Brutlag, 2003; Saigo et al., 2004). Many recent studies (see, e.g., Leslie et al.,
2004) have shown that discriminative classifiers such as support vector machines (SVMs) used with
appropriate sequence representations outperform the other two types of protein classification meth-
ods in the context of binary classification, that is, prediction of whether a sequence belongs to a
particular structural class or not. The binary classification performance of semi-supervised discrim-
inative methods, which incorporate unlabeled protein sequence data into the learning algorithm, is
particularly strong (Kuang et al., 2005; Weston et al., 2005). However, it is uncertain how best to
leverage these accurate binary classifiers to solve the more important multi-class problem of clas-
sifying protein sequences into one of a vast number structural classes. Currently, for example, the
manually curated Structural Classification of Proteins (SCOP, Murzin et al., 1995) contains more
than 1000 distinct 3D conformation classes called folds and even more structural subcategories
(protein superfamilies and families). This complex prediction task provides a challenging problem
for multi-class algorithms.

In the machine learning literature, two main strategies have been devised to tackle multi-class
problems (reviewed in Rifkin and Klautau, 2004): formulating multi-class optimization problems
that generalize binary classifiers like support vector machines (Vapnik, 1998; Weston and Watkins,
1999), or reducing multi-class problems to a set of binary classification problems and processing
the output vectors of binary predictions to obtain a multi-class prediction (Allwein et al., 2000;
Dietterich and Bakiri, 1995). The difficulty with the first method is that one usually ends up with a
complex optimization problem that is computationally expensive. We therefore focus on the second,
more computationally tractable approach, which encompasses standard methods like one-vs-all, all-
vs-all, and error-correcting output codes. By “one-vs-all,” we refer to the procedure of training N
one-vs-the-rest real-valued classifiers to obtain a length-N output vector and testing new examples
by predicting the class with the largest binary prediction score. All-vs-all is similar, except that one
trains all pairwise binary classifiers to obtain a length N(N − 1)/2 output vector (Allwein et al.,
2000). In error-correcting output codes (ECOC), one represents different classes by binary vectors,
called output codes, in the output vector space and predicts the class based on which output code
is closest to the binary output vector for the example (Dietterich and Bakiri, 1995; Crammer and
Singer, 2000). Despite the wide range of proposed multi-class solutions, a recent empirical study
suggests that the simple one-vs-all approach performs as well or better than all other methods in
most cases (Rifkin and Klautau, 2004).

One failing of one-vs-all is that it assumes that the prediction scores of the component binary
classifiers are comparable, so that the individual classifier with the largest prediction corresponds
to the best class. This assumption is often invalid in practice. One proposed remedy for SVM

1558

MULTI-CLASS PROTEIN CLASSIFICATION USING ADAPTIVE CODES

classifiers in particular is to fit a sigmoid function to the predicted margins for each classifier (Platt,
1999). After this procedure, the output probabilities rather than the margins are compared in one-
vs-all. However, in many applications, the training data may be insufficient to fit the sigmoids
accurately, or the sigmoids may be poor models for the margin distributions. Moreover, one-vs-
all and the other standard output vector approaches do not take advantage of known relationships
between classes, such as hierarchical relationships in the protein structural taxonomy, although there
has been some recent work on hierarchical classification (Dekel et al., 2004; Cesa-Bianchi et al.,
2006; Barutcuoglu et al., 2006). We further note that within the Bayesian learning community,
alternative probabilistic strategies have been proposed for the multi-class problem, for example the
multinomial probit model for multi-class Gaussian process classification (Girolami and Rogers,
2006).

In this work, we present a simple but effective multi-class method for protein structural classi-
fication that combines the predictions of state-of-the-art one-vs-the-rest SVM protein classifiers by
supervised learning in the output space. In order to solve the problem that prediction scores from
different classifiers are not on the same scale, we pose an optimization problem to learn a weighting
of the real-valued binary classifiers that make up the components of the output vector. Instead of
using ad hoc output codes as in ECOC, we design codes that are directly related to the structural
hierarchy of a known taxonomy, such as SCOP, with components that correspond to fold, super-
family, and family detectors. We use a cross-validation set-up to generate output vectors as training
data for learning weights, which we accomplish with a simple ranking perceptron approach. We
note that Rätsch et al. (2002) considered a more general and difficult problem of adapting codes
and embeddings, that is, learning both the code vectors and the embedding of the vector of pre-
diction scores in output space via a non-convex optimization problem. In addition, Crammer and
Singer (2000) formulated another more general problem of learning a mapping of all inputs to all
outputs. By restricting ourselves to the simpler problem of reweighting the output space so that our
fixed codes perform well, we are able to define a convex large-margin optimization problem that is
tractable in very large-scale settings. We can also choose which loss function we wish to optimize.
For example, in protein classification, we can use the balanced loss, so that performance on the large
classes does not dominate the results.

The rest of the paper is organized as follows. In Section 2, we provide background on the pro-
tein classification problem, including our choice of base classifiers and construction of hierarchical
codes. We then present our algorithmic approach for learning code weights in the output space using
the ranking perceptron, describe different perceptron update rules, and compare to the code learning
method of Crammer and Singer (2000) and other related work in Section 3. We provide large-scale
experimental results on the multi-class remote homology detection and fold recognition problems
in Section 4, comparing our approach with a number of alternatives: standard one-vs-all, sigmoid
fitting, PSI-BLAST (Altschul et al., 1997) used in a nearest neighbor approach to make multi-class
predictions, and a perceptron version of Crammer and Singer’s code learning method. We find that
our adaptive code approach significantly outperforms one-vs-all in both multi-class problem set-
tings and over all choices of code elements. We also strongly outperform PSI-BLAST for every
structural classification problem that we consider. Finally, we find that our code learning algorithm
obtains significantly better results than the higher capacity scheme of Crammer and Singer in the
setting where the number of classes and dimension of the output space are both high. The current
work is an expanded version of a conference proceedings paper (Ie et al., 2005). For this version,
we have provided a much larger-scale experimental validation, added results on the fold recognition

1559

MELVIN, IE, WESTON, NOBLE AND LESLIE

problem, introduced improved perceptron update rules and extended code vectors, and included a
comparison with the Crammer and Singer method.

Our adaptive code algorithm is used in a newly deployed protein fold recognition web server
available called SVM-Fold, available at http://svm-fold.c2b2.columbia.edu.

2. Background on Protein Classification: Problems, Representations, and Codes

In this section, we first discuss protein classification problems in general. We then give an overview
of our method.

2.1 Remote Homology Detection and Fold Recognition

Protein classification is the prediction of a protein’s structural class from its primary sequence of
amino acids. This prediction problem is of fundamental importance in computational biology for
a number reasons. First, a protein’s structure is closely linked to its biological function, so knowl-
edge of the structural category can allow improved prediction of function. Moreover, experimental
methods for determining the full 3D structure of a protein (X-ray crystallography, NMR) are time
consuming and difficult and cannot keep pace with the rapid accumulation of unannotated protein
sequences from newly sequenced genomes. Indeed, the complete repository of known protein struc-
tures, deposited in the Protein Data Bank, contains just 27K structures, while there are about 1.5M
protein sequences in the Non-redundant Database of protein sequences. Second, prediction of a
protein sequence’s structural class enables the selection of a template structure from the database,
which can then used with various comparative modeling techniques to predict a full 3D structure
for the protein. Predicted structures are important for more detailed biochemical analysis and in
particular for drug design. Note that template-based modeling approaches far outperform ab ini-

Remote homology detection Fold recognition

Figure 1: Two protein classification problems. (Left) In the SCOP database, we simulate the remote
homology detection problem by holding out a test family (shown in dark gray) from a su-
perfamily and using the other families as positive training data (shown in light gray). The
task is to correctly predict the superfamily or fold membership of the held-out sequences.
(Right) We simulate the fold recognition problem by holding out a test superfamily (dark
gray) from a fold and using the other superfamilies as training data (light gray). The task
is to correctly recognize the fold of the held-out sequences.

1560

MULTI-CLASS PROTEIN CLASSIFICATION USING ADAPTIVE CODES

tio techniques for protein structure, that is, methods that search for conformations that optimize an
energy function without any template structure.

In this work, we focus on two protein classification problems that are considered unsolved in
the structural biology community: remote homology detection and fold recognition. In remote
homology detection, we wish to recognize when a new protein sequence has a distant evolutionary
relationship to a protein sequence in a database (e.g., one whose structure is known). Due to a distant
common ancestor, the protein sequences exhibit subtle sequence similarities (remote homology) that
cannot generally be detected by statistical, alignment-based methods (Altschul et al., 1990, 1997).
In fold recognition, we wish to recognize when a new protein sequence will exhibit the same fold as
a protein from the structure database, even is there is no evidence of any evolutionary relationship
between the proteins.

We base our experiments on SCOP, a manually curated hierarchical classification system for
known protein structures. At the top level of the hierarchy are SCOP folds, consisting of sequences
that have the same general 3D structural architecture. SCOP folds are divided into superfamilies,
containing sequences that are at least remotely homologous (evolutionarily related). Each superfam-
ily is further divided into families, consisting of homologous sequences with an easily detectable
level of sequence similarity. We can design experiments based on the SCOP hierarchy to test per-
formance on both the remote homology detection and the fold recognition problem, as depicted in
Figure 1.

2.2 Profile-Based Fold, Superfamily and Family Detectors

For our base binary classifiers, we use profile-based string kernel SVMs (Kuang et al., 2005) that are
trained to recognize SCOP fold, superfamily, and family classes. We call these trained SVMs fold
detectors, superfamily detectors, and family detectors. The profile kernel is a function that measures
the similarity of two protein sequence profiles based on their representation in a high-dimensional
vector space indexed by all k-mers (k-length subsequences of amino acids). A sequence profile
is based on a multiple alignment of protein sequences to the input sequence and simply refers
to the position-specific distribution of amino acids estimated from each column of the alignment.
Intuitively, we use each k-length window of the sequence profile to define a positional mutation
neighborhood of k-mers that satisfy a likelihood threshold, and the underlying feature map counts
the k-mers from all the positional neighborhoods.

Specifically, for a sequence x and its sequence profile P(x), the positional mutation neighbor-
hood at position j and with threshold σ is defined to be the set of k-mers β = b1b2 . . .bk satisfying a
likelihood inequality with respect to the corresponding block of the profile P(x), as follows:

M(k,σ)(P(x[j +1 : j + k])) =

{β = b1b2 . . .bk :−
k

∑
i=1

log p j+i(bi) < σ}.

Note that the emission probabilities, p j+i(b), i = 1 . . .k, come from the profile P(x); for notational
simplicity, we do not explicitly indicate the dependence on x.

We now define the profile feature mapping as

ΦProfile
(k,σ) (P(x)) = ∑

j=0...|x|−k

(φβ(P(x[j +1 : j + k])))β∈Σk

1561

MELVIN, IE, WESTON, NOBLE AND LESLIE

where the coordinate φβ(P(x[j + 1 : j + k])) = 1 if β belongs to the mutation neighborhood M(k,σ)

(P(x[j + 1 : j + k])), and otherwise the coordinate is 0. The profile kernel between two protein
sequences, that is, the inner product of feature vectors, can be efficiently computed from the original
pair of profiles using a trie data structure (Kuang et al., 2005).

The use of profile-based string kernels is an example of semi-supervised learning, since unla-
beled data in the form of a large sequence database is used in the discrimination problem (specifi-
cally, to estimate the probabilistic profiles).

A large variety of kernels have been designed specifically for protein sequences (e.g., Jaakkola
et al., 2000; Liao and Noble, 2002; Leslie et al., 2002a,b; Weston et al., 2005; Saigo et al., 2004; Ben-
Hur and Brutlag, 2003; Rangwala and Karypis, 2005). For this work, we selected the profile kernel
because it is state-of-the-art. However, we have no reason to suspect that our primary conclusions
regarding various multi-class classification methods depend on the choice of kernel function.

2.3 PSI-BLAST Family Detectors

PSI-BLAST (Altschul et al., 1997) is a widely used sequence comparison algorithm that builds a
probabilistic profile around a query sequence, based on iterative alignment to database sequences.
The resulting profile is then used to evaluate pairwise sequence similarities between the query and
target sequences in the database. PSI-BLAST reports the significance of the similarity as an E-value
(defined as the expected number of times that a similarity as strong or stronger than the observed
similarity would be observed in a random protein sequence database of the given size), based on
a profile-sequence alignment score. In theory, the E-value calculation makes PSI-BLAST results
from different queries comparable to each other.

In this work, we use PSI-BLAST as a baseline method for comparison as well as a tool for
generating sequence profiles for the profile kernel. In addition, we use PSI-BLAST to define an
additional set of base classifiers for extended components of the output vectors in our multi-class
approach.

For a given input sequence, we compute 1.0 - (the smallest PSI-BLAST E-value from the input
sequence to training proteins in the family) and use this value as the component for the PSI-BLAST
family detector in the discriminant vectors. Sequences with high similarity to one of the training
sequences in the family receive a prediction score close to 1; if the E-value is highly insignificant,
the score will be negative and large.

2.4 Output Vectors and Codes

To incorporate hierarchical labels into our output representation, we simply concatenate into a single
output vector the one-vs-the-rest classification scores for classes at all relevant levels of the hierar-
chy. For example, in either the remote homology detection or fold recognition setting, both fold and
superfamily detectors may be relevant for making fold-level predictions on test examples. Suppose
the number of superfamilies and folds in a SCOP-based data set is k and q respectively. Then the
real-valued output vector for each test sequence x would be ~f (x) = (f1(x), ..., fk+q(x)), where the
fi are binary SVM superfamily or fold detectors trained using profile string kernels as described
above. One can also extend the output vector to include binary family detectors. More generally, in
this work we consider code elements that correspond to binary class detectors at the same level in
the hierarchy as the target class (e.g., the fold level for fold predictions) as well as sublevels of the
target class.

1562

MULTI-CLASS PROTEIN CLASSIFICATION USING ADAPTIVE CODES

In the same output space, we define binary vectors that represent the hierarchical labels relevant
for the problem. For the fold-level prediction example above, we define for superfamily classes
j ∈ {1, ...,k} the code vectors C j = (superfam j, fold j), where superfam j and fold j are vectors with
length equal to the number of known superfamilies (k) and folds (q), and each of these two vectors
has exactly one non-zero component corresponding to structural class identity.

Our main idea is to learn a weight vector W = (W1, . . . ,Wk+q) to perform multi-class predic-
tions with the weighted code prediction rule, ŷ = argmax j(W∗ ~f (x)) ·C j, where W∗ ~f (x) denotes
component-wise multiplication. In the next section, we describe how to learn W by using a ranking
perceptron with a cross-validation set-up on the training set, and we develop update rules suited to
the hierarchical problem.

3. Multi-Class Algorithms

In this section we describe methods for combining binary classification models into multiclass al-
gorithms.

3.1 Motivation: Optimizing Weights in Output Space

Given a fixed set of binary codes C j and real-valued output vectors ~f (x) in the same output space R
N

(see Section 2.4 for an example where N = k+q=#folds + #superfamilies), we want to adapt the cod-
ing system by learning a weight vector W so that the multi-class prediction rule ŷ = argmax j(W∗
~f (x)) ·C j gives good empirical loss on the training data and generalizes well.

To learn W, we first propose a hard margin optimization problem as

min
W
||W||22, (1)

subject to
(

W∗ ~f (xi)
)

· (Cyi−C j)≥ 1, ∀ j 6= yi.

Intuitively, our problem is to find an optimal weighting of the output vector elements such that the
re-weighted embedding of examples in the output space R

N will exhibit a large margin between
correct and incorrect codes.

We use the ranking perceptron to find an approximate solution to this optimization problem,
though a structured SVM approach (see Section 3.4.4) is also possible. Since for the SVM base
classifiers in particular, discriminant scores on training sequences are not very informative, we use
a cross-validation set-up to produce prediction scores for the weight learning optimization. The
full methodology consists of five steps: (1) split the training data into 10 cross-validation sets; (2)
for each held-out fold, train a collection of fold-, superfamily-, and family-level detectors on the
remaining data and use them to generate real-valued predictions on the held-out fold; (3) using
the cross-validation scores to form output vectors, learn code weights with the ranking perceptron
algorithm; (4) re-train fold, superfamily, and family detectors on the full training set; and (5) test on
the final untouched test set.

3.2 Learning Weights with the Ranking Perceptron

The ranking perceptron algorithm (Collins and Duffy, 2002) is a variant of the well-known percep-
tron linear classifier (Rosenblatt, 1958). In our experiments, the ranking perceptron receives as input

1563

MELVIN, IE, WESTON, NOBLE AND LESLIE

(A) Code weights learning

1: Define F(x,y) = W · (~f (x)∗Cy)
2: Input ν:
3: W←~0
4: for i = 1 to n do
5: k = arg maxp∈{Y−yi}F(xi, p)
6: if F(xi,yi)−m < F(xi,k) then

7: W←W+νn−1
i

(

~f (xi)∗Cyi−~f (xi)∗Ck

)

8: end if
9: end for

10: Return W

(B) Class prediction

1: Define F(x,y) = W · (~f (x)∗Cy)
2: Input W, xi:
3: Return ŷ← argmax j F(xi, j)

Figure 2: Pseudocode for the ranking perceptron algorithm used to learn code weighting. In the
pseudocode, ν is the learning parameter; ni = |{y j : y j = yi}| for balanced-loss, and ni = 1,
for zero-one loss.

the discriminant vectors for training sequences (generated through a cross-validation procedure) and
produces as output a weight vector W which is a linear combination of the discriminant vectors pro-
jected onto the non-zero components of codes. We modify the ranking perceptron algorithm such
that it will learn our weight vector W by satisfying n constraints:

W · (~f (xi)∗Cyi−~f (xi)∗C j)≥ m, ∀ j 6= yi, (2)

where m is the size of the margin that we enforce (Figure 2).
The update rule of the ranking perceptron algorithm depends upon what loss function one is

aiming to optimize. In standard zero-one loss (or classification loss), one counts all prediction
mistakes equally,

lz(y, ŷ) =

{

1 if ŷ 6= y;

0 otherwise.

The final zero-one empirical loss is 1
n ∑i lz(yi, ŷi). In balanced loss, the cost of each mistake is

inversely proportional to the true class size,

lb(y, ŷ) =

{

1
|yi:yi=y| if ŷ 6= y;

0 otherwise.

The final balanced empirical loss is 1
|Y | ∑i lb(yi, ŷi), where Y denotes the set of output labels.

Balanced loss is relevant to the protein structure prediction because class sizes are unbalanced,
and we do not want to perform well only on the largest classes. The particular ranking percep-
tron training and prediction algorithms that we use are summarized in the pseudocode in Figure 2,
including update rules for both zero-one and balanced loss.

3.3 The Friend/Foe and Mean Friend/Foe Update Rules

When using codes representing multiple levels of the label hierarchy, we can also use relationships
between codes to redefine the perceptron update rule. For a given label y, let friends(y) be the

1564

MULTI-CLASS PROTEIN CLASSIFICATION USING ADAPTIVE CODES

set of codes for classes belonging to the same superclass as y. For example, if we are using both
superfamily and fold detectors for fold-level predictions and Cy = (superfamy, foldy), the set of
friends would be the codes for the superfamilies in the same fold as y (in particular, y itself belongs to
friends(y)). We let foes(y) be all the codes that are not in friends(y). Then we can use the following
update rule that updates all of friends(y) when the weakest friend does not beat the strongest foe by
a margin:

1: k = arg minp∈{friends(yi)}F(xi, p)
2: l = arg maxp∈{foes(yi)}F(xi, p)
3: if F(xk,k)−m < F(xi, l) then

4: W←W+νn−1
i

(

~f (xi)∗Cfriends(yi)−
~f (xi)∗Cl

)

5: end if

In this rule, the vector Cfriends(y) is the binary OR of all code vectors belonging to the super-
class of y. We also implement a “mean friend/foe” rule whereby each element of Cfriends(n) is the
arithmetic mean of the occurrences of the code in all code vectors belonging to the superclass.

3.4 Comparison with Existing Approaches

In this section we compare our method to a range of existing approaches.

3.4.1 THE RANKING PERCEPTRON AND STRUCTURED OUTPUT LEARNING

The ranking perceptron (Collins, 2000; Freund and Schapire, 1999) has been used to solve structured
learning problems, particularly in natural language processing. Collins and Duffy (2002) trained
parsers on the Penn Treebank that output a parse tree given a input sentence. This mapping from
structured input to structured output is achieved by embedding both input and output objects into a
joint feature space and computing for a test example:

ŷ = argmax
y∈Y
〈W,ψ(x,y)〉.

Our approach follows the same framework, but we compute ŷ = argmax j(W∗~f (x)) ·C j, where
W∗ ~f (x) denotes component-wise multiplication. That is, we choose the joint feature embedding:

ψ(x,y) = ~f (x)∗Cy = ∑
i

(~f (x))i(Cy)i.

Our approach is thus an instance of structured output learning where the joint feature space cap-
tures dependencies between input and output variables. Firstly, inputs are modeled by ~f which uses
classifiers relating to the levels of the label hierarchy in SCOP. Secondly, the outputs are modeled
such that they are only dependent on classifiers from the relevant node or its ancestors.

3.4.2 MULTI-CLASS SVMS

Multi-class SVMs (Weston and Watkins, 1999; Vapnik, 1998) are a generalization of SVMs that
handle the multi-class classification case by optimizing a single objective function. They use the
rule ŷ = argmaxy∈Y 〈wi · x〉 as in the one-versus-all approach but enforce constraints of the form:

〈wyi · x〉−〈wy · x〉> 1 ∀y ∈ Y ,y 6= yi.

1565

MELVIN, IE, WESTON, NOBLE AND LESLIE

1: Define F(x,y) = Wy · (~f (x))
2: k = arg maxp∈{Y−yi}F(xi, p)
3: if F(xi,yi)−m < F(xi,k) then
4: Wyi ←Wyi +νn−1

yi
~f (xi)

5: Wk←Wk−νn−1
j

~f (xi)
6: end if

Figure 3: Pseudo-code for the perceptron implementation of the Crammer-Singer code learning
method detailed in Crammer and Singer (2000).

Crammer and Singer (2002) later extended this approach by simplifying computations in the non-
separable case (although the separable case remains the same). These constraints are identical to
the ranking perceptron approach if, for that method, one selects the embedding (see Tsochantaridis
et al., 2004):

ψ(x,y) = φ(x)⊗Λ(y), (3)

where Λ(y) = (δ1,y, ..,δN,y)
> ∈ {0,1}K , K is the number of clases, δ·,· is the Kronecker delta, and

(a⊗b) j+(i−1)K) = ai ·b j.
Multi-class SVMs are rather slow to train for non-linear systems which use kernels, since train-

ing in the dual has worst case complexity O((mK)3), where m is the number of training examples
and K is the number of classes (Hsu and Lin, 2002). For this reason, we do not compare our ap-
proach to this method. However, our two-stage approach of training one-vs-all classifiers and then
improving their performance with adaptive codes is tractable, because we train in primal variables
and only have N input features, equal to the number of classifiers trained.

3.4.3 THE CRAMMER-SINGER METHOD

Crammer and Singer (2000) also suggested a method for learning codes in a two-step fashion, which
represents the closest algorithmic approach to ours that we know of. In their method, N weight
vectors (one for each class) are optimized simultaneously but with no dependency between input
and output features. The classification rule they use is ŷ = argmaxi Wi ·~f (x), and the feature space
they use is identical to (3). In other words, they use the multi-class SVM to learn the second stage
of their two-stage approach. This formulation means that the prediction of a given label i could
depend on the output of any of the classifiers from the first stage, if the weight vector learned is not
sparse. By contrast, in our approach, the ith label only depends on classifiers related to that label in
the label hierarchy. In the case of a flat hierarchy (pure multi-class classification), our approach only
rescales the classifiers in the one-vs-all approach, whereas the Crammer-Singer method learns, for
each output, a weighted combination from all the one-vs-all classifiers. That is, they learn the more
difficult problem of a mapping of all inputs to all outputs. Because of this, we hypothesise that the
Crammer-Singer approach is likely to fail in the case of a large number of classes, as uncorrelated
classes are essentially noisy features in the second stage of learning.

In Section 4 we make a comparison between our method and the Crammer-Singer approach. To
facilitate comparisons, we implemented a perceptron-style learning of their algorithm (Figure 3),
both with and without balanced loss. In our experiments, which use a very large number of classes,
our approach indeed does outperform the one of Crammer and Singer.

1566

MULTI-CLASS PROTEIN CLASSIFICATION USING ADAPTIVE CODES

3.4.4 USING STRUCTURED SVMS TO LEARN CODE WEIGHTS

Support vector machines have been applied to problems with interdependent and structured output
spaces in Tsochantaridis et al. (2004). These authors make use of a combined input-output feature
representation ψ(x,y) as training vectors to learn a linear classification rule ŷ = argmaxy∈Y 〈W,ψ(x,y)〉.
Specifically, they use the ψ(·, ·) relation to discover input-output relations by forming n|Y |−n linear
constraints. These linear constraints specify that all correct input-output structures must be clearly
separated from all incorrect input-output structures,

〈W,δψi(y)〉> 0 ∀i,y 6= yi,

where δψi(y)≡ψ(xi,yi)−ψ(xi,y). By defining, ψ(xi,y) = ~f (xi)∗Cy, we arrive at linear constraints
that are a special case of Equation 2. Using standard maximum-margin methods like SVMs, we
obtain the hard margin problem described by (1) above and the soft margin problem

minW,ξ
1
2 ||W||22 + C

n ∑n
i=1 ξi

∀i,ξi ≥ 0;∀i,∀y ∈ {Y − yi} : 〈W,δψ(y)〉 ≥ 1−ξi,

where the ξi correspond to slack variables (the amount an example can violate the margin), and C
corresponds to the trade-off between maximizing the margin and the degree to which noisy examples
are allowed to violate the margin.

Intuitively, our definition of ψ defines the distance between two different protein embeddings
in code space, and we are using large margin SVM methods to find the relative weighting of the
dimensions in code space. Moreover, one can optimize the balanced loss by rescaling the slack

variables ξi ←
ξi

lb(yi,y)
in the constraint inequalities. However, in preliminary results (Ie et al.,

2005), we found that the structured SVM gave similar performance to the ranking perceptron when
used with our joint input-output embedding ψ, so we focus on perceptron approaches in the current
study.

3.4.5 LOSS FUNCTIONS AND ENERGY BASED LEARNING

Another general approach to structured output learning, called Energy Based Learning (EBL), was
suggested by LeCun and Huang (2005), which is derived from the earliest approach to structured
output prediction that we know of (Bottou et al., 1997). In EBL, for a given input, one chooses the
output with the lowest energy:

ŷ = argmin
y∈Y

E(x,y).

One therefore seeks to use a loss function that pushes “down” the energy of the correct output(s) and
pushes “up” the energy of other outputs. The authors show how different choices of loss function
lead to different existing algorithms, including the ranking perceptron, which only pushes up the
incorrect answers produced by the model, and negative log-likelihood, which pushes up the energies
for all the examples with a force proportional to the likelihood of each answer under the model. Our
friend/foe update rule can be seen in this framework as a different loss function that takes account
of multiple output values that all give the same original loss.

1567

MELVIN, IE, WESTON, NOBLE AND LESLIE

3.4.6 RÄTSCH ET AL.’S ADAPTIVE CODE LEARNING

Rätsch et al. (2002) also considered the problem of adaptive code learning and proposed a general
approach consisting of learning both code vectors and the embedding of the vector of prediction
scores in output space. Their algorithm involves iteration between learning the codes and learning
the embedding, resulting in a difficult non-convex optimization problem.

By restricting ourselves to the simpler problem of reweighting the output space so that our
fixed codes perform well, we are able to define a convex large-margin optimization problem that
is tractable in very large scale settings. Furthermore, by training our second-stage code learning
by first running cross-validation on the first-stage predictors, we attempt to learn correcting codes
which minimize the cross-validation classification error.

3.4.7 PLATT’S SIGMOID METHOD

Platt (1999) proposed a method for estimating posterior probabilities from SVM outputs in or-
der to enable various kinds of post-processing. By converting the outputs of one-vs-the-rest SVM
classifiers to class-specific posterior probabilities, in principle the probabilities are comparable and
multi-class prediction through a one-vs-all strategy should improve. Platt’s approach involves fitting
a sigmoid for the posterior distribution,

P(y = 1| f) =
1

1+ exp(A f +B)
,

using training data of the form {(fi, ti)}, where fi is the output of a trained SVM and ti is the 0 or
1 target probability. The parameters A and B are found by maximizing the log likelihood of this
training data. Typically, one would want to use a held-out set or cross-validation to generate outputs
for fitting the sigmoid, since the outputs for the examples used to train the SVM give a biased
estimate of the true output distribution. In addition to Platt’s original sigmoid fitting algorithm, Lin
et al. (2003) have proposed a more robust procedure.

However, in some cases, the sigmoid may be a poor description of the posterior probability, or
there may be too little positive training data to properly fit the sigmoid. In our preliminary results
(Ie et al., 2005), we found that sigmoid fitting performed poorly in our problem setting on a smaller
data set. We retest here on larger benchmarks and again find that sigmoid fitting does not improve
over one-vs-all for this problem (see Section 4).

3.4.8 IN DEFENSE OF ONE-VS-ALL

A recent empirical study suggests that the simple one-vs-all approach performs as well or better than
all other multi-class methods in most cases (Rifkin and Klautau, 2004) when all the methods are
well-tuned. However, the authors use only data sets with relatively few classes (between 4 and 48)
for comparison and readily admit that that they use “toy data sets” from the UCI repository. Intu-
itively, the one-vs-all approach can be quite brittle in the many-class case: if only a single classifier
is “corrupted” and always outputs a high score, then all of the examples can be misclassified. The
more classes one has, the more chance that such corruptions can take place. In multi-class protein
prediction, one has hundreds or thousands of classes. We present experimental results to show that
the adaptive code approach improves over the “one-vs-all” by reweighting and effectively correcting
such mistakes (see Section 4). Moreover, our approach also offers control of the loss function (such
as using balanced loss) and use of hierarchical labels, which are not possible in one-vs-all.

1568

MULTI-CLASS PROTEIN CLASSIFICATION USING ADAPTIVE CODES

4. Experimental Results

In this section we describe our data sets, methods and experimental results.

4.1 Data Sets

We assembled benchmark data sets for the remote homology detection and fold recognition prob-
lems using sequences from the SCOP 1.65 protein database (see Section 2.1 for a definition of
these problems). We used ASTRAL (Brenner et al., 2000) to filter these sequences so that no two
sequences share greater than 95% identity.

For the fold recognition problem, we designed our experiments so that the test set consists of
held-out superfamilies belonging to folds that are represented in the training data. We prepared
a data set by first removing all superfamilies that have less than 5 sequence examples. We then
removed all folds that have less than 3 superfamilies. We selected superfamilies for testing at
random from the remaining superfamilies such that the test set for the superfamily contains no
more than 40% of the remaining sequences for the fold. If at least one suitable superfamily could
not be found, then the fold was removed from the experiment. The resulting fold detection data set
contains of 26 folds, 303 superfamilies, and 652 families for training. We completely hold out 614
sequences from 46 superfamilies for testing.

For the remote homology detection, the test set should contain held-out families belonging to
superfamilies that are represented in the training data. One can evaluate performance for multi-class
prediction of fold or superfamily levels, and it is natural to try different codes for these two tasks;
therefore, we prepared a separate data set for remote homology superfamily and fold detection. For
the superfamily data set, we used the same selection scheme as for fold recognition, except the
minimum number of sequences for the children of the superfamilies is relaxed to 3, and we selected
random families for testing instead of superfamilies. The resulting superfamily detection data set
contains of 74 superfamilies, and 544 families for training. We completely hold out 802 sequences
from 110 families for testing.

For the remote homology fold detection data set, we first removed all superfamilies with less
than 2 families. We then selected families from the remaining superfamilies for testing. We selected
families at random from each superfamily such that we never selected more than 40% of the parent
superfamily for testing. If no such families were found then the superfamily was removed from
the data set. If a fold was then found to have no superfamilies with held out families for testing,
it was removed from the data set. The resulting remote homology detection set contains 44 folds,
424 superfamilies, and 809 families for training. We completely hold out 381 sequences from 136
families for testing.

We use the training sequences in a cross-validation set-up to obtain classification scores and
learn code weights. When training base classifiers, we only use negative data from outside of the
target class of the experiment. For fold recognition, this means that when we train superfamily or
family detectors, we exclude negative example sequences that come from the parent fold. We then
retrain the base classifiers on all the training data to generate prediction scores for the test sequences,
and then use the weighted code vectors to obtain multi-class predictions.

1569

MELVIN, IE, WESTON, NOBLE AND LESLIE

4.2 Methods

We test our weight learning approach using the ranking perceptron with the class-based, friend/foe,
and mean class update rules for a variety of code sets for the remote homology detection and fold
recognition problems. For each choice of codes, we compare against standard one-vs-all, sigmoid
fitting using the robust procedure described in Lin et al. (2003), and a ranking perceptron version
of the Crammer and Singer code learning method (Crammer and Singer, 2000). We do not test
the SVM-struct implementation of our code learning optimization problem, since our preliminary
results showed little difference in performance between the perceptron and SVM-struct on this prob-
lem (Ie et al., 2005).

As an additional baseline method, we also test PSI-BLAST, a widely used pairwise sequence
comparison algorithm. In order to produce multi-class predictions, we use PSI-BLAST E-values as
a distance measure for a nearest neighbor approach. PSI-BLAST E-values are not symmetric, since
PSI-BLAST obtains somewhat different results depending on whether it builds a profile around
each training sequence or each test sequence; however, preliminary results suggested that nearest
neighbor performance was not significantly affected by this choice (Ie et al., 2005). Therefore, we
use PSI-BLAST E-values based on training sequence profiles, which is the more computationally
efficient choice.

For all ranking perceptron experiments, we train the perceptron algorithm for 200 iterations.
When using SVM one-vs-all classifier codes, the learning parameter for all ranking perceptron
experiments is set to 0.01, and the required margin is chosen to be m = 2. For ranking perceptron
on one-vs-all classifier codes with PSI-BLAST extension, we set the initial weights on the PSI-
BLAST portion of the codes to 0.1. We also use two learning parameters, 0.01 for the SVM portion
and 0.001 for the PSI-BLAST portion. This choice effectively stops our algorithm from adjusting
weights in the PSI-BLAST part of the code. We take this approach because the individual PSI-
BLAST codes are derived from E-values and hence should already be comparable to each other. We
use the same required margin of m = 2 in the ranking perceptron algorithm.

4.3 Remote Homology Detection Results

For the remote homology detection data set, where the test set consists of held-out protein families
that belong to superfamilies represented in the training data, we evaluate performance both for
the superfamily-level and fold-level prediction tasks. Results for multi-class superfamily and fold
prediction are provided in Tables 1 and 2, respectively. Significance tests are given comparing the
methods in Tables 4, 5, 7, and 8. The last two tables use a balanced error measure by averaging the
error rates over each prediction label before computing the significance test.

We compare our adaptive code method to PSI-BLAST, a standard homology detection method
based on sequence alignment, as well as simple one-vs-all, sigmoid fitting, and the Crammer-Singer
method, using various choices of code vectors. In addition to reporting classification loss and bal-
anced loss results, we give “top 5” classification and balanced loss performance, which evaluates
whether the correct class was found in the top 5 class predictions. The motivation for top 5 loss
results is that a structural biologist might be willing to investigate a small number of false positives
if it was likely that the list also contained the true structural class.

For the superfamily prediction task, we find that the adaptive codes method significantly out-
performs one-vs-all both in terms of classification and balanced error, even when superfamily-only
codes are used, and performance improves as more elements are added to the codes. By contrast,

1570

MULTI-CLASS PROTEIN CLASSIFICATION USING ADAPTIVE CODES

Balanced Balanced
Top 5 Top 5

Method (and optimization target) Error Error Error Error
PSI-BLAST 0.399 0.457 0.273 0.365
one-vs-all: Sfams 0.271 0.445 0.105 0.197
one-vs-all: Sfams,Fams 0.271 0.445 0.110 0.207
Sigmoid Fitting: Sfams 0.365 0.547 0.197 0.369
Adaptive Codes: Sfams (zero-one) 0.247 0.385 0.096 0.148
Adaptive Codes: Sfams (balanced) 0.247 0.362 0.110 0.161
Adaptive Codes: Sfams,Fams (zero-one) 0.243 0.382 0.090 0.141
Adaptive Codes: Sfams,Fams (balanced) 0.239 0.352 0.107 0.162
Adaptive Codes: Sfams,Fams,PSI-Fams (zero-one) 0.223 0.338 0.094 0.142
Adaptive Codes: Sfams,Fams,PSI-Fams (balanced) 0.217 0.320 0.103 0.153

Table 1: Results for multi-class superfamily prediction in the remote homology detection set-up.
Results for the adaptive code method are reported for a SCOP benchmark data set (67
folds, 74 superfamilies, 544 families, with 802 test sequences) and compared to nearest
neighbor using PSI-BLAST, standard one-vs-all, and a perceptron version of the Crammer
and Singer method. The mean class update rule is used to train the adaptive weights
method.

Balanced Balanced
Top 5 Top 5

Method (and optimization target) Error Error Error Error
PSI-BLAST 0.409 0.443 0.297 0.367
one-vs-all: Folds 0.331 0.456 0.126 0.195
one-vs-all: Folds,Sfams 0.331 0.456 0.126 0.195
Sigmoid Fitting: Folds 0.339 0.514 0.163 0.329
Adaptive Codes: Folds (zero-one) 0.307 0.383 0.121 0.177
Adaptive Codes: Folds (balanced) 0.336 0.378 0.165 0.186
Adaptive Codes: Folds,Sfams (zero-one) 0.276 0.370 0.118 0.182
Adaptive Codes: Folds,Sfams (balanced) 0.297 0.351 0.134 0.173
Adaptive Codes: Folds,Sfams,Fams (zero-one) 0.252 0.351 0.100 0.168
Adaptive Codes: Folds,Sfams,Fams (balanced) 0.265 0.340 0.115 0.142

Table 2: Results for multi-class fold prediction in the remote homology detection set-up. Results
for the adaptive codes method are reported for a SCOP benchmark data set (44 folds, 424
superfamilies, 809 families, with 381 test sequences) and compared to nearest neighbor us-
ing PSI-BLAST, standard one-vs-all, and a perceptron version of the Crammer and Singer
method. The mean class update rule is used to train the adaptive weights method.

the Crammer-Singer code-learning method does not beat simple one-vs-all for this task, and perfor-
mance tends to degrade as more elements are added to the codes. We also note that sigmoid fitting

1571

MELVIN, IE, WESTON, NOBLE AND LESLIE

gives substantially worse performance than one-vs-all for this task. When compared to the widely-
used PSI-BLAST method, even simple one-vs-all outperforms PSI-BLAST strongly in terms of
classification error and slightly in terms of balanced error; adaptive codes outperforms PSI-BLAST
very strongly by both measures and also when considering “top 5” prediction performance.

For the fold prediction task, we use a different set of codes, including code elements correspond-
ing to protein fold detectors. We observe a similar trend, but with better results for Crammer-Singer
when compared to one-vs-all. In this case, both Crammer-Singer and adaptive codes beat one-vs-all
with respect to classification and balanced loss when fold-only codes are used; in fact, for fold-only
codes, performance of Crammer-Singer is slightly better than adaptive codes. However, as we add
more code elements, the performance of Crammer-Singer degrades while adaptive codes continues
to improve, so that the best result for our method (corresponding to the longest code that we tried) is
better than the best result for Crammer-Singer (the shortest code). The best results for both methods
are significantly better than PSI-BLAST. Finally, sigmoid fitting slightly degrades performance as
compared to one-vs-all.

Overall, we observe that when the individual code elements are helpful, as seems to be the case
in remote homology detection, our adaptive code method can successfully improve performance
by adding elements without overfitting. By contrast, the Crammer-Singer method, which learns a
matrix of weights from the discriminant vectors to the label vectors, can perform well when codes
are short but is susceptible to overfitting as they grow.

4.4 Fold Recognition Results

For the more difficult fold recognition task, where the data set consists of held-out superfamilies
from protein folds represented in the training data, we expect that code elements from subclasses
(i.e., superfamilies and families) will provide less information, since protein sequences from differ-
ent superfamilies in principle have no detectable sequence similarity.

Results for the fold recognition problem are provided in Table 3. Note first that the errors
for PSI-BLAST, even for the top 5 fold predictions, are very high, underscoring the difficulty of
the problem. Sigmoid fitting appears to slightly help reduce one-vs-all error in this case, though
balanced error is unaffected. We find that the adaptive codes method can again beat one-vs-all and
strongly outperform PSI-BLAST, but we see no trend of improvement as more code elements are
added, with various length codes leading to similar error rates. The best classification error rate
for adaptive codes is somewhat lower than the best one for Crammer-Singer. Interestingly, in this
case, Crammer-Singer with fold-only codes outperforms the best adaptive codes result in terms of
balanced loss, though the top 5 results for adaptive codes are uniformly better than Crammer-Singer
by either loss function. We conclude that in this case, since the code elements corresponding to
subclasses are not very helpful, the adaptive code method cannot leverage longer codes to achieve
much higher accuracy. However, the weight learning approach does significantly outperform one-
vs-all by all evaluation measures. Significance tests are given comparing the methods in Tables 6
and 9.

1572

MULTI-CLASS PROTEIN CLASSIFICATION USING ADAPTIVE CODES

Balanced Balanced
Top 5 Top 5

Method (and optimization target) Error Error Error Error
PSI-BLAST 0.648 0.703 0.518 0.543
one-vs-all: Folds 0.463 0.628 0.145 0.235
one-vs-all: Folds,Sfams 0.463 0.628 0.145 0.235
Sigmoid Fitting: Folds 0.451 0.628 0.169 0.287
Adaptive Codes: Folds (zero-one) 0.406 0.558 0.107 0.156
Adaptive Codes: Folds (balanced) 0.371 0.512 0.112 0.145
Adaptive Codes: Folds,Sfams (zero-one) 0.409 0.552 0.117 0.172
Adaptive Codes: Folds,Sfams (balanced) 0.357 0.508 0.109 0.146
Adaptive Codes: Folds,Sfams,Fams (zero-one) 0.401 0.535 0.106 0.173
Adaptive Codes: Folds,Sfams,Fams (balanced) 0.370 0.499 0.114 0.155

Table 3: Results for multi-class fold prediction in the fold recognition set-up. Results for the adap-
tive codes method are reported on a SCOP benchmark data set (26 folds, 303 superfam-
ilies, 614 test sequences) and compared to nearest neighbor using PSI-BLAST, standard
one-vs-all, and a perceptron version of the Crammer and Singer method. The adaptive
codes method was trained using the mean class update rule.

PS
I-

B
L

A
ST

on
e-

vs
-a

ll:
Fo

ld
s

on
e-

vs
-a

ll:
Fo

ld
s,

Sf
am

s

Si
gm

oi
d

Fi
tti

ng
:

Fo
ld

s

C
&

S:
Sf

(b
al

an
ce

d)

C
&

S:
Sf

,f
(b

al
an

ce
d)

C
&

S:
Sf

,f
,P

SI
-f

(b
al

an
ce

d)

A
-C

od
es

:
Sf

(b
al

an
ce

d)

A
-C

od
es

:
Sf

,f
(b

al
an

ce
d)

A
-C

od
es

:
Sf

,f
,P

SI
-f

(b
al

an
ce

d)

PSI-BLAST 1 - - - - - 0.61 - - -
one-vs-all: Folds 0 1 1 0 0 0 0 - - -

one-vs-all: Folds,Sfams 0 1 1 0 0 0 0 - - -
Sigmoid Fitting: Folds 0.06 - - 1 - 0.25 0 - - -

C&S: Sf (balanced) 0 - - 0 1 0 0 - - -
C&S: Sf,f (balanced) 0.25 - - - - 1 0.05 - - -

C&S: Sf,f,PSI-f (balanced) - - - - - - 1 - - -
A-Codes: Sf (balanced) 0 0.01 0.01 0 0 0 0 1 - -

A-Codes: Sf,f (balanced) 0 0 0 0 0 0 0 0.13 1 -
A-Codes: Sf,f,PSI-f (balanced) 0 0 0 0 0 0 0 0 0 1

Table 4: P-values from the Wilcoxon signed rank test for superfamily prediction in the remote ho-
mology setup. The table shows, at the 0.05 significance level, whether a method in a given
row beats a method in a given column (numbers with gray background are significant).
Dashes represent when a method in a given row did not beat the method in the given
column.

1573

MELVIN, IE, WESTON, NOBLE AND LESLIE

PS
I-

B
L

A
ST

on
e-

vs
-a

ll:
Fo

ld
s

on
e-

vs
-a

ll:
Fo

ld
s,

Sf
am

s

Si
gm

oi
d

Fi
tti

ng
:

Fo
ld

s

C
&

S:
F

(b
al

an
ce

d)

C
&

S:
F,

Sf
(b

al
an

ce
d)

C
&

S:
F,

Sf
,f

(b
al

an
ce

d)

A
-C

od
es

:
F

(b
al

an
ce

d)

A
-C

od
es

:
F,

Sf
(b

al
an

ce
d)

A
-C

od
es

:
F,

Sf
,f

(b
al

an
ce

d)

PSI-BLAST 1 - - - - 0 0 - - -
one-vs-all: Folds 0 1 1 0.59 0.05 0 0 0.77 - -

one-vs-all: Folds,Sfams 0 1 1 0.59 0.05 0 0 0.77 - -
Sigmoid Fitting: Folds 0.01 - - 1 0.1 0 0 - - -

C&S: F (balanced) 0.24 - - - 1 0 0 - - -
C&S: F,Sf (balanced) - - - - - 1 - - - -

C&S: F,Sf,f (balanced) - - - - - 0 1 - - -
A-Codes: F (balanced) 0.01 - - 0.89 0.03 0 0 1 - -

A-Codes: F,Sf (balanced) 0 0.05 0.05 0.04 0 0 0 0 1 -
A-Codes: F,Sf,f (balanced) 0 0 0 0 0 0 0 0 0 1

Table 5: P-values from the Wilcoxon signed rank test for fold prediction in the remote homology
setup. The table shows, at the 0.05 significance level, whether a method in a given row
beats a method in a given column (numbers with gray background are significant). Dashes
represent when a method in a given row did not beat the method in the given column.

PS
I-

B
L

A
ST

on
e-

vs
-a

ll:
Fo

ld
s

on
e-

vs
-a

ll:
Fo

ld
s,

Sf
am

s

Si
gm

oi
d

Fi
tti

ng
:

Fo
ld

s

C
&

S:
F

(b
al

an
ce

d)

C
&

S:
F,

Sf
(b

al
an

ce
d)

C
&

S:
F,

Sf
,f

(b
al

an
ce

d)

A
-C

od
es

:
F

(b
al

an
ce

d)

A
-C

od
es

:
F,

Sf
(b

al
an

ce
d)

A
-C

od
es

:
F,

Sf
,f

(b
al

an
ce

d)

PSI-BLAST 1 - - - - - - - - -
one-vs-all: Folds 0 1 1 - - 0.07 0 - - -

one-vs-all: Folds,Sfams 0 1 1 - - 0.07 0 - - -
Sigmoid Fitting: Folds 0 0.39 0.39 1 - 0.02 0 - - -

C&S: F (balanced) 0 0 0 0 1 0 0 - - -
C&S: F,Sf (balanced) 0 - - - - 1 0 - - -

C&S: F,Sf,f (balanced) 0 - - - - - 1 - - -
A-Codes: F (balanced) 0 0 0 0 0.56 0 0 1 - -

A-Codes: F,Sf (balanced) 0 0 0 0 0.15 0 0 0.03 1 0.21
A-Codes: F,Sf,f (balanced) 0 0 0 0 0.48 0 0 0.88 - 1

Table 6: P-values from the Wilcoxon signed rank test for fold recognition. The table shows, at the
0.05 significance level, whether a method in a given row beats a method in a given column
(numbers with gray background are significant.) Dashes represent when a method in a
given row did not beat the method in the given column.

1574

MULTI-CLASS PROTEIN CLASSIFICATION USING ADAPTIVE CODES

PS
I-

B
L

A
ST

on
e-

vs
-a

ll:
Fo

ld
s

on
e-

vs
-a

ll:
Fo

ld
s,

Sf
am

s

Si
gm

oi
d

Fi
tti

ng
:

Fo
ld

s

C
&

S:
Sf

(b
al

an
ce

d)

C
&

S:
Sf

,f
(b

al
an

ce
d)

C
&

S:
Sf

,f
,P

SI
-f

(b
al

an
ce

d)

A
-C

od
es

:
Sf

(b
al

an
ce

d)

A
-C

od
es

:
Sf

,f
(b

al
an

ce
d)

A
-C

od
es

:
Sf

,f
,P

SI
-f

(b
al

an
ce

d)

PSI-BLAST 1 - - 0.03 - 0.07 0.08 - - -
one-vs-all: Folds 0.79 1 1 0 0.4 0.01 0.02 - - -

one-vs-all: Folds,Sfams 0.79 1 1 0 0.4 0.01 0.02 - - -
Sigmoid Fitting: Folds - - - 1 - - - - - -

C&S: Sf (balanced) 0.86 - - 0 1 0.01 0.07 - - -
C&S: Sf,f (balanced) - - - 0.55 - 1 - - - -

C&S: Sf,f,PSI-f (balanced) - - - 0.35 - 0.44 1 - - -
A-Codes: Sf (balanced) 0.01 0 0 0 0 0 0 1 - -

A-Codes: Sf,f (balanced) 0.01 0 0 0 0 0 0 0.09 1 -
A-Codes: Sf,f,PSI-f (balanced) 0 0 0 0 0 0 0 0.02 0.05 1

Table 7: P-values from the Wilcoxon signed rank test for balanced superfamily prediction in the
remote homology setup. The table shows, at the 0.05 significance level, whether a method
in a given row beats a method in a given column (numbers with gray background are
significant). Dashes represent when a method in a given row did not beat the method in
the given column.

PS
I-

B
L

A
ST

on
e-

vs
-a

ll:
Fo

ld
s

on
e-

vs
-a

ll:
Fo

ld
s,

Sf
am

s

Si
gm

oi
d

Fi
tti

ng
:

Fo
ld

s

C
&

S:
F

(b
al

an
ce

d)

C
&

S:
F,

Sf
(b

al
an

ce
d)

C
&

S:
F,

Sf
,f

(b
al

an
ce

d)

A
-C

od
es

:
F

(b
al

an
ce

d)

A
-C

od
es

:
F,

Sf
(b

al
an

ce
d)

A
-C

od
es

:
F,

Sf
,f

(b
al

an
ce

d)

PSI-BLAST 1 0.95 0.95 0.34 - 0.34 0.73 - - -
one-vs-all: Folds - 1 1 0.39 - 0.34 - - - -

one-vs-all: Folds,Sfams - 1 1 0.39 - 0.34 - - - -
Sigmoid Fitting: Folds - - - 1 - - - - - -

C&S: F (balanced) 0.04 0.05 0.05 0.01 1 0.01 0.04 0.84 0.67 -
C&S: F,Sf (balanced) - - - 1 - 1 - - - -

C&S: F,Sf,f (balanced) - 0.78 0.78 0.38 - 0.39 1 - - -
A-Codes: F (balanced) 0.12 0.01 0.01 0.01 - 0.02 0.13 1 - -

A-Codes: F,Sf (balanced) 0.02 0 0 0 - 0.01 0.03 0.03 1 -
A-Codes: F,Sf,f (balanced) 0.01 0 0 0 0.43 0.01 0.02 0.01 0.09 1

Table 8: P-values from the Wilcoxon signed rank test for balanced fold prediction in the remote
homology setup. The table shows, at the 0.05 significance level, whether a method in a
given row beats a method in a given column (numbers with gray background are signifi-
cant). Dashes represent when a method in a given row did not beat the method in the given
column.

1575

MELVIN, IE, WESTON, NOBLE AND LESLIE

PS
I-

B
L

A
ST

on
e-

vs
-a

ll:
Fo

ld
s

on
e-

vs
-a

ll:
Fo

ld
s,

Sf
am

s

Si
gm

oi
d

Fi
tti

ng
:

Fo
ld

s

C
&

S:
F

(b
al

an
ce

d)

C
&

S:
F,

Sf
(b

al
an

ce
d)

C
&

S:
F,

Sf
,f

(b
al

an
ce

d)

A
-C

od
es

:
F

(b
al

an
ce

d)

A
-C

od
es

:
F,

Sf
(b

al
an

ce
d)

A
-C

od
es

:
F,

Sf
,f

(b
al

an
ce

d)

PSI-BLAST 1 - - - - - - - - -
one-vs-all: Folds 0.16 1 1 0.92 - - - - - -

one-vs-all: Folds,Sfams 0.16 1 1 0.92 - - - - - -
Sigmoid Fitting: Folds 0.36 - - 1 - - - - - -

C&S: F (balanced) 0 0.01 0.01 0.01 1 0.03 0 0.12 0.19 0.21
C&S: F,Sf (balanced) 0.16 0.58 0.58 0.49 - 1 0.24 - - -

C&S: F,Sf,f (balanced) 0.7 0.66 0.66 0.96 - - 1 - - -
A-Codes: F (balanced) 0 0 0 0.01 - 0.21 0.02 1 - -

A-Codes: F,Sf (balanced) 0 0 0 0.01 - 0.17 0.03 0.81 1 -
A-Codes: F,Sf,f (balanced) 0 0 0 0.01 - 0.12 0.03 0.73 0.52 1

Table 9: P-values from the Wilcoxon signed rank test for balanced fold recognition. The table
shows, at the 0.05 significance level, whether a method in a given row beats a method in
a given column (numbers with gray background are significant). Dashes represent when a
method in a given row did not beat the method in the given column.

4.5 Modified Perceptron Update Rules

Finally, for all multi-class prediction class, we evaluate the effectiveness of our modified perceptron
update rules: the friend/foe rule and the mean class update rule. Results are shown in Table 10.
Significance tests are given comparing the methods in Table 11.

We find that the new update rules consistently and significantly improve performance for both
remote homology prediction tasks when evaluated in terms of classification error, with the most
dramatic improvements occurring when training the perceptron using balanced loss in the remote
homology fold prediction task. The same performance improvement is true when measured in terms
of balanced error for the remote homology fold prediction task; however, for remote homology
superfamily prediction, the improvement in balanced error only holds when the perceptron is also
trained with balanced error.

In the case of fold recognition, previous results indicate that the subclass code elements are
less useful, so we expect that update rules which respect the code structure may be less effective.
Indeed, we get mixed results here, with a neutral or slightly weakening effect when the percep-
trons are trained using classification loss. However, even for fold recognition, the new update rules
significantly improve classification error when the perceptrons are trained using balanced loss.

1576

MULTI-CLASS PROTEIN CLASSIFICATION USING ADAPTIVE CODES

Error Balanced Error
single mean single mean

Method (and optimization target) codes friend/foe friend/foe codes friend/foe friend/foe
Fold recognition
Folds,Sfams (zero-one) 0.402 0.414 0.409 0.547 0.558 0.552
Folds,Sfams (balanced) 0.412 0.368 0.357 0.535 0.509 0.508
Folds,Sfams,Fams (zero-one) 0.404 0.406 0.401 0.548 0.553 0.535
Folds,Sfams,Fams (balanced) 0.406 0.378 0.370 0.497 0.508 0.499
Remote Homology Superfamily Prediction
Sfams,Fams (zero-one) 0.251 0.239 0.243 0.372 0.380 0.382
Sfams,Fams (balanced) 0.266 0.241 0.239 0.385 0.347 0.352
Sfams,Fams,PSI-Fams (zero-one) 0.232 0.219 0.223 0.330 0.340 0.338
Sfams,Fams,PSI-Fams (balanced) 0.241 0.213 0.217 0.346 0.313 0.320
Remote Homology Fold Prediction
Folds,Sfams (zero-one) 0.310 0.283 0.276 0.391 0.372 0.370
Folds,Sfams (balanced) 0.375 0.312 0.297 0.401 0.360 0.351
Folds,Sfams,Fams (zero-one) 0.252 0.247 0.252 0.363 0.347 0.351
Folds,Sfams,Fams (balanced) 0.315 0.278 0.265 0.373 0.349 0.340

Table 10: Results for multi-class prediction comparing different perceptron update rules. Results
for the friend/foe and mean friend/foe update rules are compared with the standard per-
ceptron update rule for the fold recognition and remote homology fold and superfamily
prediction tasks when using hierarchical codes. Experiments shown with a gray back-
ground are those for which the modified update rule gives poorer performance than the
standard rule, usually by an insignificant amount. In all other experiments, the modified
rules consistently outperform the regular rule, usually by a significant amount (but with
one case of a tie).

5. Discussion

We have presented a novel and effective method for multi-class classification that uses the ranking
perceptron to learn a reweighting of components of output vectors. Our application domain is the
highly multi-class protein structural classification problem, where there are typically hundreds of
classes arranged in a hierarchical taxonomy. In this domain, we focus on two difficult subprob-
lems: remote homology detection and fold recognition. We exploit hierarchical information in this
problem by training one-vs-the-rest SVM classifiers to recognize classes at different levels of the
hierarchy and using these classifiers to define different components of the output vectors. We then
use fixed binary codes to represent the hierarchy of labels associated with each class, and we adapt
our output vector embedding in order to improve classification relative to these fixed codes.

Unlike the results of a recent empirical study of multi-class classification algorithms that used
smaller “toy data sets” (Rifkin and Klautau, 2004), we find that we can significantly outperform
one-vs-all in our problem setting. We also convincingly beat PSI-BLAST, which is a widely-used
alignment-based method for detecting relationships between protein sequences.

Many authors have presented “output code” methods for multi-class classification. We compare
our approach to a perceptron version of the recent Crammer-Singer code-learning approach, which
seeks to learn a mapping from the vector of prediction scores for an input example to the vector of

1577

MELVIN, IE, WESTON, NOBLE AND LESLIE

Superfamily Fold Fold (Remote Homology)

si
ng

le
C

od
es

fr
ie

nd
/f

oe

m
ea

n
fr

ie
nd

/f
oe

si
ng

le
C

od
es

fr
ie

nd
/f

oe

m
ea

n
fr

ie
nd

/f
oe

si
ng

le
C

od
es

fr
ie

nd
/f

oe

m
ea

n
fr

ie
nd

/f
oe

single Codes 1 - - 1 0.73 0.92 1 - -
friend/foe 0.03 1 0.85 - 1 - 0.01 1 -

mean friend/foe 0.08 - 1 - 0.22 1 0 0.12 1

Table 11: P-values from the Wilcoxon signed rank test for different perceptron update rules. The
table shows, at the 0.05 significance level, whether a method in a given row beats a
method in a given column (numbers with gray background are significant). Dashes rep-
resent when a method in a given row did not beat the method in the given column. All
measurments are for balanced error.

output classes. We find that when there are a smaller number of classes and when relatively few
code elements are used, the Crammer-Singer method can tie or slightly outperform (but not statis-
tically significantly) our adaptive code approach. However, as the number of code elements grows,
Crammer-Singer performance deteriorates, often giving much poorer results than one-vs all, while
our performance continues to improve. Therefore, as we add more base classifiers, we can almost
always beat the best Crammer-Singer result. Moreover, we also present results using modified up-
date rules for the ranking perceptron which take into consideration multi-class predictions that lead
to the same loss. These update rules, called the friend/foe and mean friend/foe updates, lead to small
but significant performance advantages across multiple experiments.

A large body of recent work has focused on finding good representations for the inputs in the
protein classification problem, in particular in the form of novel string kernels for protein sequence
data. Our current study focuses on the complementary problem of adapting the embedding of the
outputs. Our experimental results provide a promising indication that new kernel methods combined
with novel multi-class “output space” algorithms can truly achieve state-of-the-art performance in a
large-scale multi-class protein classification setting.

As we scale to the full-scale protein classification problem, with on the order of 1000 folds,
one issue with our approach is limited coverage: for many small SCOP folds, there are not enough
labeled sequences to train an SVM fold detector. In ongoing work, we are considering two strate-
gies for increasing coverage. First, there is a standard method for increasing the positive training
set size in this problem, namely using PSI-BLAST or another alignment-based method to pull in
additional sequences from the non-redundant database that are homologous to the known fold mem-
bers. Adding domain homologs creates a larger, if biased, training set, and one could investigate
the trade-off between coverage and multi-class accuracy as one applies this strategy to very small
classes. Second, we are investigating a strategy of “punting” from one prediction method to another
based on a prediction score threshold. The goal is to combine a method with weaker performance
but full coverage, such as PSI-BLAST, with a higher accuracy method with reduced coverage, such

1578

MULTI-CLASS PROTEIN CLASSIFICATION USING ADAPTIVE CODES

as SVM adaptive codes, to produce a hybrid method with full coverage that in general outperforms
both component methods. Details and results of this approach will be reported elsewhere.

Acknowledgments

We would like to thank Thorsten Joachims for helpful suggestions on the implementation of SVM-
Struct and Asa Ben-Hur for helpful comments on the manuscript. This work was supported by NSF
grant EIA-0312706 and NIH grant GM74257 and by the NIH Roadmap Initiative, National Centers
for Biomedical Computing Grant 1U54CA121852.

References

Erin L. Allwein, Robert E. Schapire, and Yoram Singer. Reducing multiclass to binary: A unifying
approach for margin classifiers. In Proceedings of the 17th International Conference on Machine
Learning, pages 9–16. Morgan Kaufmann, San Francisco, CA, 2000.

Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman. A basic
local alignment search tool. Journal of Molecular Biology, 215(3):403–410, 1990.

Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Zheng Zhang,
Webb Miller, and David J. Lipman. Gapped BLAST and PSI-BLAST: A new generation of
protein database search programs. Nucleic Acids Research, 25:3389–3402, 1997.

Zafer Barutcuoglu, Robert E. Schapire, and Olga G. Troyanskaya. Hierarchical multi-label predic-
tion of gene function. Bioinformatics, 22(7):830–836, 2006.

Asa Ben-Hur and Douglas Brutlag. Remote homology detection: a motif based approach. Proceed-
ings of the Eleventh International Conference on Intelligent Systems for Molecular Biology, 19
suppl 1:i26–i33, 2003.

Léon Bottou, Yann LeCun, and Yoshua Bengio. Global training of document processing systems
using graph transformer networks. In Proc. of Computer Vision and Pattern Recognition, pages
490–494, Puerto-Rico, 1997. IEEE.

Steven E. Brenner, Patrice Koehl, and Michael Levitt. The ASTRAL compendium for sequence and
structure analysis. Nucleic Acids Research, 28:254–256, 2000.

Nicolò Cesa-Bianchi, Claudio Gentile, and Luca Zaniboni. Incremental algorithms for hierarchical
classification. Journal of Machine Learning Research, 7:31–54, 2006.

Michael Collins. Discriminative reranking for natural language parsing. In Proceedings of the
17th International Conference on Machine Learning, pages 175 – 182. Morgan Kaufmann, San
Francisco, CA, 2000.

Michael Collins and Nigel Duffy. New ranking algorithms for parsing and tagging: Kernels over
discrete structures, and the voted perceptron. Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, pages 263–270, 2002.

1579

MELVIN, IE, WESTON, NOBLE AND LESLIE

Koby Crammer and Yoram Singer. On the learnability and design of output codes for multiclass
problems. In Computational Learning Theory, pages 35–46, 2000.

Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass kernel-based
vector machines. Journal Machine Learning Research, 2:265–292, 2002. ISSN 1533-7928.

Ofer Dekel, Joseph Keshet, and Yoram Singer. Large margin hierarchical classification. In Pro-
ceedings of the 21st International Conference on Machine Learning, 2004.

Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via error-correcting
output codes. Journal of Artificial Intelligence Research, 2:263–286, 1995.

Yoav Freund and Robert E. Schapire. Large margin classification using the perceptron algorithm.
Machine Learning, 37(3):277 – 296, 1999.

Mark Girolami and Simon Rogers. Variational Bayesian multinomial probit regression with Gaus-
sian process priors. Neural Computation, 18(8):1790–1817, 2006.

Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass support vector machines.
Neural Networks, IEEE Transactions on, 13(2):415–425, 2002.

Eugene Ie, Jason Weston, William Stafford Noble, and Christina Leslie. Multi-class protein fold
recognition using adaptive codes. Proceedings of the 22nd International Conference on Machine
Learning, 2005.

Tommi Jaakkola, Mark Diekhans, and David Haussler. A discriminative framework for detecting
remote protein homologies. Journal of Computational Biology, 7(1–2):95–114, 2000.

Anders Krogh, Michael Brown, I. Saira Mian, Kimmen Sjölander, and David Haussler. Hidden
Markov models in computational biology: Applications to protein modeling. Journal of Molecu-
lar Biology, 235:1501–1531, 1994.

Rui Kuang, Eugene Ie, Ke Wang, Kai Wang, Mahira Siddiqi, Yoav Freund, and Christina Leslie.
Profile kernels for detecting remote protein homologs and discriminative motifs. Journal of Bioin-
formatics and Computational Biology, 2005. To appear.

Yann LeCun and Fu Jie Huang. Loss functions for discriminative training of energy-based models.
In Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics, 2005.

Christina Leslie, Eleazar Eskin, and William S. Noble. The spectrum kernel: A string kernel for
SVM protein classification. Proceedings of the Pacific Biocomputing Symposium, pages 564–575,
2002a.

Christina Leslie, Eleazar Eskin, Jason Weston, and William S. Noble. Mismatch string kernels
for SVM protein classification. Advances in Neural Information Processing Systems 15, pages
1441–1448, 2002b.

Christina Leslie, Eleazar Eskin, Adiel Cohen, Jason Weston, and William S. Noble. Mismatch string
kernels for discriminative protein classification. Bioinformatics, 20(4):467–476, 2004.

1580

MULTI-CLASS PROTEIN CLASSIFICATION USING ADAPTIVE CODES

Li Liao and William S. Noble. Combining pairwise sequence similarity and support vector machines
for remote protein homology detection. Proceedings of the 6th Annual International Conference
on Research in Computational Molecular Biology, pages 225–232, 2002.

Hsuan-Tien Lin, Chih-Jen Lin, and Ruby C. Weng. A note on Platt’s probabilistic outputs for
support vector machines. Technical report, Department of Computer Science and Information
Engineering, National Taiwan University, 2003.

Alexey G. Murzin, Steven E. Brenner, Tim Hubbard, and Cyrus Chothia. SCOP: A structural
classification of proteins database for the investigation of sequences and structures. Journal of
Molecular Biology, 247(4):536–540, 1995.

Jong Park, Kevin Karplus, Christian Barrett, Richard Hughey, David Haussler, Tim Hubbard, and
Cyrus Chothia. Sequence comparisons using multiple sequences detect twice as many remote
homologues as pairwise methods. Journal of Molecular Biology, 284(4):1201–1210, 1998.

John Platt. Probabilities for support vector machines. Advances in Large Margin Classifiers, pages
61–74, 1999.

Huzefa Rangwala and George Karypis. Profile-based direct kernels for remote homology detection
and fold recognition. Bioinformatics, 21(23):4239–4247, 2005.

Gunnar Rätsch, Alexander J. Smola, and Sebastian Mika. Adapting codes and embeddings for
polychotomies. Advances in Neural Information Processing Systems, 15:513–520, 2002.

Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. Journal Machine Learn-
ing Research, 5:101–141, 2004. ISSN 1533-7928.

Frank Rosenblatt. The perceptron: A probabilistic model for information storage and organization
in the brain. Psychological Review, 65:386–407, 1958.

Hiroto Saigo, Jean-Philippe Vert, Nobuhisa Ueda, and Tatsuya Akutsu. Protein homology detection
using string alignment kernels. Bioinformatics, 20(11):1682–1689, 2004.

Temple Smith and Michael Waterman. Identification of common molecular subsequences. Journal
of Molecular Biology, 147(1):195–197, 1981.

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. Support vector
learning for interdependent and structured output spaces. Proceedings of the 21st International
Conference on Machine Learning, pages 823–830, 2004.

Vladimir N. Vapnik. Statistical Learning Theory. John Wiley and Sons, New York, 1998.

Jason Weston and Chris Watkins. Support vector machines for multiclass pattern recognition. In
Proceedings of the 7th European Symposium On Artificial Neural Networks, 1999.

Jason Weston, Christina Leslie, Eugene Ie, Dengyong Zhou, Andre Elisseeff, and William S. Noble.
Semi-supervised protein classification using cluster kernels. Bioinformatics, 21(15):3241–3247,
2005.

1581

