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ABSTRACT: In shotgun proteomics analysis, user-specified
parameters are critical to database search performance and
therefore to the yield of confident peptide-spectrum matches
(PSMs). Two of the most important parameters are related to
the accuracy of the mass spectrometer. Precursor mass
tolerance defines the peptide candidates considered for each
spectrum. Fragment mass tolerance or bin size determines how
close observed and theoretical fragments must be to be
considered a match. For either of these two parameters, too wide a setting yields randomly high-scoring false PSMs, whereas too
narrow a setting erroneously excludes true PSMs, in both cases, lowering the yield of peptides detected at a given false discovery
rate. We describe a strategy for inferring optimal search parameters by assembling and analyzing pairs of spectra that are likely to
have been generated by the same peptide ion to infer precursor and fragment mass error. This strategy does not rely on a
database search, making it usable in a wide variety of settings. In our experiments on data from a variety of instruments including
Orbitrap and Q-TOF acquisitions, this strategy yields more high-confidence PSMs than using settings based on instrument
defaults or determined by experts. Param-Medic is open-source and cross-platform. It is available as a standalone tool (http://
noble.gs.washington.edu/proj/param-medic/) and has been integrated into the Crux proteomics toolkit (http://crux.ms),
providing automatic parameter selection for the Comet and Tide search engines.
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1. INTRODUCTION

Database search algorithms such as Sequest1 serve as the core
of many shotgun analysis pipelines. Most search engines require
a long list of user-supplied parameters, including cleavage
enzyme, number of missed cleavages to allow, static and
variable peptide modifications, and tolerances to use in
matching observed precursor and fragment masses to their
theoretical counterparts. Appropriate values for these parame-
ters depend on the instrument used, the instrument settings
used for a particular analysis, instrument performance at the
time of acquisition, and other factors.
In this work, we focus on two of the most important search

algorithm parameters. Precursor mass tolerance defines the
peptide candidates considered for each spectrum. A narrower
setting reduces the running time of the search algorithm by
requiring it to perform fewer comparisons between peptides
and spectra, but a too-narrow setting can exclude true matches.
Too wide a setting can reduce sensitivity in a different way:
because more candidates are considered for each spectrum, the
chance of a false match randomly generating a higher score
than a true match increases.2 Similarly, fragment mass tolerance
or bin size determines how small the absolute value of the
difference between a pair of observed and theoretical fragment
masses must be to consider them a match. A tighter setting can
exclude true matches between fragments, while a loose setting

can lead to false matches between fragments, leading to more
high-scoring false matches.
An important goal of many proteomics workflows is to

achieve high statistical power for peptide detection. A
commonly used proxy for the peptide detection power of a
database search is the number, or “yield,” of peptide-spectrum
matches (PSMs) at a set false discovery rate (FDR) such as
0.01, as estimated by target-decoy procedure.3 We define the
optimal value for precursor or fragment mass tolerance as the
value that yields the most PSMs at FDR 0.01. The optimal
value for either parameter may vary widely from experiment to
experiment. This sensitivity to parameter settings has a real
impact on experimental results because the measurement of
yield can vary greatly between the best and the worst parameter
settings.
Researchers adopt different strategies to arrive at the settings

they use for a given analysis. Some laboratories fine-tune the
optimal settings for a particular instrument by performing
searches on acquired data with many different settings. Because
instrument performance can change over time to cause drift in
both mass accuracy and calibration, researchers most concerned
with using the proper settings will periodically perform
measurements solely to reassess performance. On the other
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extreme, database searches are often performed by researchers
other than those who ran the instrument, as when laboratories
share data or when spectra are reanalyzed after being deposited
in a public repository. In the absence of detailed information
about how the instrument was run or how well it was
performing at that time, researchers typically rely on instrument
settings reported by the lab that ran the instrument or on the
advertised capabilities of the instrument that was used.
Several tools have been developed to aid researchers in

selecting optimal search parameter values. Many of these tools
infer instrument calibration from experimental data by
analyzing the observed m/z values of known ions: either
spiked-in peptides or peaks confidently identified by database
search.4−7 One such tool for the Windows platform, Preview,5

additionally assesses precursor and fragment mass error,
nonspecific digestion, and sample modifications using a fast
database search. However, neither Preview nor any of the other
tools we surveyed provides a well-defined method for
translating assessed m/z error into parameter settings for
database search.
Here we describe Param-Medic: an open-source, cross-

platform tool for assessing experimental m/z error and deriving
parameters to search an LC−MS/MS experiment. We have
trained Param-Medic to produce parameters appropriate for the
Comet8 search engine, but the same strategy could be extended
to work for any algorithm. At the heart of Param-Medic is a key
assumption that despite the use of so-called “dynamic
exclusion” rules, LC−MS/MS experiments typically make
multiple observations of many individual peptide ions. Param-
Medic exploits these repeated observations to enable estimation
of m/z error. Specifically, the algorithm assesses measurement
precision (but not calibration) by identifying pairs of spectra
likely to represent the same peptide and then analyzing the
distribution of differences between those pairs’ precursor and
matched fragment ion m/z values. We trained Param-Medic on
eight data sets from public repositories from a variety of
organisms and instruments. We evaluated its performance on
three additional public data sets from the same instruments as
well as on a data set generated using a very different Q-TOF
instrument. Param-Medic is available as a standalone tool and
as a part of the Crux proteomics toolkit, providing an open,
integrated platform for parameter inference and database
search.

2. METHODS

2.1. Mass-to-Charge Error Estimation

Param-Medic infers both precursor and fragment m/z search
parameters in a four-step procedure (Figure 1). First, it pairs
closely eluting MS/MS spectra that have similar precursor and
fragment m/z values. Then, it calculates the mass differences of
both the paired precursors and the paired fragments. Next, it
fits a separate mixed Gaussian-Uniform distribution to the error
values for precursors and for fragments. Finally, it maps the
standard deviation of each estimated Gaussian distribution to a
value usable as a precursor tolerance or fragment bin size for
database search.
Param-Medic begins by assembling pairs of measurements

from spectra with an inferred charge of 2 that appear likely to
represent the same precursor ion or fragment ion (Figure 1).
Spectra are paired permissively to generate distributions of
pairwise measurement differences with sufficient numbers of
both correctly and incorrectly paired spectra so that the two
component distributions can be estimated. Precursor and
fragment masses are calculated from their observed m/z values
and are each binned coarsely with bin size 1.0005079,
corresponding to the distance between the centers of two
adjacent peptide mass clusters.9 One list of paired measure-
ments is initialized for precursor values and another for
fragments.
As Param-Medic processes each sequential MS/MS scan, the

algorithm identifies the previous MS/MS scan within the last
1000 scans whose precursor falls in the same bin (if any). It
then checks whether the associated precursor m/z is within 50
ppm of the precursor m/z of the new scan and whether at least
20 of the 40 most-intense binned fragments are unambiguously
shared between the two spectra. If both conditions are met,
then the two spectra are considered to represent the same
peptide ion. In this case, the two precursor m/z values and the
paired values for the five most-intense pairs of fragment m/z
values are added to their respective lists. No single spectrum is
included in more than one such pair, and additional
measurements of the same ion are paired rather than being
assembled into higher order tuples. If Param-Medic detects
fewer than 200 such pairs (an arbitrary threshold that may be
adjusted as desired), then the program will terminate without
estimating parameter settings.

Figure 1. Param-Medic workflow. Param-Medic collects pairs of closely eluting MS/MS spectra and assembles their pairwise precursor and most
intense five fragment mass differences. Precursor and fragment error are inferred by fitting a mixed Gaussian/uniform distribution to pairwise
differences. Search parameter values are chosen by multiplying estimated error standard deviation by a multiplier associated with highest mean PSM
yield in training data sets.
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In the second step, the ppm differences in measurement pairs
are calculated from the pairs of measurements. This step and
the following steps are performed separately but identically for
precursor pairs and for fragment pairs. The output of this step
is an empirical list of ppm differences in paired peak
measurements. In practice, this list represents a mixture of
differences between two correctly paired measurements of the
same peak and differences between two incorrectly paired
measurements of peaks that represent different ions. Below, we
refer to these as “true” and “false” pairs, respectively.
In the third step, Param-Medic fits a theoretical distribution

to the empirical distribution of errors from step two. Param-
Medic assumes that ppm measurement error for true pairs is
normally distributed. Therefore, the difference between two
values drawn from the distribution of ppm measurement error
is also normally distributed, with variance twice that of the
measurement error. Param-Medic also assumes that differences
between false pairs are uniformly distributed over the range
considered. Accordingly, it models the distribution of measure-
ment differences as a mixed Gaussian ( y( ) for observed
differences y) and uniform distribution. Expectation-max-
imization (EM) is used to estimate three parameters: the
mean and standard deviation of the Gaussian distribution
component (μ̂δ and σ̂δ) and the probability of membership in
the Gaussian distribution (pG). EM maximizes the log-
likelihood of the observed data
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The algorithm alternates between an E step, which estimates
expectation of the log-likelihood using the current parameter
estimates, and an M step, which computes new parameter
values maximizing the expected log-likelihood. Once σ̂δ is
estimated, the standard deviation of the measurement error, σ̂ϵ,

is estimated as σ ̂ = σ
ϵ

δ̂

2
.

In the final step, having estimated the standard deviation of
the ppm error distributions, Param-Medic applies a scaling
factor to σ̂ϵ to calculate the estimated optimal search parameter
(either precursor tolerance or fragment bin size). This scaling
factor is empirically estimated on an analysis of data from a
wide variety of mass spectrometry experiments, as described in
the following sections.
Many of Param-Medic’s parameters are adjustable. The

values mentioned above for the charge state (2), wide ppm

tolerance (50 ppm), number of peaks that must be shared
between spectrum pairs (20 of the most-intense 40), number of
fragments per pair used for estimation (5), number of
difference measurements required for estimation (200), and
maximum scan distance between spectrum pairs (1000) are
defaults that should be widely applicable but may be adjusted
for unusual data sets. For example, a user may wish to choose a
higher charge state when analyzing an experiment on tryptic
peptides known to contain a very high proportion of missed
tryptic cleavages or to remove the maximum scan distance
constraint altogether for very long gradients.

2.2. Search of Public Data Sets with Different Parameter
Values

For use in learning the scaling factors mapping σ̂δ to search
parameter values, we collected eight training and three test data
sets from the PRIDE10 and Chorus Project (http://
chorusproject.org) proteomics data repositories, representing
a variety of organisms and instruments (Table 1). All database
searches were performed using Comet8 version 2015.01 rev. 2.
Samples were searched against the appropriate UniProt
databases for single organisms, Human Microbiome Project
stool database for gut microbiome,11 or a site-specific
sequencing-derived database for ocean microbiome.12 We
used a concatenated decoy database in which peptide sequences
were reversed but C-terminal amino acids left in place. Search
parameters included a static modification for cysteine
carbamidomethylation (57.021464) and a variable modification
for methionine oxidation (15.9949). Enzyme specificity was
trypsin with proline cleavage suppression, with one missed
cleavage allowed. Parent ion mass tolerance was defined around
five isotopic peaks. FDR was calculated by target-decoy
competition using Percolator,13 and PSMs were accepted at
FDR 0.01.
The most basic method of choosing parameters is to use

settings associated with the typical performance of the
instrument. This method is often used when the experimental
details related to a data set are unknown. In characterizing the
instruments used to generate the training and test data sets, we
deliberately used only the information available in the
repository metadata, as would most researchers downloading
the data set from the repository. In several data sets, more
detailed information, such as the mass analyzer used, was not
publicly available. We defined “instrument default” settings for
precursor ppm error and fragment bin tolerance for each
instrument represented by the training and test data sets (Table

Table 1. Experiments Used in the Training and Testing of Param-Medic and Their Associated Search Parameters As Adapted
from Their Publications

experiment instrument organism precursor tolerance (ppm) fragment bin size (Th)

Training Data Sets
2014kim-kidney14 Orbitrap Velos human 10 0.05
2014kim-lung14 Orbitrap Elite human 10 0.05
2015clark-redefining15 LTQ Orbitrap human 50 1
2015radoshevich-isg1516 QExactive human 4.5 0.02
2015tanca-impact17 Orbitrap Velos human gut microbiome 10 0.02
2015uszkoreit-intuitive18 Orbitrap Elite mouse 5 0.4
2016mann-unpublished QExactive human 10 0.02
2016schittmayer-cleaning19 Orbitrap Velos yeast 10 0.8

Test Data Sets
2016may-metapeptides12 Qexactive ocean microbiome 10 0.02
2016audain-in-depth20 LTQ Orbitrap yeast 25 0.5
2016zhong-quantitative21 Orbitrap Velos human 20 0.5
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2) based on advertised instrument capabilities and literature
search. We then held fragment bin tolerance for each

experiment at the instrument default and performed 10
separate searches, with settings for precursor ppm error varying
uniformly over the range 5−50 ppm. Similarly, we held
precursor ppm error at the instrument default and performed
10 additional searches with settings for fragment bin tolerance
varying uniformly over the range 0.02 to 1.0005 Da. A related
parameter, fragment bin offset, should be set to roughly 0.4
when fragment bin size is near 1.0005 to ensure that the highest
proportion possible of peaks associated with the same nominal
mass are included in the same bin but has little effect for other
bin size values. This parameter was set to 0.4 in all searches.
PSM yield for each search was defined as the number of PSMs
at FDR 0.01.

2.3. Mapping Estimated Error To Search Parameter Values

The final outputs of Param-Medic are precursor and fragment
m/z tolerance values for use in a database search. To produce
these estimates, we used the search results from our eight
training data sets over a wide range of parameter settings, along
with the empirical error standard deviations σ̂ϵ, to estimate a
multiplier that converts σ̂ϵ values into database search
parameters that maximize PSM yield for a wide range of data
sets. To this end, we normalized for differences in measurement
error across the eight training data sets as follows. Separately for
each parameter (precursor m/z tolerance and fragment bin
size), we divided each parameter value vrawi by the
corresponding measurement error standard deviation σ̂ϵ for
that sample and then calculated a normalized value vî as the
natural log of the result

σ
̂ =

ϵ̂

⎛
⎝⎜

⎞
⎠⎟v

v
lni

i

(2)

We then normalized the PSM yield yei associated with the
search of an experiment e with the ith value for the parameter
by dividing by the highest PSM yield observed for experiment e
under any parameter setting
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Table 2. Settings Used in “Instrument Default” Searches

instrument precursor (ppm) fragment bin (Th)

LTQ Orbitrap 20 1.005
Orbitrap Velos 20 0.05
Orbitrap Elite 20 0.02
QExactive 20 0.02

Figure 2. Comparing Param-Medic with other methods. (A) PSM yield at FDR 0.01 using parameters determined by four different methods:
instrument defaults, Param-Medic, original paper settings, or Preview. Each cluster of bars represents one of the seven training experiments for which
Param-Medic and Preview returned error estimates. Results are reported for the seven training data sets. (B) Box plots showing the distribution PSM
yield of searches with Param-Medic parameters as a percentage of the PSM yield using instrument defaults, original paper settings, and Preview, over
the same seven training experiments. (C,D) As panels A and B but showing data from the three test experiments.
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For each experiment, this process yielded a different set of
normalized parameter setting values, each associated with a
different normalized PSM yield. To estimate the value
associated with the highest mean normalized PSM yield over
all experiments, we segmented the range from the minimum to
the maximum values of the normalized parameter setting into
200 bins. We defined the yield of experiment e in bin b, yêb, as
the normalized PSM yield in that experiment associated with
that bin, interpolating linearly between adjacent observed
measurements yêi and using the yields for the bins with highest
and lowest normalized parameter values for each data set to
stand in for all higher value or lower value bins not searched for
that data set (Figure 3). We then chose the bin b′ associated
with the highest mean-normalized yield over the n experiments

∑′ = ̂
=

b
n

yarg max
1

b
e

n

e
1

b (4)

The center of bin b′, b′̅, is the natural log of Param-Medic’s
estimate of the optimal multiplier relating one of the two σ̂ϵ
values to its corresponding search parameter value. Therefore,
to calculate the optimal precursor tolerance or fragment bin
size, Param-Medic multiplies the appropriate σ̂ϵ estimate by its
associated exp(b′̅).
Param-Medic will refuse to estimate precursor error or

fragment bin tolerance if there are fewer than 200 pairs of
values that make up the mixed distribution. It will also fail if, as
was the case in one of our training data sets, at least half of the
values in the mixed distribution are exactly 0. This situation
occurs when the values are rounded, and it is incompatible with
the Param-Medic approach.
2.4. Alternative Parameter-Setting Strategies

We compared search PSM yield from settings determined by
Param-Medic with PSM yield from searches using other means
of determining search parameters. In addition to the instrument
defaults described above, we also derived parameter settings
from the publications describing the data sets (or, in the case of
one as-yet-unpublished training data set, from the experimental
metadata provided in the PRIDE repository for project ID
PXD002854). Because the data sets were originally searched
with a variety of search algorithms, the published parameter
values may not map directly to Comet precursor tolerance and
fragment bin size; ours is a good faith effort to represent the
original searches as accurately as possible within the Comet/
Percolator framework. We also used Preview to assess
precursor and fragment median m/z error. To map these
Preview-estimated error values to Comet search parameters, we
used five times the median error, which is the “rule of thumb”
suggested in the Preview user manual.

3. RESULTS

3.1. Param-Medic’s Performance

We evaluated Param-Medic’s performance in terms of PSM
yield, comparing it with the settings used in the original papers
describing our data sets, with instrument default settings, and
with Preview. On seven training data sets (Figure 2), Param-
Medic parameter settings yielded 96−152% as many PSMs as
settings from the original papers (median: 105%) and 99−
334% as many as defaults based on instrument type (median:
103%). Param-Medic failed to find a sufficient number of
repeated ions for parameter estimation on one training data set
because of a large proportion of exactly identical sequential

values for precursor m/z, which we speculate was due to
rounding of the precursor m/z values. Preview failed on the
same training data set as Param-Medic due to insufficient search
results for error estimation. On the remaining seven data sets,
Param-Medic yielded 99−135% as many PSMs as Preview
(median: 101%).
On three test data sets, Param-Medic parameter settings

yielded 99−104% as many PSMs as settings from the original
papers describing the experiments (median: 100%) and 103−
212% as many PSMs as defaults based on instrument type
(median: 104%). Preview failed on one test data set due to
insufficient search results for error estimation. On the other
two, Param-Medic yielded 95 and 99% as many PSMs as
Preview (Figure 2).
To assess the suitability of Param-Medic for evaluating a

different kind of mass spectrometry data, we used it to evaluate
a human data set from a SCIEX TripleTOF 5600 (PRIDE
accession number PXD000307). When we searched this data
set using the parameters specified in the PRIDE submission (10
ppm precursor tolerance, 0.4 Th fragment bin size), the PSM
yield was 2738. Yield with parameter values estimated by
Param-Medic (10.45 ppm precursor tolerance, 0.03 Th
fragment bin size) was 2949, an increase of 7.7%.
Any method for automatically estimating m/z search

parameters should be fast as well as effective at optimizing
PSM yield. On a 3.0 GHz Intel Core Duo processor, Param-
Medic ran in a few seconds to just over a minute on all training
and test data sets, while Preview ran in a few minutes to nearly
1.5 h (Table 3). Param-Medic’s running time scaled with the

number of spectra per experiment, while Preview’s scaled with
both the number of spectra and the size of the database.
Preview took 88 min to run on the human gut microbiome
sample, which it searched against a large gut microbiome
database, even though that sample had just 10% more spectra
than a human sample on which Preview ran in 14 min. The
Preview running times are dominated by the database search
but also include some time spent performing activities not
required for inferring mass error (e.g., inferring peptide
digestion and variable modifications).

Table 3. Wall-Clock Running Times for Preview and Param-
Medic on Each Experiment, in Minutesa

experiment organism spectra preview
Param-
Medic

Training Data Sets
2014kim-kidney14 human 9072 2 0.07
2014kim-lung14 human 17 612 3 0.13
2015clark-redefining15 human 38 570 N/A N/A
2015radoshevich-isg1516 human 63 185 14 1.03
2015tanca-impact17 human gut

microbiome
69 685 88 0.48

2015uszkoreit-intuitive18 mouse 26 992 6 0.67
2016mann-unpublished human 41 157 7 0.12
2016schittmayer-cleaning19 yeast 9297 1 0.19

Test Data Sets
2016may-metapeptides12 ocean

microbiome
98 317 N/A 0.68

2016audain-in-depth20 yeast 18 175 2 0.35
2016zhong-quantitative21 human 14 962 3 0.27

a“N/A” indicates that a tool did not run successfully on a given
experiment.
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3.2. PSM Yield Variation between Parameter Settings

Some of our training experiments were much more sensitive to
parameter settings than others. The extremes in difference in
PSM yield between optimal and suboptimal settings for either
parameter were quite high, with the worst and best parameter
settings for precursor error yielding between 9 and 117% as
many peptides as the instrument default settings and for
fragment bin size yielding between 0 and 339% (Figure 3A,B).
The relationship between parameter settings and PSM yield
was not consistent within an instrument type, with, for instance,
the two QExactive experiments having opposite trends in yield
as a function of precursor error tolerance. These results further
demonstrate that the values specified for precursor and
fragment tolerances can have a sizable impact on PSM yield
and that knowledge of instrument type alone is not sufficient to
set those parameters optimally.
For fragment bin size, there was very close agreement

between the experiments as to the optimal multiple of
estimated error standard deviation (0.005). For precursor
tolerance, the agreement was not as complete, with two
experiments holding the most influence over the derived
optimal multiple (37.40) due to their high sensitivity to changes
in this parameter (Figure 3C,D). The lower level of agreement
for precursor tolerance may reflect differences in the density of

candidate precursor matches in the target and databases being
searched against.

4. DISCUSSION
We have demonstrated that Param-Medic optimizes precursor
error and fragment bin size parameter settings for LC−MS/MS
search based on characteristics of the data set being searched.
Param-Medic assumes that LC−MS/MS experiments are likely
to make multiple observations of many peptide ions. Ironically,
this phenomenon is often perceived as a chronic problem
plaguing data-dependent acquisition proteomics: High-abun-
dance peptides, in particular, will tend to trigger multiple MS/
MS scans, leading to fewer acquisitions of other peptides.
Accordingly, instrument makers and researchers often adjust a
dynamic exclusion window to minimize these repeated
measurements, but such measurements are nonetheless a
constant feature of most proteomics experiments. Param-
Medic exploits these repeated measurements to provide
valuable information about the m/z tolerance characteristics
of the experiment.
On several of our training and test data sets, Param-Medic

increased PSM yield greatly over parameter settings chosen
based on instrument type. Many researchers will spend time
iteratively fine-tuning their search settings for a particular

Figure 3. PSM yield versus parameter settings in training data sets. (A,B) PSM yield at FDR 0.01 as a function of the percentage of the PSM yield for
that data set when searched with instrument default settings. Each line represents a different training data set, colored by instrument type. Black
diamonds indicate instrument default settings. (A) Varying precursor tolerance from 5 to 50 ppm. (B) Varying fragment bin size from 0.02 to 1.005
Da. (C,D) Normalized PSM yield as a function of normalized error. Vertical axis measures normalized PSM yield at FDR 0.01: The natural log of the
ratio of the yield at a given setting to the maximum yield at any setting. Horizontal axis measures parameter setting as the natural log of a multiple of
the estimated standard deviation of measurement error. Gray lines represent individual experiments; blue line represents mean across all
experiments. (C) Varying precursor tolerance. (D) Varying fragment bin size.
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instrument over multiple experiments to maximize yield, a
process that Param-Medic can assist with. In other circum-
stances, instrument-based parameter settings are used often, as
when searching experimental data provided by collaborators or
downloaded from a public repository, with minimal description.
Param-Medic showed particularly large improvement over
instrument defaults for one of the Orbitrap Elite training data
sets. Neither the paper describing the data set nor the
experimental metadata from PRIDE indicated whether the
Orbitrap Elite was run in FT-FT mode (i.e., fragments analyzed
in the orbitrap) or in FT-IT mode (i.e., fragments analyzed in
the ion trap). Accordingly, we naiv̈ely assumed the more-
common (and higher-accuracy) FT-FT settings in our
“instrument default” parameter settings. Upon further
inspection, however, metadata in the mzML file for the
acquisition indicated that the instrument was run in FT-IT
mode. This setting likely accounts for the much higher yield at
wider fragment bin settings and demonstrates that Param-
Medic’s error estimation can infer properties of the analysis that
differ greatly from what might be expected from experimental
metadata alone.
In our training and test data sets, Param-Medic settings

yielded modestly more PSMs than settings chosen by experts
for searching their own data for publication (52% more in one
training data set). We do not know what criteria these authors
used to choose the settings, and the settings may have behaved
quite differently in their hands, using different search engines or
values for parameters other than the two considered here.
However, the consistency of the trend indicates that many
laboratories may benefit from an approach to parameter setting
that is based on the characteristics of the individual experiment
being searched. The applicability of Param-Medic to Q-TOF
data has particular potential to aid a subset of proteomics
researchers. Some Q-TOF manufacturers write mass-corrected
values in the raw data files, while others do not, leading many
researchers to use a very wide and potentially suboptimal
precursor tolerance in searching Q-TOF data.
In terms of PSM yield, Param-Medic performs very similarly

to Preview on most data sets evaluated, with a large advantage
in PSM yield in a single training experiment and nearly identical
performance in our test experiments. (Supplementary Figure 1
compares the parameter estimates derived from Param-Medic
and Preview on the training and test data sets.) Param-Medic
and Preview each fail to assess error in different circumstances:
Preview when its database search fails, Param-Medic when
there are insufficient or suspicious differences in measurements
available for error estimation. In our training and test data sets,
Param-Medic refused to estimate error once, whereas Preview
refused to estimate error on that same experiment and on one
other experiment. An important difference between the tools is
that Preview infers instrument calibration error in addition to
measurement precision and so would presumably provide
superior guidance for acquisitions with large calibration errors.
On the other hand, Preview is proprietary software and runs
only on Windows. Param-Medic is implemented in Python as a
standalone tool and is also integrated into the Crux toolkit for
streamlined parameter estimation and search with Comet and
Tide search engines. In both incarnations, Param-Medic is
open-source and can be run on Windows, Linux, and Mac.
Furthermore, the Param-Medic running time is much shorter
than that of Preview. Preview’s running time scales with both
the number of MS/MS spectra and the database size, whereas
Param-Medic’s running time scales only with the number of

spectra. In practice, neither tool’s running time is likely to be
onerous, except possibly for Preview when the search database
is large. This occurs often, for instance, in a metaproteomics
context.
Although Param-Medic provides an estimate of ppm

fragment error that could be used with any search engine, it
currently only provides guidance for mapping this value to an
appropriate fragment tolerance for search engines such as
Comet, Sequest, and Tide that use fragment binning. Future
work will include a reanalysis of the training data sets to provide
such guidance for search engines that use fragment tolerances
rather than fragment bins.
Param-Medic has been implemented as a standalone Python

2.7 tool that may be downloaded (including source code) at
https://github.com/dhmay/param-medic or simply added to a
Python installation with the “pip” tool. It has also been
incorporated into version 3.1 of the Crux Toolkit, available at
http://crux.ms. Within Crux, Param-Medic is available as a
standalone tool and is also integrated into the Tide and Comet
search algorithms for automatic detection of optimal parameter
settings. All proteomics data sets described here, and links to all
software, may be found at http://noble.gs.washington.edu/
proj/param-medic/.
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