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ABSTRACT

Motivation: The specific hybridization of complementary DNA

molecules underlies many widely used molecular biology assays,

including thepolymerasechain reactionandvarious typesofmicroarray

analysis. In order for such an assay to work well, the primer or probe

must bind to its intended target, without also binding to additional

sequences in the reaction mixture. For any given probe or primer,

potential non-specific binding partners can be identified using state-

of-the-art models of DNA binding stability. Unfortunately, these models

rely on dynamic programming algorithms that are too slow to apply on a

genomic scale.

Results:WepresentanalgorithmthatefficientlyscansaDNAdatabase

for short (approximately 20–30base) sequences thatwill bind to aquery

sequence.Weuse a filtering approach, in which a series of increasingly

stringent filters is applied to a set of candidate k-mers. The k-mers that

pass all filters are then located in the sequence database using a

precomputed index, and an accurate model of DNA binding stability

is applied to the sequence surrounding each of the k-mer occurrences.

Thisapproach reduces the time to identifyall bindingpartners foragiven

DNA sequence in human genomic DNA by approximately three orders

of magnitude, from two days for the ENCODE regions to less than one

minute for typical queries. Our approach is scalable to large DNA

sequences. Our method can scan the human genome for medium

strength binding sites to a candidate PCR primer in an average of

34.5 minutes.

Availability: Software implementing the algorithms described here is

available at http://noble.gs.washington.edu/proj/dna-binding

Contact: mann@gs.washington.edu

1 INTRODUCTION

Many fundamental methods in molecular biology rely on binding

between complementary DNA molecules. For instance, the

polymerase chain reaction (PCR) (Saiki et al., 1988) relies on the

specific binding of short DNA primer sequences to the DNA of inter-

est. PCR is used in a multitude of contexts (Innis et al., 1999), from
disease diagnosis (Kaltenboeck andWang, 2005) to gene expression

measurement (WongandMedrano,2005).DNAmicroarrays (Schena

et al., 1995) also rely on the specific hybridization of array probes to
DNA sequences in a mixture in order to measure gene expression or

determine sample genotypes (Stoughton, 2005).

Assays that rely on hybridization are compromised when primers

or probes bind non-specifically to DNA molecules that are not

their targets (Chou et al., 1992). In the presence of non-specific

hybridization, measurement accuracy in quantitative assays can be

severely compromised, especially when the hybridization target is

present in low abundance. Even in the context of non-quantitative

PCRs, non-specific binding can lead to the formation of undesired

products that compete with the reaction of interest and reduce

reaction yields. Therefore, assessing hybridization specificity is

an important part of the design of these reactions.

The most straightforward approach to assessing hybridization

specificity would be to query every potential binding site in the

background DNA for binding affinity. In most experiments, the

background DNA that comprises the reaction mixture consists of

the genome of the organism being studied. Hence, for the human

genome, this approach requires evaluating approximately six billion

possible binding sites, corresponding to the two strands of each

chromosome.

In practice, applying state-of-the-art DNA binding models on a

genomic scale is not computationally feasible. These models use

dynamic programming algorithms with a computational complexity

of OðnmÞ for two sequences of length m and n, respectively (Garel

and Orland, 2004; Dimitrov and Zuker, 2004), and the complexity of

querying an entire genome isOðgmnÞ, where g is the number of bases

in the genome, m is the sequence length, and n is the size of the

genomic subsequence queried at each position. In our experiments,

scanning the complete human genome for binding sites to a 25-mer

probe requires approximately 180 days ofCPU time. Formost primer

or probe design applications, this is clearly too long to wait.

Current practical methods for predicting non-specific binding of

a given DNA sequence rely on heuristic approximations. Perhaps

the most commonly used method for identifying binding sites

between a query DNA sequence and a target genome predicts

binding sites based upon a pre-specified maximum number of mis-

matches between the probe’s reverse complement and the target

(Kent et al., 2002; Lowe et al., 1990; Wang and Seed, 2003; Xu

et al., 2004). As we demonstrate below, this approach is inaccurate

because sequences can stably bind in the presence of bulge loops,

which correspond to insertions and deletions in an alignment.

An alternative method for identifying non-specific binding sites

relies on the BLAST algorithm or other alignment based criteria

(Altschul et al., 1990; Haas et al., 2003; Zakour et al., 2004;
Andersson et al., 2005). This approach, too, is inaccurate, primarily

because BLAST is designed to detect statistically significant

sequence homology, rather than sequence binding partners.

We propose a filter- and index-based method, shown in Figure 1,

for rapidly identifying binding partners of a given query sequence. In�To whom correspondence should be addressed.
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the initial stage (A), we consider all possible k-mers of a given length

and identify k-mers that could anchor a binding site to the query

sequence. This stage includes four filters that are designed to recog-

nize various aspects ofDNAbinding stability. Two of the filters were

developed for this application. The filters are applied in order of

increasing computational complexity, so that most k-mers are

excluded by the simplest filters. Using our approach and considering

10-mer anchors, typically more than 99% of target 10-mers are

excluded from further consideration. In stage (B), we use a suffix

array index to rapidly extract the sequence context of all occurrences

of the k-mers obtained in the first step. These candidate binding sites

are then evaluated using a model of DNA binding. Because so many

k-mers are excluded at the outset, we can afford to apply an accurate

model of DNA binding in the second stage of the algorithm.

Using our method, we achieve rapid and comprehensive identi-

fication of likely binding sequences. The first stage of the algorithm

reduces the sequence search space by three orders of magnitude.

The second stage is quick because many of the occurrences of the

k-mers that pass the filtering stage can be eliminated by further

filtering. Furthermore, our filter thresholds are set to achieve this

speedup while retaining 100% accuracy, compared with considering

every possible binding site in the target genome. Our approach

reduces the amount of time to scan a sample 30 MB sequence

from two days to under a minute for typical queries.

2 ALGORITHMS

We hypothesize that binding sites in genomic DNA can be

comprehensively retrieved by first identifying short regions of

agreement between the query sequence and the genomic DNA,

and then examining the sequences containing these short regions

of agreement with accurate models of DNA binding. We base this

hypothesis on the observation that the thermodynamic instability

of unbound bases in a DNA duplex (so-called ‘loops’) limits the

amount of disagreement between a query sequence and any of its

binding sites.

In particular, our method relies on a set of filters to identify k-mers

that have good agreement with the query sequence, and could

therefore anchor a binding site. In this section, we describe state-

of-the-art models of DNA binding and then explain how our filters

relate to those methods.

2.1 Partition function models of DNA binding

The overall goal of a model of DNA binding is to predict the binding
affinity of a given pair of DNA sequences. The binding of two single

stranded DNA molecules to form a dimer is a reversible reaction,

and the binding affinity reflects the balance of association and dis-

sociation reactions in a large population of molecules at thermo-

dynamic equilibrium. When the binding affinity is large, then the

dimer form is favored, and when the binding affinity is small, then

the single stranded forms are favored. Currently, the most accurate

models use thermodynamic reference data to approximate a quant-

ity called the partition function. The partition function accounts for

all ways in which two sequences can interact, and weights each

interaction according to the energy of the interaction. The value of

this function is proportional to the binding affinity.
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Fig. 1. Overview of filtering algorithm. (A) k-mer filtering. All k-mers for a specified value of k are input to the mismatch filter, along with a set of pre-chosen

similarity thresholds. The four filters eliminate k-mers in turn, producing as output a list of candidate k-mers that could anchor a binding site.We subject all k-mers

to two sets of thresholds, producing two sets of candidates binding site anchors. One set yields k-mers that have high thermodynamic affinity to the query, and the

other set yields k-mers that have high sequence similarity to the query. (B) Candidate retrieval and evaluation. The k-mers that passed the filtering steps in (A) are

located in the genome sequence using a precomputed index.We examine only those siteswhere a candidate k-mer fromone group occurswith close proximity to a

candidate k-mer from the other group. These candidate binding sites are then tested for binding affinity using the partition function model, and all sequences that

bind to the query with greater than a target affinity are reported.
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In order to predict the binding affinity of two DNA sequences,

partition function models of DNA binding stability consider phys-

ically realistic alignments between the two molecules, weighting

each alignment according to its energy. The energy of a given

alignment depends on a number of factors. The primary factor is

the number of bases that are paired, and whether or not the paired

bases are adjacent. In general, adjacent base pairs have higher

binding energy than isolated base pairs due to so-called stacking

interactions between adjacent base pairs. Conversely, runs of con-

secutive mismatches between the two strands, called loops, reduce

the energy of the alignment. Extra energetic penalties are assigned

to asymmetric loops. Bulge loops, corresponding to insertion and

deletions in alignments, are also energetically unfavorable. Finally,

the energetic stability of a single internal mismatch has been found

to vary significantly according to the sequence context (SantaLucia,

Jr, 1998; SantaLucia, Jr and Hicks, 2004), and these effects must

also be taken into account.

Recently, efficient dynamic programming methods have been

developed to compute the affinity of two DNA molecules (Garel

and Orland, 2004; Dimitrov and Zuker, 2004). In this approach, a

dynamic programming algorithm computes the sum of the expo-

nentials of the energies of almost every alignment in which one

molecule has at least one base pair with the other molecule. This

sum is then proportional to the binding affinity. In this work, we use

the HYBRID software (Markham and Zuker, 2004), which imple-

ments one such dynamic programming algorithm. However, our

method does not rely on the specifics of the HYBRID software:

our filters are designed to account for known, generic features of

DNA affinity, and other models of DNA binding could be used in

the final step to evaluate the filtered list of candidates. Indeed,

although HYBRID and similar methods represent the state of the

art in determining the affinity of two DNA sequences, they are

known to systematically neglect some alignments that are important

in some contexts.

2.2 An efficient algorithm for finding binding sites

Our goal is to identify all of the sequences in a database that bind to

a query sequence according to a given partition function model of

DNA binding. We do this in two stages, as described in Figure 1.

First, we identify two groups of k-mers. One group of k-mers con-

sists of k-mers with high sequence similarity to the query, and the

other group of k-mers consists of k-mers with high thermodynamic

affinity to the query sequence. Each group is defined as the set of

k-mers that pass through a series of four filters described below;

both groups are passed through the same filters but each group is

identified by the use of different filter thresholds for each filter. In

the second stage, each location in the sequence where there is a

k-mer from the high affinity group within a pre-specified distance of

a k-mer from the high similarity group is retrieved, along with

flanking sequence. These candidate binding sites are then evaluated

using the partition function model. The output of the algorithm is a

list of binding partners for the query sequence.

In the first stage of our approach, we consider all k-mers of a given

length, and we use a series of four filters to eliminate k-mers that

have little affinity or similarity to the query. Each filter is designed

to reject those k-mers that have little affinity to the query, and thus

restrict the number of candidate binding sequences that must be

considered. Furthermore, the filters are designed to be increasingly

stringent, and are applied in order of increasing computational

complexity; the first filter is very fast but will pass some k-mers

with low affinity to the query, whereas the last filter is more expens-

ive to compute but will reject all those k-mers with little thermo-

dynamic affinity to the query. Each filter must be applied in

conjunction with a threshold. The threshold for each filter is deter-

mined empirically by examining characteristics of binding sites

predicted by the partition function model of DNA binding. These

thresholds are chosen conservatively, so that each filter will pass

some k-mers with low affinity to the query rather than discard

k-mers that could anchor a binding site.

Each filter uses a function designed to compare two k-mers. In

order to compare a candidate k-mer to a query sequence, we first

decompose the query sequence into k-mers of the same length as the

candidate k-mer, and then compare the candidate k-mer to each

k-mer derived from the query (see Figure 2A). If any of the

query derived k-mers meet the specified similarity to the candidate

k-mer (Figure 2B), then the candidate k-mer is retained for further

analysis. If none of the query derived k-mers meets the specified

similarity, then the candidate k-mer is eliminated from further con-

sideration.

The simplest filter—the mismatch filter—eliminates k-mers that

differ from every k-mer in the query sequence by more than a

specified number of bases. This filter is designed to reject k-mers

that have little affinity to any part of the query sequence. The filter

function computes the fraction of mismatches between a candidate

k-mer K and the query sequence Q:

F1ðK‚QÞ ¼ max
j2sðQ‚ kÞ

Xk

i¼1

dðKi ¼ jiÞ
k

‚

where sðQ‚kÞ returns the set of all k-mers in Q, and d is the

Kronecker delta function.

The second filter rejects k-mers that contain destabilizing internal

mismatches relative to the query. These destabilizing mismatches

are identified using thermodynamic data on DNA binding stability

(SantaLucia, Jr and Hicks, 2004). This filter’s function is similar to

Candidate

Query
B
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Filter 0 or 1

Threshold

k-mers

k-mer

Query k-mers

Query Sequence

Fig. 2. Filtering k-mers. (A) Decomposition of the Query sequence into

k-mers. The query sequence is decomposed into overlapping k-mers of a

specified length. (B) Computation of the similarity of a k-mer to the query.

Each filter identifies k-mers that could anchor a binding site, taking as input

the k-mers derived from the query sequence, a candidate k-mer, and a pre-

specified filter threshold. Each filter then reports whether the candidate k-mer

had the specified level of similarity to at least one of the k-mers in the query

sequence or not.
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the mismatch filter, except that it takes into consideration the spe-

cific stabilities of dinucleotide stacks (pairs of adjacent, paired

bases) and single internal mismatches. We implement this filter

by encoding each k-mer K as a complex valued vector FðKÞ,
and we developed this filter so that the inner product of the con-

jugate of the encoding of one k-mer and another k-mer approximates

the sum of the free energy of binding between the first k-mer and the

reverse complement of the second k-mer, and vice versa. Details of

this encoding are given in the appendix. The final value of this filter

is a normalized dot product:

F2ðK‚QÞ ¼ max
j2sðQ‚ kÞ

hFðKÞ‚FðjÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hFðKÞ‚FðKÞihFðjÞ‚FðjÞi

p :

The third filter rejects k-mers that do not have good sequence

agreement with the query, considering the possibility of asymmetric

internal loops. For each candidate k-mer, this filter’s function con-

siders many alignments with respect to the query sequence, weight-

ing each by the number of matches and the length and topology

of loops. Asymmetric internal loops serve to separate regions of

sequence agreement, and thus this filter will recognize sequence

similarity even when regions of sequence agreement are separated

by insertions or deletions in one sequence with respect to the other.

We developed this filter function to be a coarse approximation of

the partition function for one sequence binding to the reverse com-

plement of the other, and we therefore consider only base pairing

(and neglect the detailed thermodynamic reference data on dinuc-

leotide stability) and internal loops of length three or less. In addi-

tion, we use loop stability values optimized for this application. The

final value of the alignment filter is

F3ðK‚QÞ ¼ max
j2sðQ‚ kÞ

f ðK‚ jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðK‚KÞ · f ðj‚ jÞ

p :

The alignment function f ð · ‚ · Þ is described in the appendix.

The fourth filter applies the partition function model directly. In

this step, we compute the binding affinity between the reverse

complement of the k-mer and the query sequence. In order to

normalize out the binding properties of the query sequence, we

divide this binding energy by the binding energy of the k-mer in

the reverse complement of the query sequence with the highest

affinity to the query sequence. The final value is

F4ðK‚QÞ ¼
gðK̂K‚QÞ

maxj2sðQ‚ kÞgð ĵj‚QÞ
‚

where a carat denotes reverse complement, and gð:‚ :Þ is the partition
function model of DNA binding. In practice, this filter is the most

stringent and the most computationally complex.

We apply the four filters twice, with two sets of filter thresholds,

to get two sets of candidate anchoring k-mers. We use filter thresh-

olds so that the high similarity group of k-mers will be similar with

respect to filters F1 and F2, and the high affinity k-mers will be

similar with respect to filters F3 and F4. We then locate all occur-

rences of both candidate sets in the sequence database, and further

consider only those locations in the sequence database where there

is a k-mer from the high affinity group close to a k-mer from the high

similarity group (see Figure 3).

After the four filtering steps, we must efficiently locate all

occurrences of the high affinity and high similarity k-mers within

the given sequence database. This is accomplished by using a

modified suffix array (Gusfield, 1997; Manber and Myers, 1993)

to index the database. In a suffix array, pointers to suffixes of a

sequence are sorted lexicographically; in our modified suffix array,

the pointers are sorted based on comparison of only the first

k positions of the suffix, where k is the length of the filtered

k-mers. We also build a hash table on the suffix array itself, so

that the positions in the suffix array corresponding to a query k-mer

can be quickly located (with a computational complexity of OðkÞ
per k-mer lookup). We use this sequence index, consisting of the

modified suffix array and the hash table into the suffix array, to

rapidly identify all locations where a candidate k-mer from one

group occurs close to a candidate k-mer from the other group.

These occurrences, along with their flanking sequences, comprise

the list of candidate binding sites.

In the final step, each remaining candidate binding site is evalu-

ated by the partition function model for affinity to the query

sequence. As we show in Section 4, by using a set of fast, accurate

filters, the filtering and indexing stages of the algorithm reduce the

sequence search space by three to five orders of magnitude. There-

fore, in the final step, we can afford to incorporate a relatively

sophisticated, computationally expensive model of DNA stability.

Thus, by coupling a pre-filtering step with accurate refinement of the

candidate list, we achieve both efficiency and accuracy.

2.3 Choice of filter thresholds

Clearly, the success of our filtering strategy depends to a large

extent on the thresholds that we use for each filter. If our thresholds

are too stringent, then we risk eliminating true binding partners from

our list. Conversely, if our thresholds are not stringent enough, then

the efficiency of the search will decrease.

We compute these thresholds empirically by using the partition

function model. First, with respect to a given set of experimental

conditions and a target level of binding affinity, we scan a sequence

database for binding sites to a set of query sequences using the

partition function model, storing a list of all binding sites with

stability better than a given threshold. We then choose filter para-

meters conservatively, so that if we re-searched the sequence using

our filtering approach, we would obtain all of the binding sites

obtained in the slow linear scan.

Our thresholds are set by analyzing the binding sites identified

using a linear scan, using the procedure illustrated in Figure 4. We

decompose each binding site into its constituent k-mers, as in

W

High Affinity k-mers

High Similarity k-mers
Sequence

Fig. 3. Search for proximal hits. Our binding site search algorithm finds

anchoring k-mers in the search sequence.We use two sets of filter thresholds,

and obtain two sets of candidate anchoring k-mers; one set has high similarity

to the query, and the other set has high affinity to the query (occurrences of k-

mers from the high affinity set are drawn with dashes above the search

sequence, and occurrences of k-mers with high similarity are drawn with

solid lines below the search sequence). We locate all occurrences of both

groups of candidate anchoring k-mers, and further examine only those sites

where there is a candidate anchoring k-mer from the high similarity group

occurring within a pre-specified distancew from a candidate anchoring k-mer

from the high affinity group.
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Figure 4(A). We then rank these k-mers according to similarity to

the query sequence using the filter functions. For the high affinity

group of filter parameters, we rank first by filter function F4 and

break ties using filter function F3 as shown in Figure 4(B). For the

high similarity group of filter parameters, we remove the top ranked

k-mer and re-rank the remaining k-mers using the filter function F1;

we break ties with filter function F2 as shown in Figure 4(C). We

then compute the similarity of both top ranked k-mer to the query

according to all filter functions.

After analyzing each binding site recovered from the linear scans,

we integrate information from all binding sites as follows. Each

binding site contributes two sets of similarity scores, one set for the

top k-mer ranked according to thermodynamic affinity and one set

for the top k-mer ranked according to sequence similarity. We

accumulate all sets of similarity scores into two sets. One set con-

tains the similarity scores for all top ranked k-mers according to

thermodynamic affinity, and the other set contains the similarity

scores for all top ranked k-mers according to sequence similarity. To

obtain the final filter parameters, we find the minimum similarity

score in a set over all binding sites for each filter function. This is

thus a conservative method for obtaining filter parameters, and

ensures that if the sequence were re-searched with our filtering

approach, we would recover all of the binding sites identified

with the linear scan.

Intuitively, the two sets of filter thresholds capture different char-

acteristics of DNA binding: sequence agreement and k-mer binding

affinity. These two notions of similarity are not the same: consider a

query sequence that consists of several A bases followed by several

G bases. A k-mer consisting entirely of A bases would have perfect

sequence agreement to the left part the the sequence, whereas a

k-mer consisting of all G bases with two consecutive internal A

bases would have poor sequence agreement, but the reverse

complement of that k-mer would have much higher binding affinity

to the query sequence than the sequence consisting of all A bases.

Our double filtering approach accounts for both situations.

3 METHODS

For validation purposes, we focus on the ENCODE regions of the human

genome ENCODE Project Consortium (2004). These 44 regions together

B

A

Binding Site k-mers

Query Sequence

C

Binding Site Sequence

High Similarity

Ranked by
F4 and F3

Ranked by
F1 and F2

k-mers
High Affinity

k-mers

Fig. 4. Filter Analysis of a binding site. (A) Decomposition of binding site.

Each binding site is decomposed into its constituent k-mers. (B) Ranking of

binding site k-mers according to thermodynamic affinity. The binding site

k-mers are ranked according to similarity to the query by F4; F3 is used to

break ties. The similarity scores of the top ranked k-mer are added to the set of

similarity scores used to determine filter thresholds for the high affinity group

of candidate k-mer binding site anchors. (C) Ranking of binding site k-mers

according to sequence similarity. All k-mers, except the top ranked k-mer in

(B) are re-ranked according to sequence similarity to the query by F1; F2 is

used to break ties. The similarity scores of the top ranked k-mer are added to

the set of similarity scores used to determine filter thresholds for the high

similarity group of candidate k-mer binding site anchors.

Table 1. Query sequences

Query sequence Length GC DG PCR DG MA

1 GAGCTGCGGCAGAGGCTGGCGCCC 24 0.79 �24.5 �36.8

2 GCCTGCACTGGCTTCAGGAAGCTGGAGCC 29 0.65 �25.3 �40.1

3 GGCCAGTTCCTGCAGCCCGAGGC 23 0.74 �21.6 �33.2

4 AGTGGCATGCCTCTCTCTACCCAGC 25 0.60 �19.7 �32.2

5 CCACCAAAAAGTAATTAAAGGGTTTGCCTCAT 32 0.38 �19.5 �35.6

6 CACGCAAATCATCCCCAGCCACATC 25 0.56 �19.1 �31.8

7 CAGGTGTCCCTGCTTCGGCTTCCAG 25 0.64 �20.6 �33.3

8 CGCGAAGTGACCTTCAGAGAGTACGCCAT 29 0.55 �22.3 �37.2

9 CTGGACTGCCAAGTCCAGGGCAGGCC 26 0.69 �23.0 �36.1

10 GTCACCCACCTGCTGGCCCCGG 22 0.77 �20.9 �32.0

11 GGGGCTCAATAAGTCTGCTTCCACCTT 27 0.52 �19.5 �33.0

12 GGGTGAGGCCCATTCATAAGACTGGC 26 0.58 �19.6 �32.7

13 CCAGTCATGTTGCCCCGTTTGTCAGAG 27 0.56 �20.4 �34.1

14 GGGAGGGCTGAAGAGGGCACTCC 23 0.70 �19.4 �30.9

15 GGATGCATATGGACTCTTAGGTGTTCTGCG 30 0.50 �20.6 �36.0

16 GAAAGGGCTGGCTATGATAAACTGTGGC 28 0.50 �19.4 �33.7

DG PCR: Free energy of binding, in kilocalories per mole, of the sequence to its reverse complement at 55 C in 50 mM NaCl and 2 mM MgCl2; DG MA: Free energy of binding,

in kilocalories per mole, of the sequence to its reverse complement at 40 C in 1 M NaCl. Energies are computed using the HYBRID software.
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comprise 1% of the human genome. The ENCODE regions were chosen to

be representative of the entire genome, based on gene density, GC content,

and density of conserved non-coding elements.

In addition, we chose a collection of sixteen query sequences to use in our

experiments. We manually selected from the ENCODE regions exonic and

intronic sequences that vary in length from 22 to 31 bases. Each selected

sequence was analyzed using HYBRID, assuming standard PCR conditions

(see below). A selected sequence S was added to the query set if the binding
affinity between S and its reverse complement is greater than -19 kilocalories

per mole. None of the selected query sequences overlaps a repeat sequence as

annotated by RepeatMasker, and the percent GC of the queries range from

40% to 80%. The final list of query sequences is given in Table 1.

To generate a gold standard set of binding sites, we used HYBRID to scan

every base of both strands of the ENCODE regions. The scan employed

a window size of 35 bases, and was repeated with two different sets of

experimental conditions, typical of PCRs and microarray experiments,

respectively. For PCR conditions, we predict binding affinities at 55 C,

with a concentration of 50 millimolar NaCl and 2 millimolar MgCl2. For

microarray conditions, we predict binding affinities at 40 C, with a concen-

tration of 1 molar NaCl. In subsequent experiments, we used these lists of

binding sites to verify that our algorithm correctly identifies all binding sites.

In selecting filter thresholds, we focus on two levels of binding site

stringency, corresponding to weak and medium binding. We define a

weak binding site as one where the equilibrium constant of the dimer formed

by the binding site and the query sequence is at most six orders of magnitude

less than the dimer formed by the query sequence binding to its reverse

complement, under equal initial single strand concentrations. We define

medium binding sites similarly, except we require only three orders of

magnitude of difference. We used all binding sites recovered with the linear

scans to choose filter thresholds.

4 RESULTS

In order to measure the efficiency and accuracy of our binding site

prediction algorithm, we scan the ENCODE regions with a col-

lection of query sequences, using HYBRID with and without the

filtering and indexing pipeline. This experiment shows that our

approach yields a significant improvement in running time, without

missing any binding sites.

We begin by examining the behavior of each of the four filters for

the thresholds designed to detect k-mers with high thermodynamic

affinity to the query. Table 2 lists the percent of k-mers eliminated

by the combined filters for each of the 16 query sequences. The

mismatch kernel appears to provide the most value, since it has a

Table 2. Rejection rates for the four filters

Sequence F1 F2 F3 F4 Remaining

1 99.4 74.3 3.8 0.6 1589

2 99.2 69.0 7.3 2.8 2431

3 99.4 63.8 6.4 10.0 1862

4 99.3 54.0 2.9 24.0 2333

5 99.1 63.0 1.1 48.0 1887

6 99.3 51.7 3.1 29.7 2282

7 99.3 63.8 5.1 2.5 2322

8 99.2 65.0 7.3 14.5 2414

9 99.3 66.5 6.9 10.0 2059

10 99.5 58.5 2.9 13.6 1969

11 99.3 59.8 6.5 26.6 2164

12 99.3 63.2 5.7 47.1 1360

13 99.3 63.7 3.9 20.2 2181

14 99.4 75.4 2.8 2.7 1419

15 99.1 67.9 8.0 12.1 2375

16 99.2 68.5 4.0 47.4 1316

mean 99.3 64.3 4.9 19.5 1998

The table lists, for each of the query sequences in Table 1, the percentage of k-mers

rejected by each of the four filters using the high affinityfilter thresholds, as well as the

total number of k-mers that pass through all four filters. These results are for weak

binding sites in standard PCR conditions.

Table 3. k-mer filtering performance

Sequence PCR Microarray

Weak Medium Weak Medium

1 1589 15 15 15

2 2431 20 20 20

3 1862 14 14 14

4 2333 16 16 16

5 1887 19 20 16

6 2282 16 16 16

7 2322 16 16 16

8 2414 20 20 20

9 2059 17 17 17

10 1969 13 13 13

11 2164 18 18 18

12 1360 15 17 14

13 2181 18 18 18

14 1419 14 14 14

15 2375 21 21 21

16 1316 16 17 13

mean 1997.7 16.8 17.0 16.3

The table lists, for each of the query sequences in Table 1, the total number of k-mers that

pass through all four filters using the high affinity thresholds.

Table 4. Proximity filtering performance

Sequence PCR Microarray

Weak Medium Weak Medium

1 69 88 66 94

2 55 71 50 57

3 59 77 71 83

4 69 80 70 94

5 76 93 91 92

6 57 67 63 74

7 57 48 48 64

8 80 98 81 98

9 54 70 62 82

10 58 72 59 91

11 61 65 64 73

12 63 74 76 85

13 68 94 80 97

14 48 69 56 89

15 74 89 79 95

16 63 85 79 88

mean 63.19 77.50 68.44 84.75

The table lists, for each of the query sequences in Table 1, the percentage of sequence

locations that are rejected by the proximity filtering step. The final row contains the

column average.
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rejection rate over 99%; however, this high rejection rate is prim-

arily a result of its placement first in the filter pipeline. In practice,

the more computationally expensive filters are also more exclusive.

In each case, the filters reduce the complete set of 410 ¼ 1‚048‚576

k-mers to less than 2500 k-mers. Also, note that the setup in Table 2

(weak binding sites in PCR conditions) is the most permissive and

hence yields a relatively large number of k-mers. Table 3 lists the

total number of k-mers that successfully pass through all four filters

in each experiment: strong and weak binding, and PCR and micro-

array conditions. With the exception of the weak binding/PCR

conditions, the algorithm typically produces on the order of

20 k-mers for further consideration. The results in Tables 2 and 3

use the filter thresholds selected using the high affinity filter para-

meters. Results for the high similarity set of thresholds are similar.

After obtaining both groups of candidate binding site anchors,

we then identify locations in the sequence where a k-mer from the

high affinity group occurs near a k-mer from the high similarity

group. Table 4 lists, for all four experiments, the percentage of sites

identified by the high affinity group of binding site anchor candid-

ates that are not close enough to a k-mer occurrence from the high

similarity group of binding site anchor candidates. On average, this

step reduces the list of candidate sites by between 63% and 85%,

depending upon the experiment.

The final stage of the analysis involves running HYBRID on

the filtered list of candidate binding sites. Table 5 lists, for each

experiment, the number of candidate binding sites that were evalu-

ated by the HYBRID software. Clearly, this stage is very important,

since the number of sites considered is typically several orders of

magnitude larger than the number of sites that HYBRID identifies as

binding partners. In this sense, our filters are conservative: they

do not very closely approximate the computation performed by

HYBRID. However, these conservative thresholds lead to high

accuracy. For all 16 primers that we tested, our filtering and

indexing pipeline identifies 100% of the binding sites that were

identified by HYBRID in the much more computationally expensive

linear scan of the entire ENCODE regions. Furthermore, as shown

in Table 5, the entire pipeline is very efficient. For medium

binding strength and standard PCR conditions, HYBRID was

only required to evaluate an average of 4467 sites, and scanning

the entire ENCODE database required 20.7 seconds on average. By

comparison, a linear scan of the ENCODE regions using HYBRID

takes approximately two days.

5 DISCUSSION

We have presented a method for rapidly identifying binding

partners for a given query DNA sequence within a genome-sized

DNA database. Our approach combines a k-mer filtering method,

which identifies k-mers that could nucleate binding sites to the

query, with an efficient indexing method, which rapidly locates

these nucleating k-mers in a sequence database. The combination

of these two methods speeds up the DNA binding site search by at

least three orders of magnitude.

We note that not all predicted binding sites will be relevant to

every hybridization reaction. Some dimers may be slow to reach

equilibrium concentrations, especially if the dimer has internal

loops. Thus, in a PCR, some dimers may not have time to form and

thus may not be a problem. However, in microarray hybridization

experiments, conditions are much closer to equilibrium, and

secondary binding sites may be more of a concern.

Among the four tasks that we considered, finding weak binding

partners for PCR primers is the most difficult search task, and the

one for which we obtain the least improvement. However, this task

may be the most important for experimentalists, because even weak

binding sites can drive high yields on undesired background reac-

tions. This is because in PCR, the primers are present in vast excess,

Table 5. Number of candidate sequences examined and accepted by the partition function model of DNA binding, and time for each run

Sequence Weak PCR Medium PCR Weak microarray Medium microarray

Candidates Actual Time Candidates Actual Time Candidates Actual Time Candidates Actual Time

1 30712 25 6 m 2340 19 18 s 9543 21 35 s 1332 16 23 s

2 57587 23 20 m 11994 15 40 s 18702 16 76 s 3326 11 19 s

3 44628 100 8 m 4030 20 21 s 4882 21 17 s 3078 17 19 s

4 35218 45 11 m 5269 19 22 s 6152 20 24 s 1178 16 12 s

5 23235 29 6 m 1870 13 18 s 2791 14 23 s 1132 9 12 s

6 91220 108 13 m 7304 19 26 s 8112 21 28 s 6301 16 21 s

7 33780 48 10 m 6667 20 31 s 6667 22 24 s 4962 15 28 s

8 22310 26 5 m 179 14 10 s 3025 15 19 s 99 10 12 s

9 35396 45 12 m 6552 18 22 s 8390 19 35 s 4264 14 17 s

10 175109 336 12 m 5741 21 17 s 7976 25 29 s 1909 18 11 s

11 75547 40 16 m 5908 17 24 s 6181 18 32 s 4896 14 28 s

12 20887 70 6 m 3120 18 16 s 3369 20 19 s 1598 14 14 s

13 22934 31 6 m 907 19 14 s 3276 20 16 s 418 14 13 s

14 142717 361 13 m 5221 21 22 s 7081 37 34 s 1837 17 13 s

15 20106 26 8 m 1413 14 13 s 2839 16 17 s 153 10 12 s

16 17138 29 6 m 2988 17 17 s 3680 19 19 s 1639 13 17 s

mean 53032.8 83.9 9.9 m 4468.9 17.8 20.7 s 6416.6 20.3 27.9 s 2382.6 14.0 16.9 s

The table lists, for each experiment, the total number of candidate sites produced by the filtering and indexing pipeline, the number of those sites that are considered by HYBRID to

be true binding sites, and the total wall clock time required to identify the sites.

T.P.Mann and W.S.Noble

e356



and the excess concentration of primer in the initial stages of the

reaction drives high levels of weak binding site occupancy, even

though the binding affinity is low.

The major bottleneck in our method is evaluating the final list of

sequences. Even though we reduce the number of sequences that

must be considered by several orders of magnitude, the partition

function model is still sufficiently slow that it introduces a signi-

ficant computational burden. It is important to recognize, however,

that we can typically place an upper limit on this burden: once we

identify a pre-specified number of binding partners for a given

query, the search can terminate, since that particular query is not

a tenable primer or probe candidate.

6 FUTURE WORK

Conceptually, searching a RNA database for binding sites to a RNA

sequence is similar to the problem addressed in this paper. Although

the same partition function model can be used to compute the

binding affinity of one RNA molecule for another, the parameters

are different due to the chemical differences between RNA and

DNA Mathews et al. (1999). We are currently beginning experi-

ments to evaluate the computational complexity of this version of

the binding site search problem. Further, it may also be of interest to

search for DNA binding partners of an RNA molecule, or RNA

binding partners for a DNA molecule. Because the data for these

heterogeneous dimers is much less complete than the data for DNA/

DNA or RNA/RNA dimers, our method is not applicable to these

binding site searches.

Our method depends critically on the filter parameters, and

clearly the similarity of the anchoring k-mers in a binding site

to a query is not known in advance. We are therefore increasing

the size of our database of predicted binding sites, so that we can

estimate the sensitivity of our method for a wider variety of query

sequences.

7 CONCLUSIONS

We have shown that DNA binding site search of genomic scale

DNA sequences is tractable for realistic experimental conditions,

for primer length DNA sequences. Our filters work together to

reduce by at least three orders of magnitude the number of

sequences that must be examined by a partition function model

of DNA binding, reducing search time from two days to scan the

ENCODE regions to under a minute for typical queries. This filter-

and index-based method will be useful in the design of PCR primers

and short oligonucleotide probes.

ACKNOWLEDGEMENTS

This work was funded by NIH awards R33 HG003070, T32

HG00035 and R01 GM071923.

REFERENCES

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. A basic local

alignment search tool. 215: 403–410, 1990.

A. Andersson, R. Bernander, and P. Nilsson. Dual-genome primer design for con-

struction of DNA microarrays. Bioinformatics, 21(3): 325–332, 2005.

Q. Chou, M. Russell, D. E. Birch, J. Raymond, and W. Bloch. Prevention of pre-PCR

mis-priming and primer dimerization improves low-copy-number amplifications.

20(7):1717 –1723, 1992.

R. A. Dimitrov and M. Zuker. Prediction of hybridization and melting for double

stranded nucleic acids. Biophys. Journal, 87(1): 215–226,2004 .

ENCODE Project Consortium. The ENCODE (ENcyclopedia of DNA Elements)

project. Science, 306: 636–640, 2004.

T. Garel and H. Orland. Generalized Poland-Scheraga model for DNA hybridization.

Biopolymers, 75(6): 453–467, 2004.

D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press,

Cambridge, UK, 1997.

S. A. Haas, M. Hild, A. P. H.Wright, T. Hain, D. Talibi, andM. Vingron. Genome-scale

design of PCR primers and long oligomers for DNA microarrays. Nucleic Acids

Res., 31(19): 5576–5581, 2003.

M. A. Innis, D. H. Gelfand, and J. J. Sninsky. PCR Applications: Protocols for

Functional Genomics. Academic Press, 1999.

B. Kaltenboeck and C.M. Wang. Advances in real-time PCR: Application to clinical

laboratory diagnostics. Adv. in Clin. Chem., 40:219–259, 2005.

W.J. Kent, C. W. Sugnet, T.S. Furey, K.M. Roskin, T.H. Pringle, A.M. Zahler, and D.

Haussler. The human genome browser at UCSC. Genome Res., 12(6): 996–1006,

2002.

T. Lowe, J. Sharefkin, S. Q. Yang, and C. W. Dieffenbach. A computer program for

selection of oligonucleotide primers for polymerase chain reactions. Nucleic Acids

Res., 18(7):1757 –1761, 1990.

U. Manber and E. Myers. Suffix arrays:a new method for on-line search. SIAM

J. Comput., 2: 935–948, 1993.

N. Markham and M. Zuker. DINAMelt web server for nucleic acid melting prediction.

Nucleic Acid Res., 33: W577–W581, 2004.

D. H. Mathews, J. Sabina, M. Zuker, and D. H. Turner. Expanded sequence dependence

of thermodynamic parameters improves prediction of RNA secondary structure.

J. Mol. Biol., 288: 911–940, 1999.

R. K. Saiki, D. H. Gelfand, S. Stoffel, S.J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis,

and H.A.Erlich. Primer-directed enzymatic amplification of DNA with a thermo-

stable polymerase. Science, 239(4839): 487–491, 1988.

J.SantaLucia, Jr.Aunifiedviewofpolymer,dumbbell, andoligonucleotideDNAnearest-

neighbor thermodynamics. Proc. Natl Acad. Sci. USA, 95: 1460–1465, 1998.

J. SantaLucia, Jr and D. Hicks. The thermodynamics of DNA structural motifs.

Annu. Rev. Biophys. Biomol. Struct., 33: 415–440, 2004.

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown. Quantitative monitoring of gene

expression patterns with a complementary DNA microarray. 270: 467–470, 1995.

R. B. Stoughton. Applications of DNA microarrays in biology. Annual Rev. Biochem.,

74: 53–82, 2005.

X. Wang and B. Seed. A PCR primer bank for quantitative gene expression analysis.

Nucleic Acids Res., 31(24): e154, 2003.

M.L. Wong and J.F. Medrano. Real-time PCR for mRNA quantitation. Biotech., 39:

75–85, 2005.

W. Xu, W. J. Briggs, J. Padolina, W. Liu, C. R. Linder, and D. P. Miranker. Using

MoBioS’ scalable genome join to find conserved primer pair candidates between

two genomes. Bioinformatics, 20: i355–i362, 2004.

N. Ben Zakour, M. Gautier, R. Andonov, D. Lavenier, P. Veber M-F. Cochet, A.

Sorokin, and Y. Le Loir. GenoFrag: software to design primers optimized for

whole genome scanning by long-range PCR amplification. Nucleic Acids Res.,

32(1): 17–24, 2004.

APPENDIX: FILTERS

We use four filters. The simplest counts the number of mismatches

between two k-mers, and the most complicated computes the bind-

ing energy of the reverse complement of a k-mer binding to the

query according to the partition function model. The other two

filters are described in the next two subsections. We use A and B
to represent the sequences input to the filter; these sequences have

length m and n, respectively. We use Ai to represent the ith element

of sequence A.

Free energy filter

The free energy filter is defined first by mapping sequences A and B
to complex valued vectors FðAÞ and FðBÞ, and then taking their

inner product. We developed the mapping F and present it here for

the first time.
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The mapping function has the property that if A and B are ident-

ical, then

hFðAÞ�‚FðBÞi ¼ DGðA‚ B̂BÞ þ DGðB‚ ÂAÞ-DGi

where a carat denotes reverse complement, and DGðA‚ B̂BÞ is the free
energy of binding of A to the reverse complement of B, and DGi

is a duplex initiation energy parameter. This computation of the

binding energy between two sequences approximates the free

energy computations presented in SantaLucia, Jr and Hicks(2004).

The inner product hFðAÞ‚FðBÞi has the property that the angle

between FðAÞ and FðBÞ increases with the number of mismatches.

The angle is also sensitive to the identity of the mismatching

bases, and will increase more for strongly destabilizing mismatches

(such as C—C) than for mildly destabilizing mismatches (such

as G—G).

The inner product can be computed as

hFðAÞ‚FðBÞi ¼
Xm�1

k¼1

½DGsðAk‚Akþ1ÞDGsðBk‚Bkþ1Þ�

þ ½dðAk ¼ BkÞdðAkþ1 ¼ Bkþ1Þ�

where DGsðAk‚Akþ1Þis the free energy of binding of the dinuc-

leotide stack(SantaLucia, Jr and Hicks, 2004).

Alignment filter

We designed the alignment filter to coarsely approximate the par-

tition function model of DNA binding. This filter computes a score

that rewards runs of consecutive identical bases in each sequence,

and that penalizes loops analogously to the loop entropy functions

in(SantaLucia, Jr and Hicks, 2004). The parameters that we use to

reward consecutive matches and penalize loops were optimized for

this application.

The filter value is computed first by filling a dynamic program-

ming matrix, and then computing the sum of all of its entries. This

filter uses an AT reward parameter a, and a GC reward parameter b.

We set a ¼ 1:1 and b ¼ 1:15. This is analogous to assigning a

slightly more stable energy to GC base pairs than AT base pairs,

but this filter neglects specific dinucleotide effects.

The dynamic programming matrix is filled in as follows. If Ai

is not equal to Bj, then Fi‚ j is set to zero. Otherwise, if Ai is equal to

Bj, then

Fi‚ j ¼ max
i-3�x<i‚ j�3�y<j

ðR � Fx‚ y � L½i� x‚ j� y�Þ

where R ¼ a if Ai and Bj are both A or T, and R ¼ b otherwise. The

loop penalty matrix L is given in Table 6. The element in the first

row and column is greater than 1 in order to reward consecutive

matches.

Table 6. The loop penalty matrix

1.050 0.120 0.010

0.120 0.800 0.003

0.010 0.003 0.003
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