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ABSTRACT

We developed a primer design method, Pythia,
in which state of the art DNA binding affinity com-
putations are directly integrated into the primer
design process. We use chemical reaction equilib-
rium analysis to integrate multiple binding energy
calculations into a conservative measure of poly-
merase chain reaction (PCR) efficiency, and a pre-
computed index on genomic sequences to evaluate
primer specificity. We show that Pythia can design
primers with success rates comparable with those
of current methods, but yields much higher cover-
age in difficult genomic regions. For example, in
RepeatMasked sequences in the human genome,
Pythia achieved a median coverage of 89% as com-
pared with a median coverage of 51% for Primer3.
For parameter settings yielding sensitivities of
81%, our method has a recall of 97%, compared
with the Primer3 recall of 48%. Because our primer
design approach is based on the chemistry of DNA
interactions, it has fewer and more physically mean-
ingful parameters than current methods, and is
therefore easier to adjust to specific experimental
requirements. Our software is freely available at
http://pythia.sourceforge.net.

INTRODUCTION

The polymerase chain reaction (PCR) (1), a method for
making many copies of a specific DNA fragment, is one of
the most widely applied tools in modern molecular biol-
ogy (2). Crucial to the success of a PCR is the choice of
the primers that flank the template to be copied. These
primers must fulfill a number of criteria, and research
into primer selection has been ongoing since the advent
of PCR (3–7). Primer design is an unsolved problem, espe-
cially in studies where regions must be comprehensively
analyzed by PCR assays. We focus especially on PCR
primer design for regions in repeated sequences, because

repeated sequences are not amenable to standard primer
design approaches and yet comprise a significant fraction
of mammalian genomes.
Our motivation is to develop theoretically guided meth-

ods for predicting primer quality. The primary difficulty
that we seek to address in PCR primer design is how to
predict primer quality—defined here as the ability to effi-
ciently and specifically amplify the desired template frag-
ment—on the basis of the primer sequences, template
and the background genome sequence. Our theoretically
motivated methods have two significant benefits compared
with commonly used ad hoc primer scoring schemes. First,
they take advantage of accurate methods for assessing
DNA binding (8,9) and folding stability (10); these accu-
rate assessments are critical because PCR relies fundamen-
tally on DNA binding reactions. Second, a physically
motivated approach reduces the number of parameters
that must be chosen, and shifts the emphasis of primer
selection from choosing arbitrary thresholds for quality
scoring metrics to specifying physically meaningful reac-
tion conditions and primer quality criteria.
Standard methods for primer design compute a variety

of quality metrics in order to evaluate various aspects
of primer quality and then combine these individual
metrics into a final score using a weighted sum (3–5).
These quality scores account for considerations such as
primer melting temperature, thermodynamic stability of
a primer at the 30-end, and a variety of other criteria moti-
vated by practical experience with PCR. In this approach,
many metrics contribute to the final prediction of primer
quality, and a weight for each individual quality metric
must be specified in order to obtain the final primer pair
score.
However, selecting these quality metric weights presents

two significant difficulties. First, these metrics are not
always physically interpretable, and second, they can be
redundant. For example, good PCR primers should not
stably bind to other primers (forming so called primer
dimers); if they bind stably to other primers, then they
are much less likely to participate in the desired priming
reaction. The widely used program Primer3 (6) uses two
Smith–Waterman alignment-based metrics to assess the
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likelihood of a primer binding to itself or the other
primer: the max-complementarity metric and the max-30-
complementarity metric. The difference between these two
metrics is that one considers overall similarity between
two primer sequences, and the other considers similarity
anchored at the 30-ends, as computed by Smith–Waterman
alignment scores. These metrics are redundant because
high 30-anchored similarity implies high overall similarity,
and these metrics are thermodynamically inaccurate
because they do not account for known effects in DNA
binding interactions such as the sequence specificity of
single internal mismatches (11). Consequently, selecting
appropriate weights for these two metrics for the final
quality evaluation presents significant difficulties. These
difficulties are compounded by the large number of quality
metrics that must be weighted for the final primer quality
metric. For example, Primer3 has more than 25 weights
that must be specified in the primer design process.
We address the problem of choosing acceptable and

specific PCR primers for a locus given a genomic DNA
sequence, a set of user supplied parameters and con-
straints, and the coordinates of the locus. Pythia calculates
binding and folding energies for a variety of relevant
chemical species, and then integrates these calculations
into a final measure of PCR efficiency. Below, we describe
how these energies are computed and then integrated into
our final quality metric. Because computing the final
primer efficiency measure is a bottleneck in the screening
of primer candidates, we then describe a machine learning
approach to predict primer acceptability on the basis of
free energy calculations; this classification approach
allows us to quickly eliminate infeasible candidates.
In addition to predicting whether the primers will

amplify a given locus, we also evaluate the primer specifi-
city. Specific primers will amplify only the desired locus,
whereas nonspecific primers have binding sites in the
background DNA that lead to undesired copying of back-
ground fragments in addition to the target locus. In order
to predict primer specificity, we use a precomputed index,
in conjunction with a thermodynamic heuristic for pre-
dicting primer specificity. Following Miura et al. (12),
we identify the shortest sequence at the 30-end of each
primer that could bind stably, and then we identify exact
occurrences of this sequence in the background genomic
DNA using our precomputed index.
In order to test Pythia, we compared our method with

a highly optimized primer selection strategy used for sev-
eral high-throughput studies (13–15). This method used
Primer3 for designing primers and a method focused on
the 16 bases at the 30-end of each primer for predicting
specificity. We focused on the problem of tiling genomic
regions, in which primers are placed to cover as much of a
selected genomic region as possible, with minimal overlap
between adjacent PCR products. We show in this
work that our approach to evaluating primer quality
and specificity is more accurate than current approaches.
Furthermore, Pythia has fewer adjustable parameters than
current approaches, and these parameters are more physi-
cally meaningful. Thus, Pythia is easier to tailor to specific
reaction requirements.

MATERIALS AND METHODS

DNA binding and folding energy calculations

We use statistical mechanical models of DNA to compute
the binding affinity between the relevant DNA dimers in a
PCR reaction (8,9). These models use dynamic program-
ming to evaluate the stability of many configurations in
which one molecule is bound to the other via at least 1 bp,
and they integrate the stabilities of all of these confor-
mations into a final stability prediction. We use a set of
thermodynamic parameters (11) that specify the energetic
contributions of base pairing and stacking, as well as
internal and hairpin loops, to the thermodynamic stability
of DNA duplex molecules.

A different statistical mechanical approach has been
developed to predict the folding energy of a nucleic acid
molecule (10). There are several dynamic programming
algorithms available to derive final folded stabilities. We
do not consider folding conformations with pseudoknots,
so that we can employ a dynamic programming algorithm
with a computational complexity of O(n4) in the length of
the folded sequence rather than O(n7) (16) when pseudo-
knots are considered. We use the same thermodynamic
parameters as for the binding energy computations.

Chemical reaction equilibrium analysis

The objective of chemical reaction equilibrium analysis
is to identify the equilibrium concentrations of all chemi-
cal species in a system of simultaneous reactions. This
analysis is done by gradient descent optimization, where
the quantity being minimized is the Gibbs energy G (17),
expressed as

G ¼
X
i

ni�i 1

where ni is the amount of each species, in units of moles
per liter, and mi is the chemical potential of the species.

For DNA dimerization reactions, we use (9)

�i ¼ �Gþ RTln
ni

nAnB

� �
; 2

for the chemical potential, where �G is the free energy of
binding, R is the molar gas constant, T is the temperature
in degrees kelvin, nA is the initial amount of one strand
participating in the binding reaction and nB is the initial
amount of the other strand participating in the reaction.
For DNA folding chemical potentials, we use

�i ¼ �Gþ RTln
ni
nA

� �
: 3

In a PCR, many reactions simultaneously compete for
single unbound target fragments. We consider 11 reactions
that compete for single unbound strands; these reactions
are depicted in Figure 1. In particular, we consider primer
folding, primer dimerization, primers binding to template
outside of the priming region and primers binding to
template in the priming region. Of these reactions, only
the last type is desired; the rest should be minimized.
However, PCR can work in the presence of some primer
folding and dimerization, provided the primers bind
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well to the priming regions. In order to balance these
considerations, we use chemical reaction equilibrium ana-
lysis (17).

Chemical reaction equilibrium analysis determines the
concentration of each chemical species at thermodynamic
equilibrium; in this context, we obtain the concentration
of each DNA folded, unfolded and dimer species. In order
to evaluate the feasibility of a primer pair, we compute the
free energy of all of the duplex and folded forms at a late
stage in an idealized PCR and then compute the equilib-
rium concentration of all of these species as described
above. We perform this analysis at a late stage of an idea-
lized PCR in order to screen for problematic interac-
tions between a primer and template molecule that
might not occur when the templates are at extremely low
concentrations at the beginning of a PCR. In order to
characterize the quality of the primer pair, we use a quan-
tity that characterizes the efficiency of PCR assuming
equilibrium binding conditions. In particular, we deter-
mine the equilibrium efficiency as the minimum of the
fraction of left primers binding to the left primer binding
site and the fraction of the right primers binding to the
right primer binding site. We choose the minimum of these
fractions because a PCR can only be as efficient as its least
efficient priming reaction.

Of course, PCR is manifestly not an equilibrium reac-
tion. Our use of equilibrium analysis is designed to detect
potential problems by identifying binding and folding
reactions that are significant enough to disrupt priming.
We assume that if a primer pair works under our equilib-
rium model, then it will work in PCR conditions. The
converse is not true; because some dimerization reactions
may be kinetically slow, some binding interactions that
are problematic at thermodynamic equilibrium may not

be relevant under PCR conditions. Nevertheless, Pythia
rejects primer pairs in which equilibrium binding con-
ditions result in insufficient binding of primers to their
priming sites in the template molecules.

Primer specificity assessment

We employ a heuristic to determine primer specificity (12)
that focuses on the 30-end of the primer. This heuristic
determines the shortest suffix of the primer that has suffi-
cient stability such that, at equilibrium, a prespecified
fraction of molecules in the background DNA with
exact complementarity to the suffix would be bound,
and then searches for exact occurrences of this suffix
using a precomputed index.
We use a modified suffix array (18–21) and a hash

table on that suffix array as our precomputed index.
In our suffix array, pointers to each suffix in a sequence
are sorted lexicographically, based on the first k
positions. We then build a hash table, so that the suffixes
in the sequence beginning with any particular k-mer
can be quickly identified. This data structure can be
used to retrieve sequences of arbitrary length l in dl/ke
queries.
If two occurrences are close (within 1000 bases of one

another) and oriented appropriately to generate an ampli-
fiable product, then the PCR primer pair is rejected as
nonspecific.

Support vector machine prediction of feasibility

In typical primer design problems, on the order of 10 000
primer pairs satisfy the user-supplied constraints (such as
melting temperature and length restrictions). Because the
gradient descent procedure for chemical reaction equilib-
rium analysis requires many relatively slow O(n3) matrix
inversion steps for each update to the solution, we devel-
oped a filtering procedure to quickly reject infeasible
candidates.
Our approach is to use a support vector machine clas-

sifier (22) to predict whether a primer pair would meet an
efficiency threshold if the full equilibrium analysis were
run, on the basis of the free energies of the various species
that we consider. A support vector machine uses a hyper-
plane to classify a sample on the basis of a vector of
features in a feature space. Support vector machines are
widely used in computational biology (23) and have been
applied to many bioinformatics problems such as transla-
tion site initiation recognition (24), microarray analysis
(25) and genome annotation (26).
A critical component of a support vector machine clas-

sifier is the design of feature vectors associated with the
samples. We designed our feature vectors to account for
the intuition that in a system with many competing reac-
tions, it is not the absolute free energy of any particular
reaction that is important, but rather the relative free
energy of a reaction as compared with its competitors.
We therefore used a quadratic kernel (22) on vectors con-
sisting of the 11 free energy values that we compute
for each primer pair; this quadratic kernel provides infor-
mation on all pairs of free energy values to the classifier.
For further speed improvement, we explicitly compute

Figure 1. Species accounted for in primer feasibility analysis. The solid
line is the top strand of the template;the dashed line is the bottom
strand of the template; the arrow with the square end is the left
primer; the arrow with the round end is the right primer; three
dashed lines indicate binding (or folding) via hydrogen bonding. (A)
Desired binding interactions. High rates of binding are desired between
the primers and the template priming regions. (B) Undesired binding
and folding reactions. Primers should not fold, dimerize or bind to the
target outside of the priming regions.
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the weight vector so that we can compute the classifier
decision function as an inner product rather than a
kernel expansion. We trained the support vector machine
using the LibSVM program.

Pythia algorithm

Our method, Pythia, takes as input the genomic sequence,
locus coordinates to be amplified and user specified
parameters. Figure 2 illustrates our method. In Step 1,
Pythia identifies all pairs of sequences that satisfy the
user constraints, such as primer melting temperature,
primer length and amplicon length. Pythia then sorts
these primers by the discrepancy between the desired melt-
ing temperature and the average of the computed
primer melting temperatures. Pythia then examines the
candidates on the list. In Step 2, the support vector
machine classifier evaluates the candidate primer pair. If
the primer pair is predicted to be feasible, then the full
equilibrium analysis is performed and the quality metric
for the primer pair is computed. If that metric is above
a user-specified threshold, then Pythia computes a specifi-
city check as Step 3. If the primers meet the specifi-
city criterion, then Pythia outputs the primer pair. If the
equilibrium efficiency is not above the user-specified
threshold or the primers are not specific, Pythia examines

the next candidate. Pythia proceeds in this way until
a feasible candidate is found, or until no candidates
are left.

Comparison to other methods

In order to evaluate Pythia, we compare it to a highly
optimized primer selection strategy used for several high-
throughput studies (13–15). This approach uses carefully
chosen parameters for Primer3 and a method for assessing
primer specificity based on the 16 bases at the primer 30-
end. In this approach, exact occurrences of the sequence
formed by the 16 bases at the 30-end of each candidate
primer are located in the genome, and if there are too
many occurrences of either sequence, the primer pair is
rejected. We refer to this combination of Primer3 and
the 30-end-based specificity evaluation as P316. The full
set of parameters for each method are supplied in the
Supplementary Data.

We first evaluated Pythia before developing the support
vector machine classifier to predict primer feasibility based
on free energies. For this test, we selected three regions of
the human genome for which tiling primers had already
been designed by the P316 method. Because computing
the solution to our coupled equilibrium problem requires
about 0.7 s of computation, and a typical region has on
the order of 10 000 primer candidates (100 candidates
for the left primer and 100 for the right), we limited
the amount of time our program was allowed to attempt
to design primers for any particular interval to 10min,
thus allowing Pythia to consider at most �900 candidates
per interval.

Motivated by the bottleneck induced by the coupled
equilibrium analysis, we then developed the support
vector machine classifier, which was fast enough so that
Pythia could evaluate all of the candidates in a region if
necessary. We then chose to tile short regions near tran-
scription start sites annotated as interspersed repeats,
because these regions were challenging for the methods
employed by the P316 approach.

We evaluate each method by the fraction of successful
PCRs. Because we use melting curve analysis to assess
each PCR, we must infer the success rates of each
method and the coverage based on the success rates of
a selected group of PCRs that were analyzed both by
melting curve analysis and by running the PCR products
on an agarose gel.

PCR conditions

Quantitative PCRs (qPCRs) were run using the Immomix
master mix, with 35 ng human genomic DNA from the
GM cell line, and 0.6 mM primers with SYBR green I used
as a fluorescent reporter dye. qPCRs were run according
to the following thermal cycling program: 958C, 7min,
followed by 35 cycles of 988C, 15 s; 608C, 15 s; 688C, 45 s
on an ABI 7900 HT. Each PCR was run twice.

After thermal cycling, a melting curve was taken by
slowly increasing the temperature from 688C to 988C
and measuring SYBR green I fluorescence. The negative
derivative of this fluorescence profile was taken and man-
ually scored according to morphology. All reactions with

Figure 2. Flowchart of the Pythia algorithm. Inputs are the genomic
sequence, locus coordinates and user-specified parameters. In Step 1,
Pythia identifies all primer pairs meeting the user-specified requirements
and sorts these primer pairs by the sum of the differences between the
computed and target primer melting temperatures. In Step 2, Pythia
computes the thermodynamic quality metric for the top ranked candi-
date. If this candidate meets a user-specified metric threshold, then
Pythia proceeds to Step 3. If not, the top ranked candidate is removed
from the list and Pythia returns to Step 2. In Step 3, Pythia performs a
specificity check. If the primer passes the specificity check, it is given to
the user, and the program terminates. If not, the top ranked candidate
is removed from the list and Pythia returns to Step 2.
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inconsistent labels among replicates were eliminated from
further analysis.

RESULTS

Evaluation of primer feasibility classifier

We evaluated the accuracy of our primer feasibility classi-
fier as follows. First, we collected candidate primer pair
examples for seven human genomic loci, and computed
the equilibrium efficiency metric for each example. We
then trained a support vector machine to predict whether
the equilibrium efficiency was above a threshold for sev-
eral threshold choices, and we evaluated classifier perfor-
mance using 5-fold cross-validation. For each choice of
threshold, we selected all of the negative examples and
an equal number of positive examples. Support vector
machines require a parameter to specify the trade-off
between training set model accuracy and complexity; we
set this cost parameter to 0.1.

We used receiver operating characteristic (ROC) analysis
(27) to evaluate the performance of our classifier. An ROC
curve plots the true positive fraction against the false pos-
itive fraction for a range of decision function values. The
area under this curve, the ROC score, is a measure of how
well the classifier is able to distinguish between the two
classes: an area of 0.5 is the expected area under the ROC
curve for a random classifier, and an area of 1.0 is the area
under the ROC curve for a perfectly accurate classifier.

We used 5-fold cross-validation to evaluate the ability
of the support vector machine (SVM) to predict the results
of equilibrium analysis on data which was not used in
training. We split each dataset randomly into five parts,
and trained the classifier on data from four of the parts.
We evaluated its performance using ROC analysis on the
fifth part. For our final classifier evaluation, we computed
the average ROC score over all five portions of the data.

Our results show that the classifiers are able to learn to
distinguish between acceptable primer pairs and unaccep-
table primer pairs with high accuracy, and thus predict,
given a set of free energies, whether the minimum equilib-
rium binding fractions are above the specified thresholds.
Table 1 shows the training set sizes and the mean ROC
score over all cross-validation folds. For each choice of
threshold, the ROC scores were above 0.99. Thus, the
classifier can accurately filter primer candidates at low
computational cost.

The computational savings are due to the nature of
the rule that the support vector machine uses to classify
data. This rule associates a weight with each of the
input features, and the classifier decision is made by
computing the sum of the input features multiplied by
the corresponding weights. If this sum is greater than
zero, then the SVM classifies a datapoint as acceptable
according to equilibrium analysis, and unacceptable
otherwise. Because we use a quadratic kernel on a vector
with 11 features, we can screen primers pairs on the
basis of the free energies with just 264 multiplications
and 131 additions by explicitly using the weight vector;
this is a substantial efficiency improvement over applying
the equilibrium analysis to each primer candidate.

Calibration of melting curve analysis

We chose a set of PCRs not used in the primer design
comparison to run on a gel in order to evaluate the melt-
ing curve analysis of PCR success. In melting curve ana-
lysis, the reaction mixture is slowly heated after thermal
cycling to a temperature high enough to denature the PCR
amplicons. Because amplicon denaturation typically
occurs in a narrow temperature interval (28,29), the fluo-
rescence used in qPCR to detect double-stranded DNA
will decrease sharply in the temperature range in which
the PCR amplicon denatures. A plot of the negative first
derivative of this fluorescence will yield a single prominent
peak for PCRs in which the amplicon molecules denature
in a narrow range of temperatures. Melting curves were
scored manually as valid if they had a single prominent
peak, and invalid if they had multiple prominent peaks or
other unusual morphology.
In order to calibrate melting curve scores and determine

reaction success rates, we ran 259 PCR products on agar-
ose gels stained with the dye SYBR Green I. We manually
examined the lanes and marked them as clean or not
according to the two levels of stringency. Under a per-
missive scoring system, lanes were marked as not clean if
there was significant smearing, missing bands or prom-
inent additional bands in addition to the band of the
expected size. Under a stringent scoring system, all
bands marked not clean under the permissive system
were also marked not clean, as well as all bands with
faint additional bands or faint smearing. Table 2 shows
the results of the melting curve analysis.
Based on this data, we compute the success rates by

extrapolating from the stringent success rates and the per-
missive success rates. Under the extrapolation from the
stringent success rates, the overall success rate is calcu-
lated as

Ss ¼
0:82 � Vþ 0:67 � I

Vþ I
; 4

where V is the number of PCRs labeled ‘valid’ and I is the
number of PCRs labeled ‘invalid’. Similarly, under extrap-
olation from the permissive success rates, the overall suc-
cess rate is calculated as

Sp ¼
0:95 � Vþ 0:84 � I

Vþ I
: 5

Table 1. Training set sizes

Threshold Dataset ROC score
size

0.8 642 0.9995
0.85 1474 0.9986
0.9 3056 0.9951
0.95 10 498 0.9937

The number of training points for each acceptability threshold. For
each threshold, we show the number of examples used to train the
SVM, and the ROC and ROC50 scores. We assessed SVM performance
using 5-fold cross-validation
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Application to genomic tiling

We chose three regions for which primers had already
been designed for the first evaluation of Pythia. Table 3
summarizes the three regions that we tiled in the first test
of our method. We attempted to tile these regions as den-
sely as possible with PCR products whose size ranged
from 225 bases to 275 bases, and whose primers had
melting temperatures ranging from 608C to 648C, with a
target of 628C. Primers were constrained in length to lie
between 18 bases and 30 bases.
We attempted to design a PCR primer for the first

275 bp window in the region. If Pythia was able to
choose a primer pair in the allotted time, we then
attempted to design primers for the 275 bp window start-
ing at the end of the last successful design. If Pythia was
not able to design primers for the window, then we moved
the window by 25 bases and tried again. We stopped
this iterative process when the design window reached
the end of the region. We then attempted to fill gaps by
attempting to tile the gaps, increasing the time allowed per
interval to 20min.
Even when constrained in the time allowed to design

primers, Pythia achieves comparable performance with
P316 on human genomic intervals. Table 4 shows that
Pythia achieves comparable success rates and attempts
to place slightly fewer primers in two of the three regions.
Examination of this data revealed that for some regions,
Pythia must consider on the order of 10 000 primer pairs.
However, due to the time required for equilibrium analy-
sis, Pythia could only evaluate �900 candidates in the
allotted 10min. In order to increase the number of candi-
dates that Pythia could examine in a fixed amount of time,
we developed an SVM approach to screening primer
candidates. Using the SVM approach, we were able to
reduce the total time per primer design attempt to approx-
imately �20 s on a standard linux workstation, as com-
pared with �1.5 s using the P316 method.

Application to repetitive elements

After developing the SVM classifier to screen primer can-
didates, we applied our method to tile a set of regions near
transcription start sites that were annotated as inter-
spersed repeats by the RepeatMasker program by Smit,
Hubley and Green (http://www.repeatmasker.org). We
designed primers to tile each region along with 125 bases

flanking each end. Because the PCR products were
between 225 and 275 bases in length, each primer pair
had at least one primer in a repeat-annotated region. We
designed primers to tile 38 such intervals with a mean
length of 1.5 kb (where the minimum interval length was
751 bases and the maximum interval length was 6198
bases).

For these regions, Pythia was able to design primers for
much greater coverage. Figure 3 shows a histogram of the
percentages of each region that were covered by primer
pairs designed by Pythia or the P316 approach. Pythia
designed 195 primer pairs to tile these regions, whereas
the P316 method designed 106 primer pairs to tile these
regions. Based on melting curve analysis, Pythia achieved
a 94% success rate under the permissive criteria and an
80% success rate under the stringent criteria; similarly, the
P316 approach achieved a 95% success rate under
the permissive criteria and an 82% success rate under
the stringent criteria. Of the 38 regions, Pythia was able
to design primers to cover at least 80% of 27 regions,
whereas the P316 approach was able to design primers
to cover at least 80% of only two regions. In contrast,
Pythia was able to design primers to cover <50% of
only three regions, compared with 18 regions with
<50% coverage for the P316 approach.

Primer quality prediction

Crucial to the success of a primer design method is
how well it can assess the quality of a primer pair. We
therefore sought to compare the primer pair scoring
functions in order to assess how well they can assess the
likelihood that a primer pair will produce a product in a
PCR. To assess the accuracy of these functions, we used

Table 2. Concordance between gel and melting curves

Gel label Valid melting curve Invalid melting curve

Stringent Permissive Stringent Permissive

Clean 172 199 33 41
Not clean 38 11 16 8

For a selected set of PCR primers, we compared the results of melting
curve analysis to agarose gel analysis of PCR amplicon. Melting curves
were classified as valid or invalid based on melting curve morphology,
and gel lanes were classified as clean or not clean at two levels of
stringency. In each table entry, the numbers correspond to the
number of reactions with the corresponding gel and melting curve
label at stringent and permissive levels of gel scoring stringency

Table 3. Genomic characteristics of selected human genome regions

Region Chromosome Interval Interval Length Description
start stop (Kb)

1 16 147 000 164 000 17 High GC
content

2 16 181 000 215 000 34 Repetitive
3 11 5 252 000 5 277 000 25 Typical

We compared the ability of Pythia to the ability of the P316 algorithm
to tile these regions. We show the location, size and a brief description
of each locus

Table 4. Primer design performance for selected human regions

Region P316 P316 Pythia Pythia
PCRs success rate PCRs success rate

Permissive
(%)

Stringent
(%)

Permissive
(%)

Stringent
(%)

1 49 94 80 41 94 81
2 93 94 81 102 94 81
3 63 92 78 43 94 81

Shown are the number of PCRs and the extrapolated success rates for
permissive and stringent criteria
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Primer3 to assess the primers designed by Pythia, and
we used the Pythia primer scoring function to assess the
primers designed by the P316 approach.

The majority (94%) of the P316 primers were accept-
able by the standards of the Pythia scoring function.
Table 5 shows the results of Pythia analysis of the P316
primers. Pythia’s primer design approach is conservative:
most of the primers which Pythia scored as unacceptable
(85%) resulted in acceptable amplicons.

Interestingly, the Primer3 primer metric rejected almost
all of Pythia’s primers. Table 5 also shows the results
of Primer3 analysis of the Pythia primers. About 95% of
the Pythia primers were scored as unacceptable by the
Primer3 scoring function, with only three of the unaccep-
table primer pairs resulting in failed PCR as judged by
melting curve analysis. An informal examination of the
Primer3 output revealed that no single property of
Pythia’s primers led to their rejection by Primer3.
Rather, Pythia’s primers collectively violated a variety of
Primer30s primer evaluation rules.

We computed the precision and recall of both methods
using the pooled set of primers, and our stringent success
extrapolation of PCR success based on melting curve
data. We found that both methods had a precision of
81%, but Pythia had a recall of 97%, as compared with
P316 with a recall of 48%.

DISCUSSION

We propose our measure of equilibrium efficiency as a
physically motivated criteria for predicting primer quality

based on DNA thermodynamics. We have shown that
Pythia compares favorably with the P316 primer design
approach, which is based on Primer3, and thus Pythia
has significant advantages when attempting PCR in
RepeatMasked regions. Repeat sequences are important
genomic features, comprising significant fractions of
mammalian genomes, and thus it is important to extend
PCR-based assays to cover these regions.
Pythia differs from existing approaches primarily in

the evaluation of primer feasibility. Rather than design-
ing an ad hoc primer quality metric, we use a single ther-
modynamic measure of primer pair quality to identify
an acceptable primer pair and a thermodynamically

Figure 3. Primer pair design coverages for interspersed repeat regions. Design coverage is defined as the fraction of an interval covered by PCR
product sequences. (A) Histogram of coverages for Pythia (mean 80%). (B) Histogram of coverages for P316 (mean 50%).

Table 5. Primer design method acceptability assessments

Pythia/P316 evaluation Melting curve

Valid Invalid

Acceptable 276/17 15/3
Unacceptable 17/322 3/39

We show Pythia acceptability assessment of P316 primers and P316
acceptability assessment of Pythia primers. We assessed the ability of
the Pythia primer pair quality metric to predict the quality of the P316
primers and vice versa. The first number in each cell shows the Pythia
assessment of P316 primers, and the second number shows the P316
assessment of the Pythia primers. For example, 276 primer pairs
designed by P316 were acceptable to Pythia and had a valid melting
curve, whereas only 17 of the primer pairs designed by Pythia were
acceptable to the P316 program and had a valid melting curve
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motivated heuristic to ensure that the primers will amplify
only the desired locus. In Pythia, the user must specify
constraints that primers must satisfy (such as a specified
range of melting temperatures and lengths), and then we
enumerate the acceptable primer pairs that flank a locus,
outputting the first acceptable pair according to our
primer quality and specificity metrics.
In addition to performance considerations, Pythia

has several advantages compared to current approaches.
First, our assessment of primer pair feasibility is based on
thermodynamics; this is in contrast to methods such
as Primer3, where primer feasibility is predicted using
an ad hoc scoring function. Second, our method requires
relatively few free parameters; these parameters are
physically meaningful, and thus our method is easier to
use. Although the set of primers designed by Pythia will
be strongly influenced by parameters that take the form
of thresholds, as will Primer3 and other primer design
methods, these threshold parameters more closely corre-
spond to experimental variables than more abstract
threshold parameters such as minimum acceptable align-
ment scores, and thus the choice of appropriate values can
be guided by the experimental system.
While the Primer3 primers have a high success rate, our

results show that the Primer3 primer assessments are
overly conservative, and rejected most of Pythia’s primers.
The conservative approach does well in most genomic
regions but is unable to densely tile challenging regions
such as the interspersed repeats in the human genome.
When Primer3 is unable to choose primers for a partic-

ular region, users are advised to relax the various quality
thresholds (6). However, it is often unclear how to carry
out this relaxation in a principled way. In contrast, Pythia
uses the minimum equilibrium efficiency, with only one
parameter that can be adjusted independently of reaction
conditions. We have shown that Pythia to assessing primer
quality is more accurate than Primer3.
Many of the limitations of Pythia stem from an incom-

plete understanding of DNA stability in PCR mixtures.
Many PCR formulations, such as the one used in this
study, rely on DNA denaturants that preferentially desta-
bilize GC base pairs. These denaturants improve the suc-
cess of PCR, especially when amplifying GC rich
templates; however, they also significantly distort DNA
stability parameters. A better understanding of DNA ther-
modynamics in the presence of these solvent additives
would improve both Pythia’s primer acceptability scoring
method and Pythia’s primer specificity assessments.
Another limitation of Pythia is that the dynamic program-
ming algorithm that computes nucleic acid interaction
energies is computationally intensive. One direction for
future work is evaluation of approximations to the free
energy computation, such as (30), which could yield sub-
stantial algorithmic acceleration with little loss in
accuracy.
In summary, Pythia can tile difficult regions more den-

sely than Primer3, and is simpler to tailor to reaction
conditions. In addition, the Pythia algorithm will natu-
rally incorporate improvements in thermodynamic param-
eters and methods for computing DNA binding. Finally,
Pythia can efficiently design primers for large primer

design problems by using our efficient filters to quickly
eliminate infeasible primers from consideration.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Muller,K.-R. (2000) Engineering support vector machine kernels
that recognize translation initiation sites. Bioinformatics, 16,
799–807.

25. Brown,M.P.S., Grundy,W.N., Lin,D., Cristianini,N., Sugnet,C.W.,
Furey,T.S., Ares,M. Jr. and Haussler,D. (2000) Knowledge-based
analysis of microarray gene expression data by using support vector
machines. Proc. Natl Acad. Sci. USA, 97, 262–267.

26. Ratsch,G., Sonnenburg,S., Srinivasan,J., Witte,H., Muller,K.,
Sommer,R. and Schölkopf,B. (2007) Improving the C. elegans
genome annotation using machine learning. PLoS Comput. Biol.,
3, e20.

27. Metz,C.E. (1978) Basic principles of ROC analysis. Semin. Nucl.
Med., 8, 283–298.

28. Poland,D. (1974) Recursion relation generation of probability
profiles for specific-sequence macromolecules with long-range
correlations. Biopolymers, 13, 1859–1871.

29. Steger,G. (1994) Thermal denaturation of double-stranded nucleic
acids: prediction of temperatures critical for gradient gel electro-
phoresis and polymerase chain reaction. Nucleic Acids Res., 22,
2760–2768.

30. Leber,M., Kaderali,L., Schönhuth,A. and Schrader,R. (2005) A
fractional programming approach to efficient DNA melting
temperature calculation. Bioinformatics, 21, 2375–2382.

PAGE 9 OF 9 Nucleic Acids Research, 2009, Vol. 37, No. 13 e95

 at U
niversity of W

ashington - C
ollection M

anagem
ent Services on M

ay 22, 2014
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://nar.oxfordjournals.org/

