
BIOINFORMATICS Vol. 20 no. 4 2004, pages 467–476
DOI: 10.1093/bioinformatics/btg431

Mismatch string kernels for discriminative
protein classification
Christina S. Leslie1,∗, Eleazar Eskin1, Adiel Cohen1, Jason Weston2

and William Stafford Noble3,†

1Department of Computer Science, Columbia University, 1214 Amsterdam Avenue,
Mail Code 0401, New York, NY 10027, USA, 2Max-Planck Institute for Biological
Cybernetics, Spemannstrasse 38, 72076 Tübingen, Germany and 3Department of
Genome Sciences, University of Washington, 1705 NE Pacific Street, Seattle,
WA 98195, USA

Received on February 19, 2003; revised on June 21, 2003; accepted on August 5, 2003
Advance Access publication January 22, 2004

ABSTRACT
Motivation: Classification of proteins sequences into func-
tional and structural families based on sequence homology
is a central problem in computational biology. Discriminat-
ive supervised machine learning approaches provide good
performance, but simplicity and computational efficiency of
training and prediction are also important concerns.
Results: We introduce a class of string kernels, called
mismatch kernels, for use with support vector machines (SVMs)
in a discriminative approach to the problem of protein clas-
sification and remote homology detection. These kernels
measure sequence similarity based on shared occurrences
of fixed-length patterns in the data, allowing for mutations
between patterns.Thus, the kernels provide a biologically well-
motivated way to compare protein sequences without relying
on family-based generative models such as hidden Markov
models. We compute the kernels efficiently using a mismatch
tree data structure, allowing us to calculate the contributions
of all patterns occurring in the data in one pass while travers-
ing the tree. When used with an SVM, the kernels enable fast
prediction on test sequences. We report experiments on two
benchmark SCOP datasets, where we show that the mismatch
kernel used with an SVM classifier performs competitively with
state-of-the-art methods for homology detection, particularly
when very few training examples are available. Examination of
the highest-weighted patterns learned by the SVM classifier
recovers biologically important motifs in protein families and
superfamilies.
Availability: SVM software is publicly available at http://
microarray.cpmc.columbia.edu/gist. Mismatch kernel software
is available upon request.
Contact: cleslie@cs.columbia.edu

∗To whom correspondence should be addressed.
†Formerly William Noble Grundy, see www.gs.washington.edu/noble/
name-change.html

INTRODUCTION
One of the central problems in computational biology is
the classification of protein sequences into functional and
structural families based on sequence homology. Approaches
based on pairwise similarity of sequences (Waterman et al.,
1991; Altschul et al., 1990, 1997), profiles for protein fam-
ilies (Gribskov et al., 1987), consensus patterns using motifs
(Bairoch, 1995; Attwood et al., 1998) and hidden Markov
models (Krogh et al., 1994; Eddy, 1995; Baldi et al., 1994)
have all been used for this problem. Recent research suggests
that the best-performing methods are discriminative: protein
sequences are seen as a set of labeled examples—positive if
they are in the family and negative otherwise—and a learn-
ing algorithm attempts to learn a decision boundary between
the different classes. In this category, several successful tech-
niques (Jaakkola et al., 2000; Liao and Noble, 2002; Leslie
et al., 2002a) use protein sequences to train a support vector
machine (SVM) (Vapnik, 1998) classifier.
In this paper, we present a method for using SVMs for

remote homology detection, based on a family of kernel func-
tions called mismatch kernels. A kernel function measures
the similarity between a pair of inputs, and defines an inner
product in an implicit feature space for the SVM optimiz-
ation problem. The features used by our mismatch kernel
are the set of all possible subsequences of amino acids of
a fixed length k. If two protein sequences contain many
k-length subsequences that differ by at most m mismatches,
then their inner product under the mismatch kernel will be
large. More precisely, the mismatch kernel is calculated based
on shared occurrences of (k,m)-patterns in the data, where
the (k,m)-pattern generated by a fixed k-length subsequence
consists of all k-length subsequences differing from it by at
most m mismatches. Thus, the mismatch kernel extends the
computationally simpler spectrum kernel presented in Leslie
et al. (2002b), adding the biologically important notion of
mismatches.

Bioinformatics 20(4) © Oxford University Press 2004; all rights reserved. 467

http://

C.S.Leslie et al.

Wealsodescribe themismatch tree data structure thatweuse
to compute the mismatch kernel. We can efficiently compute
the contributions of all instances of (k,m)-patterns occurring
in the data to all entries of the kernel matrix in one pass while
traversing the tree. For (k,m)-parameters that are useful in
applications, the compute time to generate the kernel is fast
enough for practical use on real datasets. Moreover, when
mismatch kernels are used with SVMs, we can implement the
classification tomake linear-timeprediction on test sequences.
We report results for two sets of experiments over the struc-

tural classification of proteins (SCOP) database (Murzin et al.,
1995). In the first set of experiments, we test our method on
the benchmark dataset assembled by Jaakkola et al. (2000),
where SCOP sequences are augmented by domain homologs
of positive training sequences in order to assist HMM-based
methods. We show that our mismatch kernel, in conjunction
with an SVM classifier, performs competitively with state-of-
the-art methods such as the the SVM-Fisher method on this
dataset. In the second set of experiments, we perform a similar
set of experiments on a newer version of the SCOP database
(Liao and Noble, 2002); however, in this second test, we limit
the training examples to proteins in the original SCOP dataset.
In the absence of additional domain homologs for training the
hidden Markov models, SVM-Fisher and other HMM-based
approaches exhibit poorer performance than our mismatch-
SVM approach. However, mismatch-SVM performs as well
as SVM-pairwise, the best-performing method reported in
Liao and Noble (2002) for this benchmark.
The current work is an expanded version of Leslie et al.

(2002b), which defined the mismatch kernel and presented
results on the Jaakkola et al. dataset. Here, in addition to
reporting experiments on the second benchmark dataset and
comparingwith the SVM-pairwisemethod, we present further
results that give biological motivation for use of our method.
First, we show that the mismatch kernel captures a biolo-
gically meaningful notion of sequence similarity by using
the kernel values in an unsupervised setting for family-level
and superfamily-level homology detection and for fold recog-
nition. Second, we describe how to extract from a trained
mismatch-SVM classifier the most informative subsequences
in the training set. These sequences typically correspond to
highly conserved, motif regions in the positive sequence class.
Thus, while we do not use amultiple alignment or HMMas an
input to our method, we can recover conservation information
as an output of our training.

SVMS AND KERNELS
Support Vector Machines are a class of supervised learning
algorithms first introduced by Vapnik (Boser et al., 1992;
Vapnik, 1998). Given a set of labeled training vectors (xi , yi),
i = 1, . . . ,m, where the xi are real vectors and yi are ±1,
training an SVM amounts to solving an optimization problem
that determines a linear classification rule f (x) = 〈w, x〉 + b.

A test example x is then classified as positive (negative) if
f (x) > 0 [f (x) < 0]. Such a classification rule corres-
ponds to a hyperplane decision boundary between positive
and negative points with normal vector w and bias term b.
A key feature of the SVM optimization problem is that it

depends only on the inner products 〈xi , xj 〉 of the training
vectors, allowing us to use kernel techniques. To intro-
duce a kernel, we now suppose that our training data are
simply labeled examples (xi , yi), where the xi could belong
to a vector space or to a space of discrete structures like
sequences of characters from an alphabet. Given any feature
map! from the input space into a (possibly high-dimensional)
vector space called the feature space, we obtain a kernel
defined by K(x, y) = 〈!(x),!(y)〉. By replacing 〈xi , xj 〉 by
K(xi , xj) in the dual SVM optimization problem, we impli-
citly train in feature space. Moreover, if we can directly
and efficiently compute the kernel values K(x, y) without
explicitly representing the feature vectors, we gain tremend-
ous computational advantage for high-dimensional feature
spaces.

THE MISMATCH KERNEL
Below we introduce a class of string kernels, called mismatch
kernels, that can be used on biological sequence data with
various kernel-based machine learning methods. Our even-
tual goal is to use these kernels to train SVMs for protein
classification: we outline the use of kernels in SVM training,
describe how to compute the kernel efficiently, and apply our
mismatch kernels in an SVM approach to remote homology
detection.
In this section, we define the mismatch kernels and provide

some intuition forwhy they capturemeaningful sequence sim-
ilarity information. For motivation, we interpret the mismatch
value for a pair of protein sequences as a sequence similarity
score, and as a simple application, we show that this score can
be used directly for protein classification.

Mapping protein sequences to k-mer feature space
Recall that, given a number k ≥ 1, the k-spectrum of a
biological sequence is the set of all k-length (contiguous)
subsequences that it contains; we refer to such a k-length
subsequence as a k-mer. In order to capture significant inform-
ation from sequence data without first building a generative
model, we represent the spectrum information in a sequence
as a vector in ‘k-mer feature space’.
If we are dealing with sequences of characters from an

alphabet A of size |A| = l (l = 20 for the alphabet of
amino acids), we represent the sequences as vectors in an
lk-dimensional vector space, or feature space, where the
coordinates are indexed by the set of all possible k-mers. For a
very simple featuremap, we can assign to a sequence x a vector
given as follows: for each k-mer α, the coordinate indexed by
α will be the number of times α occurs in x. This gives the

468

Mismatch string kernels for discriminative protein classification

k-spectrum feature map defined in Leslie et al. (2002a):

!k(x) = (φα(x))α∈Ak ,

where φα(x) = no. of occurrences of α in x. Now the
k-spectrum kernel K(x, y) for two sequences x and y is
obtained by taking the inner product in feature space:

Kk(x, y) = 〈!k(x),!k(y)〉.

Note that this kernel gives a simple notion of sequence simil-
arity: two sequences will have a large k-spectrum kernel value
if they share many of the same k-mers. One can extend this
idea by taking weighted sums of k-spectrum kernels for dif-
ferent values of k, as described in (Vishwanathan and Smola,
2002).
For a more sensitive and biologically realistic kernel, we

want to allow some degree of mismatching in our featuremap.
That is, we want the kernel value between two sequences
x and y to be large if they share many similar k-mers. For
a fixed k-mer α = a1, a2, . . . , ak , with each ai a charac-
ter in A, the (k,m)-pattern generated by α is the set of all
k-length sequences β fromA that differ from α by at most m
mismatches. We denote this set by N(k,m)(α), the ‘mismatch
neighborhood’ around α. Intuitively, when we see an instance
of a k-mer α in our input sequence x, we would like it to con-
tribute not only to the α-coordinate in feature space but also
to all coordinates corresponding to k-mers in the mismatch
neighborhood of α.
We can now define our feature map into the lk-dimensional

feature space, indexed as before by the set of all possible
k-mers. If α is a fixed k-mer, we first define the !(k,m)

on α by:
!(k,m)(α) = (φβ(α))β∈Ak ,

where φβ(α) = 1 if β belongs to N(k,m)(α) [or equivalently,
if α belongs to N(k,m)(β)], and otherwise φβ(α) = 0.
We define the feature map on an input sequence x in X is

as the sum of the feature vectors for the k-mers in x:

!(k,m)(x) =
∑

k-mers α in x
!(k,m)(α). (1)

Note that !(k,0) coincides with the spectrum kernel feature
map !k defined above. The (k,m)-mismatch kernel is once
again just the inner product in feature space1:

K(k,m)(x, y) = 〈!(k,m)(x),!(k,m)(y)〉.

These kernels measure sequence similarity based on shared
occurrences of (k,m)-patterns in the data: the kernel value
K(k,m)(x, y) will be large if the sequences x and y share many
k-length subsequences differing by at most m mismatches.

1Note that since we have defined K(k,m) from an explicit feature map, it is
automatically a valid kernel function, and there is no need, e.g. to show that
the conditions of Mercer’s Theorem apply.

A simple application: ROC analysis of protein
classification
As a simple application to demonstrate that our kernels
capture useful biological information about sequence sim-
ilarity, we use the spectrum kernel Kk(x, y) and mismatch
kernel K(k,m)(x, y) to derive distance measures between pro-
tein sequences x and y, and we use these kernel-derived
distances for homology detection. A receiver operating char-
acteristic (ROC) analysis shows favorable comparison with
BLAST (Altschul et al., 1997) for certain homology detection
problems in terms of overall ROC score. Here, our purpose is
simply to motivate our use of mismatch kernels in the SVM
experiments described later in the paper; we do not claim
that mismatch kernels are more appropriate or effective than
BLAST for measuring sequence similarity.
We first normalize the kernels via

K(x, y) ← K(x, y)√
K(x, x)

√
K(y, y)

. (2)

We then consider the induced distance

d(x, y) =
√

K(x, x) − 2K(x, y) + K(y, y)

between pairs of protein sequences x and y. We wish to see
whether the kernel-induced pairwise distance d(x, y) can be
used directly to predict whether x and y belong to the same
protein family, superfamily or fold.
We evaluate the performance of this distance for homology

detection and compare with the performance of Smith–
Waterman and BLAST over the same dataset using default
parameters. Sequences for these experiments were extrac-
ted from the SCOP (Murzin et al., 1995) version 1.53
using the Astral database (http://astral.stanford.edu/, Brenner
et al., 2000), removing similar sequences using an E-value
threshold of 10−25. This procedure resulted in 4352 distinct
sequences, grouped into families, superfamilies and folds. All
pairwise E-values are computed by querying the database of
4352 iteratively with each sequence.
We perform separate experiments to detect family-level

and superfamily-level homology and fold-membership using
Smith–Waterman, BLAST, the spectrum kernel with k = 4
and the mismatch kernels with the following (k,m) para-
meters (6, 1) and (8, 2). In experiments using kernel-derived
distances, we compute ROC curves by varying the distance
threshold: a pair of homologous proteins that is below the
threshold is considered a true positive, while a pair of non-
homologous proteins below the threshold is considered a false
positive.We also compute anROCcurve for Smith–Waterman
and BLAST using E-value thresholds.
Figure 1 shows ROC curves for all methods in the super-

family task. ROC curves for the family and fold tasks are
available on the supplemental data website for this paper
(www.cs.columbia.edu/compbio/mismatch). Table 1 sum-
marizes the ROC scores for all methods at each task. The

469

http://astral.stanford.edu/

C.S.Leslie et al.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate

Superfamily

SW
BLAST

4-spectrum
(6,1)-mismatch
(8,2)-mismatch

Fig. 1. ROC curves comparing mismatch kernels with Smith–
Waterman (SW) and BLAST for unsupervised homology detection.
‘True’ relationships are defined by SCOP superfamilies.

Table 1. ROC scores for homology experiments comparing kernels with
BLAST

SW BLAST Spectrum Mismatch Mismatch
k = 4 k = 6, k = 8,

m = 1 m = 2

Fold 0.713 0.619 0.623 0.623 0.621
Superfamily 0.679 0.660 0.702 0.704 0.695
Family 0.820 0.737 0.741 0.784 0.708

The ROC score is the area under the ROC curve.

ROC score is the area under the ROC curve: perfect discrim-
ination between positives and negatives gives an ROC score
of 1, while a random classifier has an expected score close
to 0.5. We first note that in this unsupervised setting, neither
the kernel-induced distances nor the E-values from BLAST
and Smith–Waterman gave very strong performance in any of
the homology/fold detection tasks. However, for family-level
homology detection, the best mismatch kernel performs better
than BLAST. For the superfamily homology and fold recog-
nition tasks, the mismatch kernels outperform both BLAST
and Smith–Waterman at low false positive rates, though
Smith–Waterman is more sensitive at fold detection at higher
false positive rates. In all tasks, the mismatch-induced dis-
tance gives stronger performance than the spectrum-induced
distance at low false positive rates.

EFFICIENT COMPUTATION OF KERNEL
MATRIX
Because our feature vectors are sparse vectors in a very high-
dimensional feature space, we do not compute and store the
feature vectors for our input sequences. Instead, we directly
and efficiently compute the kernelmatrix using adata structure
called a mismatch tree.

Mismatch tree data structure
The mismatch tree data structure is similar to a trie or suffix
tree (Gusfield, 1997). We use the mismatch tree to repres-
ent the feature space (the set of all k-mers) and to organize
a lexical traversal of all instances of k-mers that occur (with
mismatches) in the data. The entire kernel matrix is com-
puted in one traversal of the tree. Our algorithm is similar to
the approach presented in (Sagot, 1998; Pavesi et al., 2001)
for finding subsequence patterns that occur with mismatches.
A related data structure was also used for sparse prediction
trees (Eskin et al., 2000; Pereira and Singer, 1999).
A (k,m)-mismatch tree is a rooted tree of depth k, where

each internal node has 20 (more generally l) branches, each
labeled with an amino acid (symbol from A). A leaf node
represents a fixed k-mer in our feature space, obtained by con-
catenating the branch symbols along the path from root to leaf.
An internal node represents the prefix for those k-mer features
that are its descendants in the tree. We perform a depth-first
traversal of the data structure and store, at a node of depth d, n
pointers to all substrings (‘k-mer instances’) from the sample
datasetwhosed-length prefixes arewithinmmismatches from
the d-length prefix represented by the path down from the
root; this set of substrings represents the valid instances of the
d-length prefix in the data. We also keep track, for each valid
instance, of howmanymismatches it haswhen comparedwith
the prefix. Note that the set of valid instances for a node is a
subset of the set of valid instances for the parent of the node;
when we descend from a parent to a child, each instance is
either passed down (with 0 or 1 additional mismatch), or it is
eliminated because it has exceeded m mismatches. When we
encounter a nodewith an empty list of pointers (no valid occur-
rences of the current prefix), we do not need to search below
it in the tree. When we reach a leaf node—corresponding to
a particular feature k-mer α—we have pointers to all instance
k-mers occurring in the source sequences that are up to m

mismatches from α. Because for a source sequence x, the
instances with mismatches of α in x—the k-mers in x belong-
ing to N(k,m)(α)—are exactly the ones that contribute to the
α-coordinate of the feature vector !(x), we can now sum
the contributions of all instances occurring in each source
sequence and update the kernel matrix entries K(x, y) for
those source sequences x and y having non-zero α-features.
That is, if nα(x) and nα(y) are the number of instances
(with mismatches) of k-mer α in x and y, respectively, at
the leaf node, we perform the update K(x, y) ← K(x, y) +
nα(x) ·nα(y). Figure 2 gives an example of the mismatch tree
traversal.

Efficiency of kernel computation
During the kernel computation, we need only search down
paths corresponding to k-mers that occur (with mismatches)
in the data. The number of k-mers within m mismatches of
any given fixed k-mer is p(k,m, l) = ∑m

i=0
(k
i

)
(l − 1)i =

O(kmlm). Thus, the effective number of k-mer instances that

470

Mismatch string kernels for discriminative protein classification

V

A
L

A

L

K

V

L

L
K

V

A

A

L

L
K

V

L

A

A

L

0 1 1

A

L
A

K

V

V

L

A

V

A
L

A

L

L

K

V

L

L
K

V

L

A

A

L

0 00

A
L

A

L

K

V

L
K

V

A

A

L

11

A

L

Fig. 2. An (8, 1)-mismatch tree for a sequence AVLALKAVLL used
for computing the kernel matrix with k-mers of length 8 allowing
1 mismatch. The path from the root to the node is the ‘prefix’ of a
particular k-mer feature. The leaf node stores the number of mis-
matches between the prefix of a k-mer instance and the prefix of a
feature and a pointer to the tail of the k-mer. The figure shows the
tree after expanding the path AL.

we need to traverse grows as O(Nkmlm), where N is the
total length of the sample data. If we are computing the ker-
nel value K(x, y) for a single pair of sequences, we make
just one kernel update per leaf node that we reach in the tra-
versal, and each k-mer instance that is counted at a leaf node
is processed k times as it is passed down the path from the
root. Thus to calculate a single kernel value, the complexity
is O[km+1lm(|x| + |y|)].
To compute the kernel matrix for M sequences each of

length n (total length N = nM), the traversal time is
O(nMkm+1lm), but the running time of the algorithm is dom-
inated by the kernel updates made at the leaf nodes. If exactly
c input sequences contain valid instances of the current k-mer
at a particular leaf node, one performs c2 updates to the kernel
matrix. One can show that theworst case for the kernel compu-
tation occurswhen theM feature vectors are all equal and have
themaximal number of non-zero entries, so that theworst case
running time for the leaf updates (and hence the full kernel
computation) is O[M2np(k,m, l)] = O(M2nkmlm). Thus,
the kernel computation worst case running time grows with
m, the number ofmismatches, at the same rate as themismatch
neighborhood and scales linearly with the length n of the
input sequences. For remote homology detection, small val-
ues ofm are most useful, and the kernel calculations are quite
inexpensive.
Another advantage of themismatch algorithm is its efficient

use of memory, which also leads to faster running time in
practice. Because we perform a depth-first traversal, the only
expanded nodes are along the current search path, and thus
there is a maximum of k stored nodes (counting the root node)
at any time. In fact, the kernel computation can be achieved by
a recursive function, without explicitly building and storing
the tree.

FAST PREDICTIONWITH SVMS
Mismatch kernels provide an additional advantage when used
withSVMs: the particular formof theSVMsolution combined
with the definition of the mismatch feature map allow us to
implement fast predictionon test sequences. The learnedSVM
classifier is given by

f (x) =
r∑

i=1
yiai〈!(k,m)(xi),!(k,m)(x)〉 + b,

where xi are the training sequences that map to support vec-
tors, yi are labels (±1), and ai are weights obtained from
the dual SVM optimization problem. Note that the classific-
ation function evaluated on the test sequence x is the sum of
classification ‘scores’ f (α) for the k-mers α it contains. We
can therefore precompute and store all the non-zero k-mer
scores. Then the prediction f (x) can be calculated in linear
time [i.e. O(|x|)] by scanning through the k-mers in x and
looking up the precomputed k-mer scores.
One way to compute the k-mer scores is to use two passes

of the mismatch tree data structure. In the first pass, we com-
pute the non-zero coordinates of the normal vector w =∑r

i=1 yiai!(k,m)(xi). We traverse the support sequences xi ,
and at leaf node corresponding to k-mer β, we compute the
weighted sum of valid instances to obtain the coordinate wβ

of the normal vector. In the second pass, we use the normal
coordinates wβ to obtain the k-mer scores. We traverse the
set of k-mers β having non-zero wβ , and at leaf node corres-
ponding to k-mer α, we compute the sum

∑
β in N(k,m)(α) wβ to

obtain the score for α.

EXPERIMENTS: PROTEIN CLASSIFICATION
SCOP experiments with domain homologs
We first test the mismatch SVM method using the SCOP
(Murzin et al., 1995, version 1.37) datasets designed by
Jaakkola et al. (2000) for the remote homology detection prob-
lem. In this test, remote homology is simulated by holding out
all members of a target SCOP family from a given superfam-
ily. Positive training examples are chosen from the remaining
families in the same superfamily, and negative test and train-
ing examples are chosen from disjoint sets of folds outside
the target family’s fold. The held-out family members serve
as positive test examples. Details of the datasets are available
at www.soe.ucsc.edu/research/compbio/discriminative
Because Jaakkola et al. needed to train hiddenMarkovmod-

els for the protein families represented in the positive training
sets for these experiments, they used the SAM-T98 algorithm
to pull in domain homologs from the non-redundant protein
database. These additional domain homologs were added to
the dataset as positive examples in the experiments.
Because the test sets are designed for remote homology

detection, we use small values of k. Without mismatches, the
only reasonable values are k = 3 and k = 4, since k ≥ 5

471

C.S.Leslie et al.

0

5

10

15

20

25

30

35

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
o.

 o
f f

am
ilie

s
w

ith
 g

iv
en

 p
er

fo
rm

an
ce

ROC

(5,1)-Mismatch-SVM
Fisher-SVM

SAM-T98

Fig. 3. Comparison of three homology detection methods for the
SCOP 1.37 benchmark dataset. The graph plots the total number of
families for which a given method exceeds an ROC score threshold.
Each series corresponds to one of the homology detection methods
described in the text.

results in a spectrum kernel matrix that is almost everywhere
0 off the diagonal (and k < 3 is not informative). For the mis-
match kernel, we were therefore interested in slightly longer
k and a very small number of mismatches for efficiency in
training. We tested (k,m) = (5, 1) and (6, 1), where we nor-
malized the kernel by Equation (2). Our results show that
(k,m) = (5, 1) yields slightly better performance, though res-
ults for both choices were similar. [Data for (k,m) = (6, 1)
not shown.] We use a publicly available SVM software
implementation (http://microarray.cpmc.columbia.edu/gist/),
which implements the soft margin optimization algorithm
described in Jaakkola et al. (2000). Note that for this vari-
ant of the SVM optimization problem, the bias term b is
fixed to 0.
For comparison, we include the original experimental

results from Jaakkola et al. for two methods: the SAM-T98
iterative HMM, and the SVM-Fisher method. We note that,
more recently, a newer version of the SAM HMM software
has become available (Karplus et al., 2001), modifications
to the Fisher kernel have been explored (Tsuda et al., 2002),
and other novel approaches to homology detection have been
introduced (Spang et al., 2002). Figure 3 illustrates the mis-
match kernel’s performance relative to the profile HMM
and SVM-Fisher homology detection methods. The figure
includes results for all 33 SCOP families, and each series
corresponds to one homology detection method. Qualitat-
ively, the curves for SVM-Fisher and mismatch-SVM are
quite similar. When we compare the overall performance of
twomethods using a two-tailed signed rank test (Henikoff and
Henikoff, 1997; Salzberg, 1997), we find that almost none of
the differences between methods are statistically significant.
Using a p-value threshold of 0.05 and including a Bonferroni

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Fi
sh

er
-S

VM
 R

O
C

(5,1)-Mismatch-SVM ROC

Fig. 4. Family-by-family comparison of mismatch and Fisher ker-
nels for SCOP1.37 benchmark dataset. The coordinates of each point
in the plots are the ROC scores for one SCOP family, obtained using
the mismatch-SVM with k = 5, m = 1 (x-axis) and Fisher-SVM
(y-axis). The dotted line is y = x.

adjustment to account for multiple comparisons, we find
only the following significant differences: Fisher-SVM and
mismatch-SVMperformbetter than SAM-T98 (withp-values
6.7e − 03 and 1.3e − 02, respectively). There is no stat-
istically significant difference between the performance of
Fisher-SVM and mismatch-SVM.
Figure 4 shows a family-by-family comparison of the

ROC scores of the (5, 1)-mismatch-SVM and SVM-Fisher.
The points fall approximately evenly above and below
the diagonal, indicating little difference in performance
between the two methods, though there are a handful
of families on which SVM-Fisher has somewhat higher
ROC scores.
Figure 5 shows the improvement provided by includingmis-

matches in the SVM kernel. The figure plots ROC scores for
two kernel SVM methods: using k = 5, m = 1 mismatch
kernel, and using k = 3 spectrum kernel (no mismatches),
the best-performing spectrum kernel reported in Leslie et al.
(2002a).Most of the families performbetterwithmismatching
than without, and in the cases where the 3-spectrum ker-
nel wins over the (5, 1)-mismatch kernel, the difference is
usually small.

SCOP experiments without domain homologs
In order to investigate the performance of our method against
competing methods in the more difficult setting of very lim-
ited positive training data, we completed a similar set of
SCOP experiments described in Liao and Noble (2002).
Liao and Noble developed this benchmark dataset (available
at www.cs.columbia.edu/compbio/svm-pairwise) to test their
SVM-pairwise method, which uses explicit feature vectors

472

http://microarray.cpmc.columbia.edu/gist/

Mismatch string kernels for discriminative protein classification

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

k=
3

Sp
ec

tru
m

-S
VM

 R
O

C

(5,1)-Mismatch-SVM ROC

Fig. 5. Family-by-family comparisons mismatch and spectrum ker-
nels for SCOP1.37 benchmark dataset. The coordinates of each point
in the plots are the ROC scores for one SCOP family, obtained using
mismatch-SVM with k = 5, m = 1 (x-axis) and spectrum-SVM
with k = 3 (y-axis). The dotted line is y = x.

based on Smith–Waterman alignment scores against the set
of training sequences for SVM training.
These experiments are based on SCOP version 1.53 and

also test for remote homology detection, but the positive
training data is limited to the original SCOP sequences. In
particular, no method has the benefit of training on addi-
tional homologs of the positive training sequences pulled in
from a large unlabeled protein database. For this more diffi-
cult discrimination problem, Liao and Noble found that their
SVM-pairwise method outperformed SVM-Fisher, SAM-
T98 and PSI-BLAST; these methods could not successfully
perform in the presence of so little positive training data
(Fig. 6).
In our experiments, we find that the our SVM-mismatch

method performs as well as SVM-pairwise on this dataset:
Figure 7 shows the comparison of the (5,1)-mismatch kernel
against SVM-pairwise. A signed-rank test confirms that there
is no significant difference between performance. Note, how-
ever, that the mismatch method has the advantage that its ker-
nel is fast and efficient to compute, while the SVM-pairwise
method requires expensive computation of Smith–Waterman
alignment scores for every pair of training sequences and
between each training and test sequence (computation of each
feature is quadratic in sequence length). Also, the computa-
tion of the kernel matrix from the Smith–Waterman matrix is
O(M3) in the number of training examples. We did not test
SVM-pairwise on the Jaakkola dataset because the large num-
ber of experiments and training sequences make computation
of the SVM-pairwise kernel prohibitively expensive.
One can argue that this set of experiments is an unreal-

istic comparison of methods, because one would generally
not attempt to use hidden Markov models, either directly

0

10

20

30

40

50

60

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
o.

 o
f f

am
ilie

s
w

ith
 g

iv
en

 p
er

fo
rm

an
ce

ROC

(5,1)-mismatch
SVM-pairwise

SVM-Fisher
SAM

PSI-BLAST

Fig. 6. Comparison of homology detection methods for the SCOP
1.53 benchmark dataset. The graph plots the total number of families
for which a given method exceeds an ROC score threshold for the
second set of remote homology detection experiments. Each series
corresponds to one of the homology detection methods described in
the text.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

SV
M

-p
ai

rw
is

e

(5,1)-mismatch

Fig. 7. Family-by-family comparison of (5, 1)-mismatch-SVMwith
SVM-pairwise for the SCOP 1.53 benchmark dataset. The coordin-
ates of each point in the plot are the ROC scores for one SCOP family,
obtained using the SVM-mismatch with k = 5, m = 1 (x-axis) and
SVM-pairwise (y-axis). The dotted line is y = x.

or in the SVM-Fisher approach, that had been trained on a
limited and divergent set of positive examples. However, we
view these experiments as a demonstration of the power of
our model-independent discriminative approach in a difficult
classification problem with limited training data.

Extracting explanations for SVM predictions
In general, SVM classifiers do not easily yield explanations
for the predictions that theymake. In particular, when a kernel
function is used to map the data into a high-dimensional

473

C.S.Leslie et al.

1cb1_4:78 saq..---ksp..aelksifek..yaakeg....dpnqlsk...eel...........kqliqaef.................p...........
SWN:CA22_HUMAN_116:179 snklh------..----fafrl..yd-ldk....d-ekisr...del...........lqvlrmmv.................gvnisdeqlgsi
SWN:S106_CHICK_4:82 maa..pldqai..gllvatfhk..ysgkeg....dknslsk...gel...........keliqkelti...............g...........
SW:BTV3_BETVE_140:197 sfggf------..----kvfd-..---edg....d-gyisa...rel...........qmvlgk-l.................g...........
SW:CA22_RAT_116:179 snklh------..----fafrl..yd-ldk....d-dkisr...del...........lqvlrmmv.................gvnisdeqlgsi

1cb1_4:78 sll..................k......g...................prtlddl....fqeldkn...gdgevSFEEFQvlvkkisq......
SWN:CA22_HUMAN_116:179 ---..................-......-...................---adrt....iqeadqd...gdsaiSFTEFVkvl-----ekvdv.
SWN:S106_CHICK_4:82 pkl..................k......d...................ae-iagl....medldrn...kdqeVNFQEyvtflgalamiynea.
SW:BTV3_BETVE_140:197 ---..................-fsegs.e...................idrvekm....ivsvdsn...rdGRVDFFEFkdmm-----rsvlv.
SW:CA22_RAT_116:179 ---..................-......-...................---adrt....iqeadqd...gdsaiSFTEFVkvl-----ekvdv.

Fig. 8. Mapping high-scoring k-mers onto a multiple alignment. The figure shows the first five sequences from a profile HMM multiple
alignment of the EF-hand superfamily and its homologs. The 200 k-mers that receive the highest weights from a (5,1)-mismatch SVM have
been mapped onto the multiple alignment. Occurrences of these k-mers are indicated by uppercase letters. Periods (‘.’) in the alignment
correspond to insertions and hyphens (‘-’) correspond to deletions with respect to the HMM. The location of a motif-like region of clustered
k-mer occurrences is indicated by asterisks.

feature space, the hyperplane decision boundary located by
the SVM training algorithm is only implicitly defined by
dot products between images of data points in the feature
space. Most kernel functions make it very difficult to compute
explicitly the location of this hyperplane.
However, the mismatch kernel differs from most kernel

functions in that the mismatch kernel’s mapping into feature
space is explicit [as inEquation (1)]. Therefore, for this kernel,
the normal of the separating hyperplane w can be represented
directly asw = ∑

i yiai!(k,m)(xi), where each xi is a training
example, yi its training label, and ai its corresponding weight
obtained by the SVM algorithm. Note that ai > 0 only for a
subset of training examples, which are referred to as support
vectors. The location of the hyperplane w is thus given by a
set of weights, one for each k-mer. Using the mismatch data
structure we can efficiently compute these k-mer weights by
summing the support vector weights of all instances at each
leaf node.
A sequence that contains many k-mers with large, positive

weights is very likely to be a member of the positive class
defined by the classifier. Therefore, in the case of protein
classification, we expect these highly informative k-mers to
correspond to conserved regions in the protein family align-
ment. Figures 8 and 9 illustrate this phenomenon. We selected
at randoman experiment inwhich the SVM-mismatchmethod
performed well from the first set of SCOP experiments
(Jaakkola et al., 2000); the positive set for the chosen exper-
iment was the EF-hand superfamily. For this experiment, we
computed the 200 k-mers that are assigned the highest weights
by the (5,1)-mismatch SVM. Many of these k-mers are over-
lapping or slight variations of one another. The resulting set
of 200 k-mers was then mapped onto the positive training
set. In Figure 8, five sequences from the multiple align-
ment for training sequences from this experiment are shown
in detail, with the high-scoring k-mers indicated by upper-
case letters. In these five sequences, the high-scoring k-mers
all appear within a nine-letter region of the alignment. Note
that this is the only nine-letter block within the alignment
that does not contain any insertions or deletions. Figure 9

Fig. 9. Schematic of k-mers mapped onto a multiple alignment. The
figure shows the first 150 sequences from the same alignment as
Figure 8, in schematic form. In the figure, insertions and deletions
are white, unmatched amino acids are gray, and amino acids that
map onto one of the top 200 k-mers are black. The entire alignment
(not shown) contains 847 sequences.

shows a larger portion of the same alignment, in schem-
atic form. Here, the motif-like nature of the clusters of
k-mer occurrences is apparent as vertical black bars in the
alignment.
This analysis shows that, although the mismatch SVM does

not provide sequence alignments per se, the classifier can be
used to identify sequence regions that are highly conserved in
the positive class.

DISCUSSION
We have presented a class of string kernels that measure
sequence similarity without requiring alignment and without
depending upon a generative model. We have also presented a
method for efficiently computing these kernels. For the remote

474

Mismatch string kernels for discriminative protein classification

homology detection problem, we are encouraged that our dis-
criminative approach—combining SVMs with the mismatch
kernel—performs competitively in the SCOP experiments
when comparedwith state-of-the-artmethods.Whenwemake
the discrimination problem more difficult by providing only
limited training data (in particular, when no domain homologs
of positive training sequences are used), our method per-
forms as well as SVM-pairwise, an approach that previously
outperforms other known methods in this setting.
Our method has several advantages over other SVM

approaches to protein classification, such as SVM-Fisher and
SVM-pairwise. TheSVM-Fishermethod is appealingbecause
it combines the rich biological information encoded in a pro-
file hidden Markov model with the discriminative power of
the SVM algorithm. However, one generally needs a lot of
data or prior knowledge to train the hidden Markov model.
In addition, because calculating the Fisher scores depends on
dynamic programming (quadratic in sequence length for pro-
file HMMs), in practice it is very expensive to compute the
kernel matrix. Our mismatch kernel approach gives efficient
kernel computation, linear time prediction andmaintains good
performance even when there is little training data. Hence,
our method could be advantageous in a number of settings:
for training on large datasets, where kernel evaluations are the
bottleneck; in applications where fast prediction is important,
such asweb-based tools; and in caseswhere positive examples
are scarce and a good model is unavailable.
The SVM-pairwise method has a different computational

problem, in that the computation of the kernel matrix is
cubic in the number of training sequences. Furthermore,
when pairwise Smith–Waterman scores are used, the compu-
tation time of each of these scores depends quadratically on
sequence length. It is possible to use a faster algorithm for the
sequence comparisons and to use a smaller set of sequences
for comparison, at some cost in accuracy (Liao and Noble,
2003). However, in addition to computational cost, the SVM-
pairwise classifier does not offer any biological insight about
the sequences that it classifies. By contrast, one can extract
high-scoring k-mers from a trained SVM-mismatch classifier
in order to look for discriminativemotif regions in the positive
sequence family.
Several authors have previously defined kernel functions

over strings (Watkins, 1999; Haussler, 1999), and one of these
string kernels has been applied to text classification (Lodhi
et al., 2000). However, the cost of computing each kernel
entry K(x, y) scales as O(|x||y|) in the length of the input
sequences, making them too slow for most biological applic-
ations. For the (k,m)-mismatch kernel, each kernel evaluation
is O(km+1lm(|x| + |y|)), where l is the size of the alphabet.
Since small values ofm, the number of mismatches, are most
useful in biological applications, the worst case running time
is feasible.
Many variations on the mismatch kernel can be defined to

introduce other notions of inexact string matching. In Leslie

and Kuang (2003), kernels are obtained by allowing k-mers
to occur with a restricted number of gaps, using features with
wildcards, or using substitution probabilities to score inexact
matches to a feature k-mer, rather than counting instances
of k-mers with mismatches. We note that in the case of
the exact-matching spectrum kernel, suffix trees have been
used to eliminate the constant factor of k in the complexity,
yielding O(|x| + |y|) computation time (Vishwanathan and
Smola, 2002). If such techniques could be extended to inex-
act matching kernels, we could hope for more computational
savings.
Finally, in certain biological applications, the k-length sub-

sequence features that are ‘most significant’ for discrimination
can themselves be of biological interest. For such problems, it
would be interesting to use themismatch data structure for fea-
ture selection on the set of k-mer features, so that we identify a
feature subset that both allows for accurate discrimination and
gives biologically interesting information about the spectrum
differences between positive and negative examples.

ACKNOWLEDGEMENTS
C.S.L. is supported by an Award in Informatics from the
PhRMA Foundation and by NIH grant LM07276-02. W.S.N.
is supported by a Sloan Foundation Research Fellowship and
by NSF grants DBI-0078523 and ISI-0093302.

REFERENCES
Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J.
(1990) A basic local alignment search tool. J. Mol. Biol., 215,
403–410.

Altschul,S.F., Madden,T.L., Schaffer,A.A. Zhang,J., Zhang,Z.,
Miller,W. and Lipman,D.J. (1997) Gapped BLAST and
PSI-BLAST: A new generation of protein database search pro-
grams. Nucleic Acids Res., 25, 3389–3402.

Attwood,T.K., Beck,M.E., Flower,D.R., Scordis,P. and Selley,J.N.
(1998) The prints protein fingerprint database in its fifth year.
Nucleic Acids Res., 26, 304–308.

Bairoch,A. (1995) The prosite database, its status in 1995. Nucleic
Acids Res., 24, 189–196.

Baldi,P., Chauvin,Y., Hunkapiller,T. and McClure,M.A. (1994)
Hidden markov models of biological primary sequence informa-
tion. PNAS, 91, 1059–1063.

Boser,B.E., Guyon,I. and Vapnik,V. (1992) A training algorithm
for optimal margin classifiers. In Fifth Annual Workshop on
Computational Learning Theory, Pittsburg, PA, pp. 144–152.
ACM Press.

Brenner,S.E., Koehl,P. and Levitt,M. (2000) The ASTRAL compen-
dium for sequence and structure analysis. Nucleic Acids Res., 28,
254–256.

Eddy,S.R. (1995) Multiple alignment using hidden markov mod-
els. In Proceedings of the Third International Conference
on Intelligent Systems for Molecular Biology, AAAI Press,
pp. 114–120.

Eskin,E., Grundy,W.N. and Singer,Y. (2000) Protein family clas-
sification using sparse Markov transducers. In Proceedings

475

C.S.Leslie et al.

of the Eighth International Conference on Intelligent Sys-
tems for Molecular Biology, AAAI Press, Menlo Park, CA,
pp. 134–145.

Gribskov,M., McLachlan,A.D. and Eisenberg,D. (1987) Profile
analysis: detection of distantly related proteins. PNAS 84,
4355–4358.

Gusfield,D. (1997) Algorithms on Strings, Trees and Sequences:
Computer Science and Computational Biology, Cambridge
University Press, New York.

Haussler,D. (1999) Convolution kernels on discrete structure.
Technical Report, UC Santa Cruz.

Henikoff,S. and Henikoff,J.G. (1997) Embedding strategies for
effective use of information from multiple sequence alignments.
Protein Sci., 6, 698–705.

Jaakkola,T., Diekhans,M. and Haussler,D. (2000) A discriminative
framework for detecting remote protein homologies. J. Comput.
Biol. 7, 95–114.

Karplus,K., Karchin,R., Barrett,C., Tu,S., Cline,M., Diekhans,M.,
Grate,L., Casper,J. and Hughey,R. (2001)What is the value added
by human intervention in protein structure prediction? Proteins,
45, 86–91.

Krogh,A., Brown,M., Mian,I., Sjolander,K. and Haussler,D (1994)
Hidden markov models in computational biology: applications to
protein modeling. J. Mol. Biol., 235, 1501–1531.

Leslie,C., Eskin,E. and Noble,W.S. (2002a) The spectrum kernel: a
string kernel for SVM protein classification. Proc. Pac. Biocom-
put. Symp., 7, 566–575.

Leslie,C., Eskin,E., Weston,J. and Noble,W.S. (2002b) Mismatch
string kernels for SVM protein classification. Neural Inform.
Process. Sys., 15, 1441–1448.

Leslie,C. and Kuang,R. (2003) Fast kernels for inexact string match-
ing. Conference on Learning Theory and Kernel Workshop,
114–128.

Liao,L. and Noble,W.S. (2002) Combining pairwise sequence sim-
ilarity and support vector machines for remote protein homology
detection. In Proceedings of the Sixth Annual International Con-
ference on Computational Molecular Biology, Washington, DC,
pp. 225–232. ACM press.

Liao,L. and Noble,W.S. (2003) Combining pairwise sequence
similarity and support vector machines for detecting remote
protein evolutionary and structural relationships. J. Comput. Biol.,
in press.

Lodhi,H., Shawe-Taylor,J., Cristianini,N. and Watkins,C. (2000)
Text classification using string kernels. Neural Inform. Process.
Sys., 13, 563–569.

Murzin,A.G., Brenner,S.E., Hubbard,T. and Chothia,C. (1995)
SCOP: a structural classification of proteins database for the
investigation of sequences and structures. J. Mol. Biol. 247,
536–540.

Pavesi,G., Mauri,G. and Pesole,G. (2001) An algorithm for finding
signals of unknown length in DNA sequences.Bioinformatics, 17,
S207–S214. Proceedings of theNinth International Conference on
Intelligent Systems for Molecular Biology.

Pereira,F. and Singer,Y. (1999) An efficient extension to mixture
techniques for prediction and decision trees. Machine Learning,
36, 183–199.

Sagot,M. (1998) Spelling approximate or repeated motifs using
a suffix tree. Lecture Notes in Computer Science, 1380,
111–127.

Salzberg,S.L. (1997) On comparing classifiers: pitfalls to avoid
and a recommended approach. Data Mining Knowl. Discov., 1,
371–328.

Spang,R., Rehmsmeier,M. and Stoye,J. (2002) A novel approach
to remote homology detection: jumping alignments. J. Comput.
Biol., 9, 747–760.

Tsuda,K., Kawanabe,M., Rätsch,G., Sonnenburg,S. and Müller,K.
(2002) A new discriminative kernel from probabilistic models.
Neural Comput., 14, 2397–2414.

Vapnik,V.N. (1998) Statistical Learning Theory, Springer.
Vishwanathan,S.V.N. and Smola,A. (2002) Fast kernels for string
and tree matching. Neural Inform. Process. Sys., 15, 569–576.

Waterman,M.S., Joyce,J. and Eggert,M. (1991) Phylogenetic ana-
lysis of DNA sequences. Computer Alignment of Sequences,
pp.59–72. Oxford University Press.

Watkins,C. (1999) Dynamic alignment kernels. Technical Report,
UL Royal Holloway.

476

