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ABSTRACT
Motivation: During the past decade, the new focus on
genomics has highlighted a particular challenge: to integrate
the different views of the genome that are provided by various
types of experimental data.
Results: This paper describes a computational framework
for integrating and drawing inferences from a collection of
genome-wide measurements. Each dataset is represented via
a kernel function, which defines generalized similarity relation-
ships between pairs of entities, such as genes or proteins.The
kernel representation is both flexible and efficient, and can be
applied to many different types of data. Furthermore, kernel
functions derived from different types of data can be combined
in a straightforward fashion. Recent advances in the theory
of kernel methods have provided efficient algorithms to per-
form such combinations in a way that minimizes a statistical
loss function. These methods exploit semidefinite program-
ming techniques to reduce the problem of finding optimiz-
ing kernel combinations to a convex optimization problem.
Computational experiments performed using yeast genome-
wide datasets, including amino acid sequences, hydropathy
profiles, gene expression data and known protein–protein
interactions, demonstrate the utility of this approach. A stat-
istical learning algorithm trained from all of these data to
recognize particular classes of proteins—membrane proteins
and ribosomal proteins—performs significantly better than the
same algorithm trained on any single type of data.
Availability: Supplementary data at http://noble.gs.washington.
edu/proj/sdp-svm
Contact: noble@gs.washington.edu

INTRODUCTION
The recent availability of multiple types of genome-wide data
provides biologists with complementary views of a single gen-
ome and highlights the need for algorithms capable of unifying
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these views. In yeast, for example for a given gene we typ-
ically know the protein it encodes, that protein’s similarity to
other proteins, its hydrophobicity profile, the mRNA expres-
sion levels associated with the given gene under hundreds of
experimental conditions, the occurrences of known or inferred
transcription factor binding sites in the upstream region of
that gene and the identities of many of the proteins that interact
with the given gene’s protein product. Each of these distinct
data types provides one view of the molecular machinery of
the cell. In the near future, research in bioinformatics will
focus more and more heavily on methods of data fusion.

Different data sources are likely to contain different and
thus partly independent information about the task at hand.
Combining those complementary pieces of information can be
expected to enhance the total information about the problem at
hand. One problem with this approach, however, is that gen-
omic data come in a wide variety of data formats: expression
data are expressed as vectors or time series; protein sequence
data as strings from a 20-symbol alphabet; gene sequences are
strings from a different (4-symbol) alphabet; protein–protein
interactions are best expressed as graphs and so on.

This paper presents a computational and statistical frame-
work for integrating heterogeneous descriptions of the same
set of genes. The approach relies on the use of kernel-based
statistical learning methods that have already proven to be very
useful tools in bioinformatics (Noble, 2004). These methods
represent the data by means of a kernel function, which defines
similarities between pairs of genes, proteins and so on. Such
similarities can be quite complex relations, implicitly cap-
turing aspects of the underlying biological machinery. One
reason for the success of kernel methods is that the kernel
function takes relationships that are implicit in the data and
makes them explicit, so that it is easier to detect patterns. Each
kernel function thus extracts a specific type of information
from a given dataset, thereby providing a partial description
or view of the data. Our goal is to find a kernel that best
represents all the information available for a given statistical
learning task. Given many partial descriptions of the data, we
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solve the mathematical problem of combining them using a
convex optimization method known as semidefinite program-
ming (SDP) (Nesterov and Nemirovsky, 1994; Vandenberghe
and Boyd, 1996). This SDP-based approach (Lanckriet et al.,
2004) yields a general methodology for combining many par-
tial descriptions of data that is statistically sound, as well as
computationally efficient and robust.

In order to demonstrate the feasibility of these methods,
we apply them to the recognition of two important groups
of proteins in yeast—ribosomal proteins and membrane pro-
teins. The ribosome is a universal protein complex that is
responsible for the translation of mRNA into the correspond-
ing amino acid sequence via the universal genetic code. The
structure of the ribosome has been solved (Schluenzen et al.,
2000; Harms et al., 2001), although the precise roles of many
auxiliary factors are not completely understood. Proteins that
participate in the ribosome share similar sequence features and
correlated mRNA expression patterns (Brown et al., 2000).

Membrane proteins are proteins that anchor in one of
the various membranes in the cell, including the plasma,
ER, golgi, peroxisomal, vacuolar, cellular and mitochondrial
inner and outer membranes. Many membrane proteins serve
important communicative functions between cellular com-
partments and between the inside and the outside of the cell
(Alberts et al., 1998). Classifying a protein as a membrane
protein or not based on protein sequence is non-trivial and
has been the subject of much previous research (Engleman
et al., 1986; Krogh et al., 2001; Chen and Rost, 2002). This
is a typical statistical learning problem in which a single type
of feature derived from the protein sequence cannot provide
the full story.

For both of these protein classes, we demonstrate that incor-
porating knowledge derived from the amino acid sequences,
gene expression data and known protein–protein interactions
significantly improves classification performance relative to
our method trained on any single type of data. The SDP-
based approach also performs better than a classifier trained
using a naive, unweighted combination of kernels, and the
method continues to perform well in the presence of artificially
induced experimental noise.

We begin by outlining the main ideas of the kernel approach
to pattern analysis, providing examples of kernels defined
on yeast genome-wide datasets. We then describe how these
kernels can be integrated using SDP to provide a unified
description. Finally, we describe a series of computational
experiments that demonstrate the validity and power of the
kernel approach to data fusion for recognition of ribosomal
and membrane proteins in yeast.

KERNEL METHODS
Kernel methods work by embedding data items (correspond-
ing to genes, proteins, and so on) into a vector space, F ,
called a feature space (Cristianini and Shawe-Taylor, 2000;
Schölkopf and Smola, 2002; Wahba, 1990; Vapnik, 1998,

1999). A key characteristic of kernel methods is that the
embedding in feature space is generally defined implicitly,
by specifying an inner product for the feature space. Thus, for
a pair of data items, x1 and x2, denoting their embeddings as
�(x1) and �(x2), respectively, we specify the inner product
of the embedded data, 〈�(x1), �(x2)〉, via a kernel function
K(x1, x2). Any symmetric, positive semidefinite function is
a valid kernel function, corresponding to an inner product
in some feature space. Note that if all we require is inner
products, then we neither need to have an explicit representa-
tion of the mapping � nor even need to know the nature of
the feature space. It suffices to be able to evaluate the kernel
function.

Evaluating the kernel on all pairs of data points yields a
symmetric, positive semidefinite matrix known as the kernel
matrix or the Gram matrix. Intuitively, a kernel matrix can be
regarded as a matrix of generalized similarity measures among
the data points. The first stage of processing in a kernel method
is to reduce the data by computing this matrix.

The reduction to a kernel matrix reflects the fact that kernel
methods are generally based on linear statistical procedures in
feature space. In particular, the classification algorithm that
we use in this paper—known as a support vector machine
(SVM) (Boser et al., 1992)—forms a linear discriminant
boundary in feature space. Consider a dataset consisting of
n pairs (xi , yi), where xi is the i-th data item (e.g. a protein
sequence) and yi ∈ {−1, 1} is a label (e.g. membrane or non-
membrane). Compute the n × n kernel matrix whose (i, j )-th
entry is K(xi , xj ). Given this matrix, and given the labels yi ,
we can throw away the original data; the problem of fitting
the SVM to data reduces to an optimization procedure that is
based entirely on the kernel matrix and the labels.

Different kernel functions correspond to different embed-
dings of the data and thus can be viewed as capturing different
notions of similarity. For example, in a space derived from
amino acid sequences, two genes that are close to one another
will have protein products with very similar amino acid
sequences. This amino acid space would be quite different
from a space derived from microarray gene expression meas-
urements, in which closeness would indicate similarity of the
expression profiles of the genes. In general, a single type of
data can be mapped into many different feature spaces. The
choice of feature space is made implicitly via the choice of
kernel function.

For the tasks of ribosomal and membrane protein classi-
fication we experiment with seven kernel matrices derived
from three different types of data: four from the primary pro-
tein sequence, two from protein–protein interaction data, and
one from mRNA expression data. These are summarized in
Table 1.

Protein sequence
Smith–Waterman, BLAST and Pfam HMM kernelsA
homolog of a membrane protein is likely to be located in
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Table 1. Kernel functions

Kernel Data Similarity measure

KSW protein sequences Smith-Waterman
KB protein sequences BLAST
KPfam protein sequences Pfam HMM
KFFT hydropathy profile FFT
KLI protein interactions linear kernel
KD protein interactions diffusion kernel
KE gene expression radial basis kernel
KRND random numbers linear kernel

The table lists the seven kernels used to compare proteins, the data on which they are
defined, and the method for computing similarities. The final kernel, KRND, is included
as a control. All kernel matrices, along with the data from which they were generated,
are available at noble.gs.washington.edu/proj/sdp-svm.

the membrane, and similarly for the ribosome. Therefore,
we define three kernel matrices based upon standard homo-
logy detection methods. The first two sequence-based kernel
matrices (KSW and KB) are generated using the BLAST
(Altschul et al., 1990) and Smith–Waterman (SW) (Smith and
Waterman, 1981) pairwise sequence comparison algorithms,
as described previously (Liao and Noble, 2002). Both
algorithms use gap opening and extension penalties of 11 and
1, and the BLOSUM 62 matrix. As matrices of BLAST or
Smith–Waterman scores are not necessarily positive semidef-
inite, we represent each protein as a vector of scores against all
other proteins. Defining the similarity between proteins as the
inner product between the score vectors (the so-called empir-
ical kernel map, Tsuda 1999) leads to valid kernel matrices,
one for the BLAST score and one for the SW score. Note that
including in the comparison set proteins with unknown labels
allows the kernel to exploit this unlabeled data. The third ker-
nel matrix (KPfam) is a generalization of the previous pairwise
comparison-based matrices in which the pairwise comparison
scores are replaced by expectation values derived from hidden
Markov models (HMMs) in the Pfam database (Sonnhammer
et al., 1997).

Fast Fourier Transform (FFT) kernel The fourth sequence-
based kernel matrix (KFFT) is specific to the membrane protein
recognition task. This kernel directly incorporates information
about hydrophobicity patterns, which are known to be useful
in identifying membrane proteins. Generally, each mem-
brane protein passes through the membrane several times. The
transmembrane regions of the amino acid sequence are typ-
ically hydrophobic, whereas the non-membrane portions are
hydrophilic. This specific hydrophobicity profile of the pro-
tein allows it to anchor itself in the cell membrane. Because
the hydrophobicity profile of a membrane protein is critical
to its function, this profile is better conserved in evolution
than the specific amino acid sequence. Therefore, classical
methods for determining whether a protein pi (consisting of
|pi | amino acids) spans a membrane (Chen and Rost, 2002),

depend upon its hydropathy profile h(pi ) ∈ R
|pi |: a vector

containing the hydrophobicities of the amino acids along the
protein (Engleman et al., 1986; Black and Mould, 1991; Hopp
and Woods, 1981). The FFT kernel uses hydropathy profiles
generated from the Kyte–Doolittle index (Kyte and Doolittle,
1982). This kernel compares the frequency content of the
hydropathy profiles of the two proteins. First, the hydropathy
profiles are pre-filtered with a low-pass filter to reduce noise:

hf (pi ) = f ⊗ h(pi ),

where f = 1
4 (1 2 1) is the impulse response of the filter

and ⊗ denotes convolution with that filter. After pre-filtering
the hydropathy profiles (and if necessary appending zeros to
make them equal in length—a commonly used technique not
altering the frequency content), their frequency contents are
computed with the FFT algorithm:

Hf (pi ) = FFT[hf (pi )].
The FFT kernel between proteins pi and pj is then obtained by
applying a Gaussian kernel function to the frequency contents
of their hydropathy profiles:

KFFT(pi , pj ) = exp[−‖Hf (pi ) − Hf (pj )‖2/2σ ]
with width σ = 10. This kernel detects periodicities in the
hydropathy profile, a feature that is relevant to the identifica-
tion of membrane proteins and complementary to the previous,
homology-based kernels.

Protein interactions: linear and diffusion kernelsFor the
recognition of ribosomal proteins, protein–protein interac-
tions are clearly informative, since all ribosomal proteins
interact with other ribosomal proteins. For membrane pro-
tein recognition, we expect information about protein–protein
interactions to be informative for two reasons. First, hydro-
phobic molecules or regions of molecules are probably more
likely to interact with each other than with hydrophilic
molecules or regions. Second, transmembrane proteins are
often involved in signaling pathways, and therefore, differ-
ent membrane proteins are likely to interact with a similar
class of molecules upstream and downstream in these path-
ways (e.g. hormones upstream or kinases downstream). The
two protein interaction kernels are generated using medium-
and high-confidence interactions from a database of known
interactions (von Mering et al., 2002). These interactions can
be represented as an interaction matrix, in which rows and
columns correspond to proteins, and binary entries indicate
whether the two proteins interact.

The first interaction kernel matrix (KLI) is comprised of
linear interactions, i.e. inner products of rows and columns
from the centered, binary interaction matrix. The more similar
the interaction pattern (corresponding to a row or column from
the interaction matrix) for a pair of proteins, the larger the
inner product will be.
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An alternative way to represent the same interaction data
is to consider the proteins as nodes in a large graph. In this
graph, two proteins are linked when they interact and oth-
erwise not. Kondor and Lafferty (2002) propose a general
method for establishing similarities between the nodes of a
graph, based on a random walk on the graph. This method effi-
ciently accounts for all possible paths connecting two nodes,
and for the lengths of those paths. Nodes that are connected by
shorter paths or by many paths are considered more similar.
The resulting diffusion kernel generates the second interaction
kernel matrix (KD).

An appealing characteristic of the diffusion kernel is its abil-
ity, like the empirical kernel map, to exploit unlabeled data.
In order to compute the diffusion kernel, a graph is construc-
ted using all known protein–protein interactions, including
interactions involving proteins whose subcellular locations
are unknown. Therefore, the diffusion process includes inter-
actions involving unlabeled proteins, even though the kernel
matrix only contains entries for labeled proteins. This allows
two labeled proteins to be considered close to one another if
they both interact with an unlabeled protein.

Gene expression: radial basis kernelFinally, we also
include a kernel constructed entirely from microarray gene
expression measurements. A collection of 441 distinct
experiments was downloaded from the Stanford Microarray
Database (genome-www.stanford.edu/microarray). This data
provides us with a 441-element expression vector character-
izing each gene. A Gaussian kernel matrix (KE) is computed
from these vectors by applying a Gaussian kernel function
with width σ = 100 to each pair of 441-element vectors,
characterizing a pair of genes. Gene expression data is expec-
ted to be useful for recognizing ribosomal proteins, since their
expression signatures are known to be highly correlated with
one another. We do not expect that gene expression will be
particularly useful for the membrane classification task. We do
not need to eliminate the kernel a priori, however; as explained
in the following section, our method is able to provide an a pos-
teriori measure of how useful a data source is relative to the
other sources of data.

KERNEL METHODS FOR DATA FUSION
Each of the kernel functions described above produces, for the
yeast genome, a square matrix in which each entry encodes a
particular notion of similarity of one yeast protein to another.
Implicitly, each matrix also defines an embedding of the pro-
teins in a feature space. Thus, the kernel representation casts
heterogeneous data—variable-length amino acid strings, real-
valued gene expression data, and a graph of protein–protein
interactions—into the common format of kernel matrices.

The kernel formalism also allows these various matrices
to combine. Basic algebraic operations such as addition,
multiplication and exponentiation preserve the key property
of positive semidefiniteness, and thus allow a simple but

powerful algebra of kernels (Berg et al., 1984). For example,
given two kernel functions K1 and K2, inducing the embed-
dings �1(x) and �2(x), respectively, it is possible to define
the kernel K = K1 + K2, inducing the embedding �(x) =
[�1(x), �2(x)]. Of even greater interest, we can consider
parameterized combinations of kernels. In particular, given
a set of kernels K = {K1, K2, . . . , Km}, we can form the
linear combination

K =
m∑

i=1

µiKi , (1)

where the weights are constrained to be non-negative to assure
positive semidefiniteness: µi ≥ 0; i = 1, . . . , m. We consider
this kind of kernel combination in this paper.

As we have discussed, fitting a kernel-based statistical
classifier (such as the SVM) to data involves solving an optim-
ization problem based on the kernel matrix and the labels. In
particular, the SVM finds a linear discriminant in feature space
that has maximal distance (‘margin’) between the members
of the positive and negative classes. The algorithm for finding
this optimal linear discriminant involves solving an optimiza-
tion problem known as a quadratic program, a particular form
of convex optimization problem for which efficient solutions
are known (Nesterov and Nemirovsky, 1994).

The specific form of SVM that we use in this paper is the
1-norm soft margin support vector machine (Boser et al.,
1992; Schölkopf and Smola, 2002). An SVM forms a lin-
ear discriminant boundary in the feature space F : f (x) =
wT�(x) + b, where w ∈ F and b ∈ R. Given a labeled
sample Sn = {(x1, y1), . . . , (xn, yn)}, a 1-norm soft margin
SVM optimizes with respect to w and b so as to maximize the
distance (‘margin’) between the positive and negative class,
allowing misclassifications (therefore ‘soft margin’):

min
w,b,ξ

wTw + C

n∑
i=1

ξi

subject to yi[wT�(xi) + b] ≥ 1 − ξin

ξi ≥ 0, i = 1, . . . , n (2)

where C is a regularization parameter, trading off error against
margin. By considering the dual problem corresponding to
Equation (2), one can prove (Schölkopf and Smola, 2002)
that the weight vector can be expressed as w = ∑n

i=1 αi�(xi),
where the support values αi are solutions of the following dual
quadratic program (QP):

max
α

2αTe − αTdiag(y)Kdiag(y)α

subject to 0 ≤ α ≤ C, αTy = 0, (3)

where y = (y1, y2, . . . , yn)
T and diag(y) is a diagonal matrix

with entries given by the elements of y. An unlabeled data
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item xnew can subsequently be classified by computing the
linear function

f (xnew) = wT�(xnew) + b =
n∑

i=1

αiK(xi , xnew) + b.

If f (xnew) is positive, then we classify xnew as belonging
to class +1; otherwise, we classify xnew as belonging to
class −1.

In Lanckriet et al. (2004), we show that for a fixed trace
of K , the classification performance is bounded by a func-
tion of the optimum achieved in Equation (3): the smaller,
the better the guaranteed performance. Thus, whereas in the
standard SVM formulation K is a given kernel matrix, we
can in fact learn an optimal kernel matrix by parameteriz-
ing K and minimizing Equation (3) with respect to these
kernel parameters. More concretely, we consider the para-
meterization in Equation (1) with additional trace and positive
semidefiniteness constraints. Plugging this into Equation (3)
and minimizing with respect to µi gives:

min
µi

max
α

2αTe − αTdiag(y)

(
m∑

i=1

µiKi

)
diag(y)α

subject to 0 ≤ α ≤ C, αTy = 0,

trace

(
m∑

i=1

µiKi

)
= c,

m∑
i=1

µiKi 	 0,

where c is a constant. Again considering the Lagrangian dual
problem, we can show that this problem of finding optimal µi

and αi reduces to a convex optimization problem known as a
semidefinite program (SDP):

min
µi ,t ,λ,γ≥0

t

subject to trace

(
m∑

i=1

µiKi

)
= c,

m∑
i=1

µiKi 	 0,

(
Y (µ) e + γ + λy

(e + γ + λy)T t − 2CδTe

)
	 0, (4)

where we let Y (µ) = diag(y)(
∑m

i=1 µiKi)diag(y). SDP can
be viewed as a generalization of linear programming, where
scalar linear inequality constraints are replaced by more gen-
eral linear matrix inequalities (LMIs): F(x) 	 0, meaning
that the matrix F has to be in the cone of positive semidefinite
matrices, as a function of the decision variables x. Note that
the first LMI constraint in Equation (4), K = ∑m

i=1 µiKi 	 0,

emerges very naturally because the optimal kernel matrix must
indeed come from the cone of positive semidefinite matrices.
Linear programs and semidefinite programs are both instances
of convex optimization problems, and both can be solved via
efficient interior-point algorithms (Vandenberghe and Boyd,
1996).

In this paper, the weights µi are constrained to be non-
negative and the Ki are positive semidefinite and normalized
([Ki]jj = 1) by construction; thus K 	 0 is automatic-
ally satisfied. In that case, we can show that the SDP in
Equation (4) reduces to a quadratically constrained quadratic
program (QCQP), which is a special case of SDP that can be
solved more efficiently:

max
α,t

2αTe − ct

subject to t ≥ 1

n
αTdiag(y)Kidiag(y)α,

αTy = 0,

0 ≤ α ≤ C, (5)

for i = 1, . . . , m. Thus, by solving a QCQP, we are capable
of finding an adaptive combination of kernel matrices—and
thus an adaptive combination of heterogeneous information
sources—that solves our classification problem. The output
of our procedure is a set of weights µi and a discriminant
function based on these weights. We obtain a classification
decision that merges information encoded in the various kernel
matrices, and we obtain weights µi that reflect the relative
importance of these information sources.

EXPERIMENTAL DESIGN
In order to test our kernel-based approach in the setting
of yeast protein classification, we use as a gold standard
the annotations provided by the MIPS Comprehensive Yeast
Genome Database (CYGD) (Mewes et al., 2000). The CYGD
assigns 1125 yeast proteins to particular complexes, of which
138 participate in the ribosome. The remaining approximately
5000 yeast proteins are unlabeled. Similarly, CYGD assigns
subcellular locations to 2318 yeast proteins, of which 497
belong to various membrane protein classes, leaving ∼4000
yeast proteins with uncertain location.

The primary input to the classification algorithm is a col-
lection of kernel matrices from Table 1. For membrane
protein classification, for comparison with the SDP/SVM
learning algorithm, we consider several classical biological
methods that are commonly used to determine whether a
Kyte–Doolittle plot corresponds to a membrane protein, as
well as a state-of-the-art technique using HMMs to predict
transmembrane helices in proteins (Krogh et al., 2001). The
first method relies on the observation that the average hydro-
phobicity of membrane proteins tends to be higher than that of
non-membrane proteins, because the transmembrane regions
are more hydrophobic. We therefore define f1 as the average
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Fig. 1. Combining datasets yields better classification performance. The height of the bars in the upper two plots are proportional to the ROC
score (top) and the percentage of true positives at one percent false positives (middle), for the SDP/SVM method using the given kernel. Error
bars indicate standard error across 30 random train/test splits. In the lower plots, the heights of the colored bars indicate the relative weights
of the different kernel matrices in the optimal linear combination. These results in tabular form, along with percent accuracy measurements,
are given in the online supplement.

hydrophobicity, normalized by the length of the protein. We
will compare the classification performance of our statistical
learning algorithm with this metric.

However, clearly, f1 is too simplistic. For example, protein
regions that are not transmembrane only induce noise in f1.
Therefore, an alternative metric filters the hydrophobicity plot
with a low-pass filter and then computes the number, the height
and the width of those peaks above a certain threshold (Chen
and Rost, 2002). The filter is intended to smooth out periodic
effects. We implement two such filters, choosing values for the
filter order and the threshold based on Chen and Rost (2002).
In particular, we define f2 as the area under the 7th-order
low-pass filtered Kyte–Doolittle plot and above a threshold
value 2, normalized by the length of the protein. Similarly,
f3 is the corresponding area using a 20th-order filter and a
threshold of 1.6.

Finally, the transmembrane HMM (TMHMM) Web server
(www.cbs.dtu.dk/services/TMHMM) is used to make predic-
tions for each protein. In Krogh et al. (2001), transmembrane
proteins are identified by TMHMM using three different met-
rics: the expected number of amino acids in transmembrane
helices, the number of transmembrane helices predicted by
the N -best algorithm, and the expected number of transmem-
brane helices. Only the first two of these metrics are provided
in the TMHMM output. Accordingly, we produce two lists
of proteins, ranked by the number of predicted transmem-
brane helices (TPH) and by the expected number of residues
in transmembrane helices (TENR).

Each algorithm’s performance is measured by randomly
splitting the data (without stratifying) into a training and
test set in a ratio of 80/20. We report the receiver operating

characteristic (ROC) score, which is the area under a curve that
plots true positive rate as a function of false positive rate for
differing classification thresholds (Hanley and McNeil, 1982;
Gribskov and Robinson, 1996). The ROC score measures the
overall quality of the ranking induced by the classifier, rather
than the quality of a single point in that ranking. An ROC
score of 0.5 corresponds to random guessing, and an ROC
score of 1.0 implies that the algorithm succeeded in putting
all of the positive examples before all of the negatives. In
addition, we select the point on the ROC curve that yields a
1% false positive rate, and we report the rate of true positives
at this point (TP1FP). Each experiment is repeated 30 times
with different random splits in order to estimate the variance
of the performance values.

RESULTS
We performed computational experiments that study the per-
formance of the SDP/SVM approach as a function of the
number of data sources, compare the approach to a simpler
approach using an unweighted combination of kernels, study
the robustness of the method to the presence of noise, and for
membrane protein classification, compare the performance of
the method to classical biological methods and state-of-the-art
techniques for membrane protein classification.

Ribosomal protein classification
Figure 1A shows the results of training an SVM to recognize
the cytoplasmic ribosomal proteins, using various kernel func-
tions. Very good recognition performance can be achieved
using several types of data individually: the Smith–Waterman
kernel yields an ROC of 0.9903 and a TP1FP of 86.23%,
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Table 2. Classification performance on the cytoplasmic ribosomal class, in the presence of noise or improper weighting

KSW KPF KLI KB KD KR1,...,R6 KR7,...,R12 TP1FP ROC

5.08 0.31 0.22 0.39 0.00 – – 88.21 ± 1.73% 0.9933 ± 0.0011
5.07 0.31 0.22 0.39 0.00 0.01 – 88.19 ± 1.60% 0.9932 ± 0.0011
5.06 0.30 0.22 0.38 0.01 0.02 0.01 88.08 ± 1.65% 0.9932 ± 0.0010
1.00 1.00 1.00 1.00 1.00 – – 75.20 ± 2.38% 0.9906 ± 0.0012
1.00 1.00 1.00 1.00 1.00 1.00 – 59.66 ± 3.03% 0.9791 ± 0.0017
1.00 1.00 1.00 1.00 1.00 1.00 1.00 42.87 ± 2.59% 0.9620 ± 0.0027

The table lists the percentage of true positives at 1% false positives (TP1FP) and the ROC score for several combinations of kernels. The first three lines of results were obtained
using SDP-SVM, and the last three lines by setting the weights uniformly. Columns 1 through 5 report the average weights for the potentially informative kernels (averaged over the
training/test splits), column 6 contains the average weight for a first set of 6 random kernels (averaged over the 6 kernels and the training/test splits) and column 7 similarly for an
additional set of 6 random kernels. Each random kernel was generated by computing inner products on randomly generated 400-element vectors, in which each vector component
was sampled independently from a standard normal distribution. In the table, an en-rule indicates that the corresponding kernel is not considered in the combination.

and the gene expression kernel yields corresponding values
of 0.9995 and 98.31%. However, combining all six kernels
using SDP provides still better performance (ROC of 0.9998
and TP1FP of 99.71%). These differences, though small, are
statistically significant according to a Bonferroni corrected
Wilcoxon signed rank test.

For this task, the SDP approach performs no better than
the naive approach of combining all six kernel matrices in an
unweighted fashion. Note, however, that the SDP solution also
provides an additional explanatory result, in the form of the
weights assigned to the kernels. These weights are illustrated
in Figure 1A and suggest that, as expected, the cytoplasmic
ribosomal proteins are best defined by their expression profiles
and, secondarily, by their sequences. An additional benefit
offered by SDP over the naive approach is its robustness in
the presence of noise. In order to illustrate this effect, we
omit the expression kernel from the combination and add six
kernels generated from Gaussian noise (KR1,...,R6). This set of
kernels degrades the performance of the naive combination,
but has no effect on the SDP/SVM. With six additional random
kernels (KR7,...,R12) the benefit of optimizing the weights is
even more apparent (Table 2 and the online supplement).

Among the 30 train/test splits, seven proteins are con-
sistently mislabeled by SDP/SVM (see online supplement).
These include one, YLR406C (RPL31B), that was previ-
ously misclassified as non-ribosomal in an SVM-based study
using a smaller microarray expression dataset (Brown et al.,
2000). In order to better understand the seven false negat-
ives, we separated out the kernel-specific components of the
SVM discriminant score. In nearly every case, the compon-
ent corresponding to the gene expression kernel is the only
one that is negative (data not shown). In other words, these
seven proteins show atypical expression profiles, relative to
the rest of the ribosome, which explains their misclassifica-
tion by the SVM. Visual inspection of the expression matrix
(online supplement) verifies these differences.

Finally, the trained SVM was applied to the set of approx-
imately 5000 proteins that are not annotated in CYGD as

participating in any protein complex. Among these, the
SVM predicts that 14 belong in the cytoplasmic ribosomal
class (see online supplement). However, nine of these pre-
dictions correspond to questionable ORFs, each of which
lies directly opposite a gene that encodes a ribosomal pro-
tein. In these cases, the microarray expression data for the
questionable ORFs undoubtedly reflect the strong pattern of
expression from the corresponding ribosomal genes. Among
the remaining five proteins, two (YNL119W and YKL056C)
were predicted to be ribosomal proteins in a previous SVM-
based study (Brown et al., 2000). YKL056C is particularly
interesting: it is a highly conserved, ubiqitous protein homo-
logous to the mammalian translationally controlled tumor
protein (Gross et al., 1989) and to human IgE-dependent
histamine-releasing factor.

Membrane protein classification
The results of the first membrane protein classification experi-
ment are summarized in Figure 1(B). The plot illustrates that
SDP/SVM learns significantly better from the heterogeneous
data than from any single data type. The mean ROC score
using all seven kernel matrices (0.9219 ± 0.0024) is signific-
antly higher than the best ROC score using only one matrix
(0.8487 ± 0.0039 using the diffusion kernel). This improve-
ment corresponds to a change in TP1FP of 18.91%, from 17.15
to 36.06% and a change in test set accuracy of 7.36%, from
81.30 to 88.66%.

As expected, the sequence-based kernels yield good indi-
vidual performance. The value of these kernels is evidenced
by their corresponding ROC scores and by the relatively large
weights assigned to the sequence-based kernels by the SDP.
These weights are as follows: µB = 2.62, µSW = 1.52,
µPfam = 0.57, µFFT = 0.35, µLI = 0.01, µD = 1.21 and
µE = 0.731. Thus, two of the three kernel matrices that
receive weights >1 are derived from the amino acid sequence.

1For ease of interpretation, we scale the weights such that their sum is equal
to the number m of kernel matrices.
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Table 3. Classification performance on the membrane proteins, in the presence of noise or improper weighting

KB KSW KD KE KR1 KR2 KR3 KR4 TP1FP (%) ROC

1.81 1.05 0.73 0.42 – – – – 35.71 ± 2.13 0.9196 ± 0.0023
3.30 1.98 1.31 0.79 0.08 0.17 0.21 0.17 34.14 ± 2.09 0.9145 ± 0.0026
1.00 1.00 1.00 1.00 – – – – 33.87 ± 2.20 0.9180 ± 0.0026
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 26.24 ± 1.39 0.8627 ± 0.0033

The table lists the percentage true positives at 1% false positives (TP1FP) and the ROC score for several combinations of kernels. The first two lines of results were obtained using
SDP–SVM, and the last two lines were obtained using a uniform kernel weighting. Columns 1 through 8 report the average weights for the respective kernels (averaged over the
training/test splits). A en-rule indicates that the corresponding kernel is not considered in the combination.

The results also show that the interaction-based diffusion
kernel is more informative than the expression kernel. The
diffusion kernel yields an individual ROC score which is sig-
nificantly higher than the expression kernel, and the SDP also
assigns a larger weight to the diffusion kernel (1.21) than to
the expression kernel (0.73). Accordingly, removing the diffu-
sion kernel reduces the percentage true positives at one percent
false positives from 36.06 to 34.52%, whereas removing the
expression kernel has a smaller effect, leading to a TP1FP
of 35.88%. Further description of the results obtained when
various subsets of kernels are used is provided in the online
supplement.

In order to test the robustness of our approach, we performed
a second experiment using four real kernels—KB, KSW, KD

and KE—and four Gaussian noise kernels KR1,...,R4. Using
all eight kernels, SDP assigns values to the random kernels
weights that are close to zero. Therefore, the overall perform-
ance, as measured by TP1FP or ROC score, remains virtually
unchanged. In contrast, the performance of the uniformly
weighted kernel combination, which was previously compet-
itive with the SDP combination, degrades significantly in the
presence of noise, from TP1FP of 33.87% down to 26.24%.
Thus, the SDP approach provides a kind of insurance against
the inclusion of noisy or irrelevant kernels (Table 3).

We also compared the membrane protein classification per-
formance of the SDP/SVM method with that of several other
techniques for membrane protein classification. The ROC
and TP1FP for these methods are listed in Table 4. The res-
ults indicate that using learning in this context dramatically
improves the results relative to the simple hydropathy profile
approach. The SDP/SVM method also improves, though to
a lesser degree, upon the performance of the state-of-the-art
TMHMM model. However, the comparison to TMHMM is
somewhat problematic, for several reasons. First, TMHMM
is provided as a pre-trained model. As such, a cross-validated
comparison with the SDP/SVM is not possible. In particular,
some members of the cross-validation test sets were almost
certainly used in training TMHMM, making its performance
estimate too optimistic. On the other hand, TMHMM aims
to predict membrane protein topology across many different
genomes, rather than in a yeast-specific fashion. Despite these
difficulties, the results in Table 4 are interesting because they

Table 4. Comparison of membrane protein recognition methods

Method ROC TP1FP (%)

f1 0.7345 16.70
f2 0.7504 13.48
f3 0.7879 21.93
TPH 0.7362 30.02
TENR 0.8018 31.38
SDP/SVM 0.9219 36.06

Each row in the table corresponds to one of the membrane protein recognition methods
described in the text: three methods that apply filters directly to the hydrophobicity
profile, two methods based upon the TMHMM model, and the SDP/SVM approach. For
each method, the ROC and TP1FP are reported.

suggest that an approach that exploits multiple genome-wide
datasets may provide better membrane protein recognition
performance than a sequence-specific approach.

DISCUSSION
We have described a general method for combining hetero-
geneous genome-wide datasets in the setting of kernel-based
statistical learning algorithms, and we have demonstrated
an application of this method to the problems of classifying
yeast ribosomal and membrane proteins. The performance of
the resulting SDP/SVM algorithm improves upon the SVM
trained on any single dataset or trained using a naive com-
bination of kernels. Moreover, the SDP/SVM algorithm’s
performance consistently improves as additional genome-
wide datasets are added to the kernel representation and is
robust in the presence of noise.

Vert and Kanehisa (2003) have presented a kernel-based
approach to data fusion that is complementary to that presen-
ted here. In their approach, canonical correlation analysis
(CCA) is used to select features from the space defined by
a second kernel, and can be generalized to operate with more
than two kernels. Thus, whereas the SDP approach combines
different sources into a joint representation, kernel CCA sep-
arates components of a single kernel matrix, identifying the
most relevant ones.

Semidefinite programming is viewed as a tractable instance
of general convex programming, because it is known to
be solvable in polynomial time, whereas general convex
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programs need not be (Nesterov and Nemirovsky, 1994). In
practice, however, there are important computational issues
that must be faced in any implementation. In particular, our
application requires the formation and manipulation of n × n

kernel matrices. For genome-scale data, such matrices are
large, and naive implementation can create serious demands
on memory resources. However, kernel matrices often have
special properties that can be exploited by more sophistic-
ated implementations. In particular, it is possible to prove that
certain kernels necessarily lead to low-rank kernel matrices,
and indeed low-rank matrices are also often encountered in
practice (Williams and Seeger, 2000). Methods such as incom-
plete Cholesky decomposition can be used to find low-rank
approximations of such matrices, without even forming the
full kernel matrix, and these methods have been used success-
fully in implementations of other kernel methods (Bach and
Jordan, 2002; Fine and Scheinberg, 2001). Time complexity
is another concern. The worst-case complexity of the SDP in
Equation (4) is O(n4.5) (Lanckriet et al., 2004), although it can
be solved inO(n3), as a QCQP, under reasonable assumptions.
In practice, however, this complexity bound is not necessar-
ily reached by any given class of problem, and indeed time
complexity has been less of a concern than space complexity
in our work far. Moreover, the low-rank approximation tools
may also provide some help with regards to time complexity.
Nonetheless, running time issues are a concern for deploy-
ment of our approach with higher eukaryotic genomes, and
new implementational strategies may be needed.

Kernel-based statistical learning methods have a number of
general virtues as tools for biological data analysis. First, the
kernel framework accommodates not only the vectorial and
matrix data that are familiar in classical statistical analysis,
but also more exotic data types such as strings, trees, graphs
and text. The ability to handle such data is clearly essential
in the biological domain. Second, kernels provide significant
opportunities for the incorporation of more specific biological
knowledge, as we have seen with the FFT kernel and the Pfam
kernel. Third, the growing suite of kernel-based data analysis
algorithms require only that data be reduced to a kernel matrix;
this creates opportunities for standardization. Finally, as we
have shown here, the reduction of heterogeneous data types
to the common format of kernel matrices allows the devel-
opment of general tools for combining multiple data types.
Kernel matrices are required only to respect the constraint of
positive semidefiniteness, and thus the powerful technique of
semidefinite programming can be exploited to derive general
procedures for combining data of heterogeneous format and
origin.

We thus envision the development of general libraries of
kernel matrices for biological data, such as those that we
have provided at noble.gs.washington.edu/proj/sdp-svm, that
summarize the statistically-relevant features of primary data,
encapsulate biological knowledge, and serve as inputs to
a wide variety of subsequent data analyses. Indeed, given

the appropriate kernel matrices, the methods that we have
described here are applicable to problems such as the pre-
diction of protein metabolic, regulatory and other functional
classes, the prediction of protein subcellular locations, and
the prediction of protein-protein interactions.

Finally, while we have focused on the binary classification
problem in the current paper, there are many possible exten-
sions of our work to other statistical learning problems. One
notable example is the problem of transduction, in which the
classifier is told a priori the identity of the points that are in
the test set (but not their labels). This approach can deliver
superior predictive performance (Vapnik, 1998), and would
seem particularly appropriate in gene or protein classification
problems, where the entities to be classified are often known
a priori.
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