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Most algorithms for identifying peptides from tandem
mass spectra use information only from the final spec-
trum, ignoring non-mass-based information acquired
routinely in liquid chromatography tandem mass spec-
trometry analyses. One physiochemical property that is
always obtained but rarely exploited is peptide chromato-
graphic retention time. Efforts to use chromatographic
retention time to improve peptide identification are com-
plicated because of the variability of retention time in
different experimental conditions—making retention time
calculations nongeneralizable. We show that peptide
retention time can be reliably predicted by training and
testing a support vector regressor on a small collection
of data from a single liquid chromatography run. This
model can be used to filter peptide identifications with
observed retention time that deviates from predicted
retention time. After filtering, positive peptide identifica-
tions increase by as much as 50% at a false discovery rate
of 3%. We demonstrate that our dynamically trained
model generalizes well across diverse chromatography
conditions and methods for generating peptides, in par-
ticular improving peptide identification using nonspecific
proteases.

Understanding the major functions of the cell requires accurate
measurement and characterization of its main biochemical actors,
proteins. While much can be learned from the study of individual
proteins, in vivo a protein invariably acts in concert with other
biomolecules. These interactions differ according to cell type, the
state of the cell, and its response to external stimuli. Several
technologies have the potential to provide a comprehensive view
of many of the cell’s proteins in a single experiment. One widely
used technology is shotgun proteomics using liquid chromatog-
raphy (LC)-tandem mass spectrometry (MS/MS).12

In a typical LC—MS/MS experiment, proteins are enzymati-
cally digested to peptides, which are then separated by micro-
capillary reversed-phase chromatography. The eluting peptides
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are emitted into a mass spectrometer using electrospray ionization.
The mass spectrometer automatically measures the mass-to-
charge (m/z) ratio of the intact and fragmented peptides, yielding
a tandem mass spectrum. One LC—MS/MS experiment typically
yields tens of thousands of MS/MS spectra. The identity of the
peptides that produced the spectra, and thus the identity of the
original proteins, can be obtained by database search algorithms
such as SEQUEST.3

As with any high-throughput technology, shotgun proteomics
experiments must manage the tradeoff between maximizing true
positive identifications and minimizing false positive identifica-
tions.*®> The need to reduce false positives has spurred the
development of methods for increasing the sensitivity and specific-
ity of peptide identification algorithms. However, most of these
methods use information exclusively from the MS and MS/MS
stages of analysis, ignoring information from the chromatographic
separation, such as retention time. The chromatographic retention
time is the amount of time that a peptide is retained on the column
and is closely related to the peptide’s molecular structure, polarity,
and hydrophobicity.6 It has the advantage of being independent
of the information contained in the MS/MS spectrum and can
therefore be used in conjunction with the information in the MS/
MS spectrum to increase peptide identification confidence.

Understanding and predicting peptide retention time has a long
history. For reversed-phase chromatography, peptide retention
time increases with increasing peptide hydrophobicity.5 Many
models assume that peptide retention time is a function of peptide
amino acid composition.”"!! However, it is clear from experimental
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Figure 1. Overview of chromatography analysis. (A) Chromatography separates peptides over time. (B) Spectra acquired throughout the
chromatographic separation are identified as peptides. (C) An SVR learns to predict retention time (solid black line) from high-confidence peptide
identifications (black circles) from a single chromatography run. False positive peptide identifications (white circles) can be eliminated if their
observed retention time differs greatly from their predicted retention time (white circles outside dashed lines).

data that two peptides with identical amino acid compositions can
be chromatographically separated from one another.!2 More recent
models augment the compositional approach with parameters for
peptide length or mass,’® diresidue or triresidue composition,*
or positional effects such as the identity of the N-term residue.!
Still more sophisticated models include parameters for secondary
structure or peptide hydrophobic moment. 162!

The most accurate and sophisticated peptide retention time
predictor is that of Petritis et al.!* first presented in simpler form
3 years earlier,’” which uses an artifcial neural network (ANN) to
predict a normalized form of retention time. The large amount of
data required to train the ANN (for Petritis et al.,’2 345 000
nonredundant peptides) makes retraining for new chromatography
conditions impractical. A more recent, but less complicated, ANN
has since been published,® but does not outperform the method
presented in Petritis et al. In addition, Petritis et al. also
demonstrated that spiked peptides can be used to align data from
different chromatograms. However, this technique requires an
additional experimental step and does not account for changes in
relative peptide elution order.

Recently, a handful of retention time predictors have been used
to enhance the confidence of peptide identifications. Palmblad et
al.¥ predicted retention time for each peptide using least-squares
regression to determine amino acid weights and then used a y?
test to rank candidate peptides based on deviation from expected
mass and predicted retention time. As the authors acknowledged,
their retention time prediction is poor compared to prior work
and improvement in protein identification is modest. Kawakami
et al.?0 used the sum of residue retention coefficients to predict
retention time for peptides and phosphopeptides, but they made
no clear distinction between training and test data. When predic-
tions are made on data not used in training, the correlation
between predicted and observed retention time deteriorates, a sign
of overfitting.

The goal of this paper is to use chromatographic retention time
to increase the confidence of peptide identifications by tandem
mass spectrometry. Previous efforts to increase identification
confidence using retention time have been limited to conditions
(e.g., column, mobile phase, gradient) identical to those used to
train the retention time predictor® or require additional experi-
mental steps.’2 Most such methods train a single retention time
predictor using a limited subset of highly reproducible chroma-
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tography conditions!® or perform a normalization that attempts
to eliminate variability.2%2 In practice, however, researchers use
a large number of diverse chromatographic conditions, making a
static retention time predictor not particularly useful. In this work,
we demonstrate the application of a dynamically trained support
vector regressor (SVR) to predict retention time for peptides in a
given LC—MS/MS analysis (Figure 1), using only data generated
during the current run. We use features similar to Krokhin et
al,’» and see our work as extending that approach to allow
application across diverse data sets and conditions. Our model
may not outperform other models trained and tested under highly
similar conditions, as in Krokhin et al.’® or Petritis et al.'? However,
our approach is portable to new chromatography conditions or
sample preparation protocols, adapting to differences in column
length, protease, ion-pairing agent, and MudPIT salt step for each
individual LC—MS/MS analysis. Furthermore, by eliminating
peptide identifications with an observed retention time that
deviates greatly from their predicted retention time, our method
increases the number of true positive peptide identifications over
a range of false discovery rates. The results presented here have
implications for traditional shotgun proteomics research using
trypsin in addition to some less frequently used enzymes.
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Table 1. Twelve Data Sets Used To Train and Test the
Support Vector Regressior

data set total® confident train® test?
20 cm 6929 2073 1554 519
40 cm 7220 2409 1806 603
60 cm 7459 2774 2080 694
TFA 11977 3179 2384 795
chymotrypsin 2191 200¢ 150 50
elastase 4377 200¢ 150 50
MudPIT-1 11339 863 647 216
MudPIT-2 9550 1553 1164 389
MudPIT-3 8488 1320 990 330
MudPIT-4 7871 1096 822 274
MudPIT-5 7373 888 666 222
MudPIT-6 6439 757 567 190

@ Number of +2 spectra associated with unique geptides that satisfy
that data set’s enzyme specificity requirement. ® Number of high-
confidence spectra selected at a 10% FDR. ¢ Number of spectra in
regressor training subset. ¢ Number of spectra in regressor testing
subsets. ¢ These data sets had less than 200 examples at 10% FDR; as
a result, the top 200 PSMs were used, regardless of FDR.

METHODS

Data Sets. We analyze 12 separate chromatography data sets
(Table 1), chosen to represent a diverse set of chromatography
and sample preparation conditions. All data sets are from a
complex mixture of peptides from the digestion of a largely
unfractionated lysate of the yeast Saccharomyces cerevisiae. The
first three data sets are reversed-phase analyses of a tryptic digest
of the soluble yeast proteome, each with a different length column
of 20, 40, and 60 cm. A fourth identically prepared yeast sample
is analyzed with the ion-pairing agent, trifluoroacetic acid (TFA).
Two additional data sets are from the same yeast sample digested
with the enzymes chymotrypsin or elastase. The final six data sets
are taken from the six steps of a 12-h multidimensional separation
using strong cation-exchange and reversed-phase LC (i.e., mul-
tidimensional protein identification technology, or MudPIT%) for
the analysis of a tryptic digest of the soluble yeast proteome.
Summary statisics for the data sets, and for the training and testing
data sets extracted from them, are shown in Table 1. Details of
the exact methods for producing the data sets follow.

Sample Preparation. A complex yeast lysate was prepared
by growing strain S288c in 500 mL of yeast extract/peptone/
dextrose medium, harvested at OD 1.2, and lysed in a BeadBeater
(BioSpec Products, Inc. Bartelsville, OK) in 50 mM ammonium
bicarbonate at pH 7.8. Unbroken cells and cell debris were
removed by centrifugation at 5000g for 10 min. A 45-uL aliquot of
the supernatant was mixed with 5 ul. of 1% PPS (Protein
Discovery, Knoxville, TN), heated at 90 °C for 2 min, and then
treated serially with dithiothreitol and iodoacetic acid for 30 min
each as described previously.2* The reduced and alkylated protein
mixture was digested to peptides with the addition of either
trypsin, chymotrypsin, or elastase at a 1:50 enzyme/substrate ratio.
The mixture was incubated at 37 °C for 4 h and quenched by
acidification with HCl. The digest was centrifuged at 14 000 rpm
at 4 °C in a microcentrifuge, and the supernatant stored at
—80 °C until analyzed by mass spectrometry.

(23) Washburn, M. P.; Wolters, D.; Yates, J. R., II. Nat. Biotechnol. 2001, 19,
242-247.
(24) Klammer, A. A.; MacCoss, M. J. J. Proteome Res. 2006, 5 (3), 695—700.

LC—MS/MS. The samples were analyzed by data-dependent
tandem mass spectrometry using the following LC—MS/MS
analysis. A 75um-i.d. fused-silica capillary (Polymicro Tech,
Phoenix, AZ) was pulled to a tip using a CO, laser puller (Sutter
Instruments) and slurry packed with 4-um, 90-A-pore size Jupiter
Proteo reversed-phase material (Phenomenex, Ventura, CA) using
a pressure bomb. In all data sets, the column was 40 cm long,
except for the two data sets in which we varied the column length,
to 20 and 60 cm. The column was placed inline with an Agilent
1100 Binary HPLC and autosampler (Palo Alto, CA). The flow was
split precolumn to create a flow rate of ~500 nL/min through
the column, as described previously.?

As peptides eluted from the microcapillary columns, they were
emitted into an LTQ mass spectrometer (ThermoFisher Scientific,
San Jose, CA) with the application of a 2.4-KV spray voltage applied
distal to the solvent split. A cycle of one full-scan mass spectrum
(400—1400 m/z) followed by five data-dependent MS/MS spectra
at a 35% normalized collision energy was repeated continuously
throughout each analysis. Application of mass spectrometer scan
functions and HPLC solvent gradients were controlled by the
Xcalibur data system (ThermoFisher Scientific). Inorganic buffer
was 95% water/5% acetonitrile/0.1% formic acid (buffer A), and
organic buffer was 5% water/95% acetonitrile/0.1% formic acid
(buffer B), except in the TFA data set. In the TFA data set, 0.01%
TFA was used in place of 0.1% formic acid.

The 20-, 40-, and 60-cm data sets used a 2-h gradient, consisting
of 16 min of 5% B, followed by an 84-min gradient to 32% B,
followed by a 2-min pulse of 80% B, followed by an 18min
equilibration with 2% B. The TFA, chymotrypsin, and elastase data
sets used a 4-h gradient, consisting of 27-min 5% B, a 193-min
gradient from 0% B to 32% B, a 5-min step to 80% B, and a final
15-min equilibration at 5% B.

MudPIT LC/LC—MS/MS. The trypsin digest of yeast pro-
teins was also analyzed using a six-step MudPIT analysis. The
MudPIT analysis was performed in a fashion similar to that
described previously.2 Briefly, a triphasic column was constructed
by packing (tip first) a 100-um-i.d. capillary pulled to a tip with 7
cm of reversed-phase material (Jupiter, Proteo Phenomonex), 3.5
cm of strong cation-exchange material (Whatman, Partisphere
SCX 5 um), and an addition 4 cm of reversed-phase material. The
protein digest was pressure-loaded directly onto the rear end of
a triphasic chromatography column. Once loaded with the protein
digest, the column was placed inline with an Agilent 1100 Binary
HPLC and analyzed using a six-step multidimensional separation
as described previously.?> The salt step elutions were provided
by injecting 50 uL of ammonium acetate buffer at concentrations
of 0, 100, 200, 500, and 800 mM and 5 M, using an autosampler
inline between the HPLC and the column.

Training and Testing Set Extraction. A high-confidence set
of training and testing data was extracted from each of the 12
data sets. First, the spectra were searched against both target and
decoy versions of a fasta file containing the translated predicted
yeast open-reading frames (from Apr-02, 2004) using SEQUEST
with no enzyme specificity.® The decoy database was produced
by randomly shuffling the sequences in the target yeast protein
sequence database. Identifications were filtered using the following

(25) McDonald, W. H.; Ohi, R.; Miyamoto, D. T.; Mitchison, T. J.; Yates, J. R,,
1L Int. ]. Mass Spectrom. 2002, 219, 245—251.
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criteria: charge state of +2, peptide sequence ending in K or R
and preceded by K or R (except for peptides at the beginning or
end of a protein, or for the chymotrypsin and elastase data sets),
and allowing any number of missed cleavages sites.

We used the number of matches in a search against the decoy
database as a proxy for false positive matches in the search against
the target database. High-confidence spectrum identifications were
selected by setting an Xcorr threshold so that the number of
matches to the decoy database above this threshold is 10% of the
number of matches to the target database; this yields ~10% false
discovery rate (FDR) in the matches to the target database. If
the number of target matches at a 10% FDR was less than 200,
then the top 200 scoring spectra were used. We required a
minimum of 200 identifications because regression performance
deteriorated with less than 200 identifications (see Supporting
Information). Regardless of the number of spectra, when multiple
spectra matched a single peptide sequence, the spectrum with
the highest Xcorr was selected to avoid bias in the regression
toward common peptides. The resulting set of peptides and
retention times was split to form a 3:1 ratio between the training
and testing data sets (Table 1) for each chromatography run,
which were then used to train and test the SVR. No peptides were
allowed to occur in both the training and testing data sets.

Support Vector Regression. As with other forms of regres-
sion, a support vector regressor learns a function that relates a
dependent variable (in this case, retention time) to a set of
independent variables. An SVR builds a regressor out of a subset
of the training examples, known as support vectors.26 Training
examples that are within a tolerance value ¢ of the model
prediction are ignored. To generate the independent variables,
each peptide from the training and test sets is represented as a
63-element vector composed of the following: 20 elements
represent the total number of each amino acid residue in the
peptide; 40 binary elements represent the identity of the extreme
N-terminal (N-term) and penultimate C-terminal (C-term) residues,
respectively; and 3 additional elements represent the identity of
the last C-term residue (either K or R) and the peptide length
and mass. For the data sets generated with the nontryptic enzyme
elastase and chymotrypsin, the ultimate C-terminal residue is used
instead of the penultimate, and the K or R term is set to zero.

A separate SVR is trained for each data set in Table 1. The
SVR is tested by measuring the R value between predicted and
observed retention time on a subset test set not used in training.
R value is a statistical measure of the correlation between two
data sets. The R value for two data sets x and y of length # is
given by » = Cov(x,y)/0,0,, where Cov(x,y) = n3xy — Yx3y, the
covariance of data sets ¥ and y, and o, = V/n3x2—(3x)2, the
standard deviation of data set x. An SVR is trained and tested twice
using two kinds of kernels: a linear kernel, because it allows ready
interpretion of the weight it assigns to each feature (see Results);
and a Gaussian kernel (also known as a radial-basis function
kernel), because it allows maximum flexibility in the functions
that it can successfully regress.

Hyperparameters for each kernel are selected using 3-fold
cross-validation on the training set. For both kernels, the SVR is
trained with an e insensitive-loss hyperparameter of 0.1. Other

(26) Vapnik, V. The Nature of Statistical Learning Theory, Springer: New York,
1995.
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Table 2. R Values for a Fixed Regression Compared to
a Learned Regression Using the Gaussian or Linear
Kernels?

data set fixed Gaussian® fixed* linear?
20 cm 0.881 0.908 0.877 0.892
40 cm 0.892 0.897 0.894 0.891
60 cm 0.914 0.926 0.889 0.892
chymotrypsin 0.871 0.865 0.787 0.790
elastase 0.823 0.850 0.822 0.851
MudPIT-1 0.697 0.766 0.764 0.684
MudPIT-2 0.851 0.898 0.871 0.894
MudPIT-3 0.856 0.878 0.876 0.891
MudPIT-4 0.853 0.894 0.853 0.859
MudPIT-5 0.867 0.911 0.813 0.812
MudPIT-6 0.839 0.918 0.836 0.894
TFA 0.818 0.842 0.863 0.886

@ Correlation for 12 data sets for fixed parameters described in
Krokhin et al.® (fixed) and %)arameters learned for each data set with
a Gaussian or linear kernel. ° Significant with p-value of <0.01. ¢ There
are two fixed regressions because the Gaussian and linear kernels were
evaluated on slightly different testing subsets. ¢ Not significant with
p-value of <0.01.

Table 3. Analysis of Six-Step MudPIT

unfiltered filtered
dataset  unfiltered® filtered’? (cumulative)¢ (cumulative)?
MudPIT-1 723 723 723 723
MudPIT-2 1331 1418 1940 2029
MudPIT-3 1170 1185 2695 2802
MudPIT-4 918 1047 3165 3377
MudPIT-5 763 823 3531 3786
MudPIT-6 653 653 3956 4214

2 Number of unique peptides at 5% FDR before filtering spectra with
observed retention time that deviates significantly from predicted
retention time. ® Number of unique peptides at 5% FDR after filtering
spectra with observed retention time that deviates significantly from
predicted retention time. ¢ Cumulative number of unique peptides for
the entire MudPIT up to the given step before filtering. ¢ Cumulative
number of unique peptides for the entire MudPIT up to the given step
after filtering.

values of ¢ did not yield significantly different results. Another
hyperparameter used in the regression is the soft-margin penalty
C, which can be thought of as a bound on the weight that can be
given to each training example. The value of C is initially allowed
to range over 10 orders of magnitude from 1073 to 107. For the
final cross-validation, to decrease processing time, C is constrained
to be 1071, 109, or 10! for the linear kernel, and 10°, 105, or 107 for
the Gaussian kernel. The Gaussian kernel has an additional
hyperparameter o, which corresponds to the width of the Gaus-
sians used; it is set to 1076, 107, or 1078, R values are reported
on a held-out test set.

The SVR is implemented using the publicly available software
package PyML (pyml.sourceforge.net). Source code for producing
the results presented here can be found at http://noble.gs.wash-
ington.edu/proj/rt. Model construction and application took on
average ~20 min.

RESULTS
Support Vector Regression. We first evaluate our dynami-

cally trained regressor by comparing it to the published, fixed-
parameter regressor from Krokhin et al.’> We measure perfor-
mance by comparing correlation (measured by R value) between
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Figure 2. Overview of data flow. For each LC—MS/MS experiment,
we start with a collection of peptide-spectrum matches (PSMs). We
use PSMs to a decoy sequence database to filter these PSMs to
produce high-confidence PSMs at a 10% FDR. These PSMs, along
with a second set of decoy PSMs, are used to train a support vector
regressor and to select a threshold for filtering PSMs based on their
retention time, yielding a trained model. The model and a third set of
decoy PSMs are used to select the final set of target PSMs at a
desired FDR. Not shown is the 5-fold cross-validation used to validate
this method.

observed and predicted retention time for our SVR with the
correlation between observed and predicted relative hydrophobic-
ity from the fixed-parameter regression. One of the kernels (either
the Gaussian or linear kernel) outperforms the fixed parameter
regression across all data sets (Table 2 and Figure 3). When tested
with the two-sided Wilcoxon sign-ranked test, the correlations of
the Gaussian kernel predictions with retention time is greater than
the Krokhin et al.l® correlations with a p-value of <0.01. The
performance of the fixed and learned regressors are nonetheless
qualititatively similar: data sets that had relatively poor correlation
for one method had similarly poor correlation for Krokhin et al.15
In general, the regression performs best on the data sets with a
large number of high confidence identifications (Table 1).

Residue Weights. An advantage of using a linear kernel for
the SVR is that it allows calculation of the weights for each feature,
using the following formula:

w= z oX; V)

where w is the feature weight vector, «; is the ith training example,
and o is the weight associated with the ith training example by
the SVR. Weights correspond to each feature’s relative contribu-
tion to retention time. After performing the regression on each
data set, we calculate the weights given to each residue for peptide
composition, shown in Figure 5 and the Supporting Information.
We observe several expected trends: hydrophobic residues such
F and W have higher weights; hydrophilic residues such as K
and R show lower weights. Again, as expected, weights for
different length columns (20, 40, 60 cm) are similar and apparently
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Figure 3. Example of retention time prediction. Predictions of
hydrophobicity, a proxy for retention time, made by a fixed parameter
linear regression Krokhin et al.1® (top) are less accurate than retention
time predictions by a support vector regression that is trained and
tested on subsets of data from the same chromatography run
(bottom).

100 120

differ only by a scaling factor. While the SVR weights are largely
consistent across chromatography conditions, there are some
notable differences, such as the weight of H in the MudPIT-1 data
set versus the other data sets.

Improved Peptide Identification. In addition to measuring
the R value of predicted retention time on the test set, each trained
SVR is also tested for its ability to eliminate false positive peptide
identifications from its respective chromatography run. It is
important to note that even had the Krokhin et al.!> hydrophobicity
predictions been better correlated with retention time than the
SVR predictions, the method would still be less useful for
improving peptide identification. This method cannot be used for
filtering out identifications with unexpected retention time,
because hydrophobicity gives only relative rather than absolute
retention time. Thus, we see our method as a natural extension
of the method presented in Krokhin et al.'® to peptide identification
improvement. We assess confidence of peptide identifications by
searching the spectra from each data set against a shuffled version
of the appropriate protein sequence database known as the decoy
database; any hits to this database above a particular threshold
are considered an estimate of the number of false positives (FP)
against the target fasta database. Then, if P is the number of
positive hits to the target database, FDR can be calculated using
FDR = FP/P. To reduce the FDR, we eliminate identifications
with observed retention time that deviates from the predicted
retention time by a constant amount of time (Figure 1). We then
measure whether this filtering step improves the number of
positives over a range of FDR thresholds compared to number of
positives without filtering. An example of the deviation of predicted
and observed retention time for matches to the target and decoy
databases is shown in Figure 4.
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Figure 4. Predicted retention time difference for target and decoy peptide—spectrum matches. Shown are the Xcorr values and difference
between observed retention time and retention time predicted by the Gaussian kernel for matches to the target database (green) and the decoy
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Figure 5. Contributions to retention time. Shown are the support
vector regression weights for the linear kernel for the 20 features
corresponding to peptide amino acid composition; higher values
indicate a positive contribution to retention time. White circles indicate
the individual weights for each of the 12 data sets; black circles
indicate the means for all data sets.

Figure 2 illustrates how peptide identifications are filtered using
retention time. In addition to the peptide—spectrum matches
(PSMs) from the target yeast sequence database, we use PSMs
from three decoy databases. The first decoy database is used to
select identifications at 10% FDR, as described in the Methods
section. The second decoy database is used to calculate the
positives across a range of FDR values between 0.5 and 10% (in
0.5% increments) for a range of retention time thresholds between
0 and 240 min (in 10-min increments). The retention time
threshold that produces the highest number of true positives
across the largest number of FDR values is selected as the optimal
maximum retention time deviation threshold. We then determine
the performance of that threshold by calculating positives across
the same range of FDR values using the third decoy database.
We repeat this procedure five times and report an average of the
positives obtained on each of the five iterations. This average of
positives is compared to an average of positive performance
without any retention time filtration across the same five iterations.
The multiple iterations are made necessary by the high variance
associated with false positive estimates from decoy databases.?”

The results, in Figure 6 and Table 3, show a consistent
decrease in false positive peptide identifications across all the data

(27) Huttlin, E. L.; Hegeman, A. D.; Harms, A. C.; Sussman, M. R. J. Proteome
Res. 2006.
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sets and most FDR thresholds. The dynamically trained SVR
effectively adapts to variation in column length, MudPIT salt step,
ion-pairing agent, and protease (Figure 6). The improvement in
peptide identification is largest with the nontryptic digest elastase.
Increases in positives tend to be largest in the 2—3% FDR range,
and the Gaussian kernel outperforms the linear kernel in most
cases, except for the 20- and 60-cm data sets. At a 3% FDR, the
largest relative increase in positive peptide identifications is 52%
for the Gaussian kernel on the elastase data set, from 509 to 772
identifications; the smallest increase is 15% for the 60-cm data set,
from 1967 to 2270 identifications. Unique peptide identifications
increase when the MudPIT steps are analyzed individually and
as a group (Table 3).

Training and Testing on Different Data Sets. A primary
hypothesis motivating our work is that a static regressor will not
generalize well across different conditions. To demonstrate that
it is necessary to train a new model on each data set, we trained
an SVR on the MudPIT-2 data set and tested it on the TFA data
set. Filtering for retention time in this case degrades performance
versus not filtering, as shown in Figure 7. For example, at an FDR
of 5%, before filtering the TFA data set has 2550 unique positive
peptide identifications, compared to 2287 after filtering. Both
analyses show reduction in performance compared to an SVR both
trained and tested on the TFA data set, which has 2868 identifica-
tions.

DISCUSSION

We have demonstrated that a dynamically trained support
vector regressor is capable of learning to predict peptide retention
time from a small collection of data from a single LC—MS/MS
run across a variety of conditions. Our approach is capable of
adapting to varying chromatography conditions. Our goal is not
to predict retention time per se, but rather to use retention time
as a means to improve peptide identfication. Using the SVR to
filter peptide identifications results in an increase in positive
identifications at most false discovery rate thresholds and data
sets. Of special interest is the improvement in identifications for
samples with nontryptic enzyme cleavage, analysis of which is
usually complicated by an inability to constrain identifications with
knowledge of enzyme cleavage specificity. It is important to note
that filtering identifications in this manner is impossible with other
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Figure 6. Improved peptide identification over varying conditions. The dynamically trained SVR is able to cope with differences due to variations
in column length (top), MudPIT salt step (middle), ion-pairing agent (bottom, left) and protease (bottom, right). Spectra from diverse conditions
are searched against the appropriate sequence database to yield positive IDs and a decoy database to yield an estimate of false positive IDs.
Shown are plots of FDR vs positives (P). The green and magenta curves are for the test data set after filtering with the best classifier found on
the training data using the Gaussian and linear kernels, respectively, while the cyan curve is without any filtering.

methods of predicting retention time (such as calculating relative Our SVR method is not without limitations. In particular, data
hydrophobicity) because these methods predict only relative and sets of low complexity, such as two-dimensional gel spots or
not absolute retention time. purified proteins, will not produce a diverse enough set of peptides
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Figure 7. Performance deterioration when applying an SVR trained
on data from one kind of chromatography to data from a different
kind of chromatography. Positives vs FDR for a Gaussian kernel SVR
trained on a data set with a typical number of identifications (MudPIT-
2) and tested on another (TFA) before (cyan) and after filtering
(dashed green) peptide identifications with unexpected retention time.
Also shown for comparison is the curve after both training and testing
with peptides from the TFA data set (solid green).

to allow for accurate regression. In addition, poor-quality data sets
with few identifications (less than 100 above the 10% FDR) will
also fail to yield good regressions (see Supporting Information).
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Analysis of data sets from relatively simple mixtures could benefit
from improved selection of high-confidence identifications or from
an approach that combines data from the poor-quality data set
with data from higher quality data sets.

Further enhancements to our algorithm are possible. In
practice, the optimal retention time filtering threshold may vary
throughout the chromatography run. Therefore, future work
includes modulating the retention time threshold used to filter
peptide identifications to account for variability in chromatography
quality across a run.
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