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ABSTRACT: Accurate assignment of peptide sequences to
observed fragmentation spectra is hindered by the large
number of hypotheses that must be considered for each
observed spectrum. A high score assigned to a particular
peptide−spectrum match (PSM) may not end up being
statistically significant after multiple testing correction.
Researchers can mitigate this problem by controlling the
hypothesis space in various ways: considering only peptides
resulting from enzymatic cleavages, ignoring possible post-
translational modifications or single nucleotide variants, etc.
However, these strategies sacrifice identifications of spectra
generated by rarer types of peptides. In this work, we introduce
a statistical testing framework, cascade search, that directly
addresses this problem. The method requires that the user specify a priori a statistical confidence threshold as well as a series of
peptide databases. For instance, such a cascade of databases could include fully tryptic, semitryptic, and nonenzymatic peptides or
peptides with increasing numbers of modifications. Cascaded search then gradually expands the list of candidate peptides from
more likely peptides toward rare peptides, sequestering at each stage any spectrum that is identified with a specified statistical
confidence. We compare cascade search to a standard procedure that lumps all of the peptides into a single database, as well as to
a previously described group FDR procedure that computes the FDR separately within each database. We demonstrate, using
simulated and real data, that cascade search identifies more spectra at a fixed FDR threshold than with either the ungrouped or
grouped approach. Cascade search thus provides a general method for maximizing the number of identified spectra in a
statistically rigorous fashion.
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1. INTRODUCTION

A typical protein mass spectrometry experiment proceeds in
two phases. The first, experimental, stage produces thousands
to millions of peptide fragmentation spectra. The second,
analytic, stage assigns a putative peptide to each fragmentation
spectrum and reports those peptide−spectrum matches
(PSMs) that are deemed to be significant. The matching is
done using a peptide database search procedure, and the
significance threshold is typically expressed in terms of the false
discovery rate (FDR): the estimated percentage of accepted
PSMs that are incorrect.1 Estimating the FDR is critically
important because it allows researchers to identify high-
confidence PSMs for use in designing downstream experiments.
Thus, in designing a mass spectrometry analysis pipeline, a

primary consideration is whether we can guarantee that the
reported collection of PSMs has a false discovery rate that is no
greater than the reported FDR.
The flipside of controlling the FDR is maximization of

statistical power. In this setting, statistical power is defined as
the probability of accepting a correctly identified spectrum.
When statistical power is low, many correctly identified spectra
will be left out of our final set of high-confidence PSMs. The
design of analysis procedures for mass spectrometry analysis
can thus be seen as a tension between two desiderata:
maximizing statistical power (i.e., identifying as many spectra
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as possible) while at the same guaranteeing that the reported
false discovery rate estimates are accurate.

1.1. Standard Methods for Controlling the FDR

The FDR can be controlled using a variety of methods, which
largely fall into two categories. The first category consists of
methods requiring that we assign a p-value to each optimal
PSM, i.e., to each PSM that achieves the highest score among
all of the candidates for a given spectrum. Specifically, this p-
value is defined as the probability that the optimal PSM for a
given spectrum achieves a score at least as high as the observed
PSM score when searching the same spectrum against a
randomly drawn peptide database. This definition hinges on
how we define our null, or random, database model, but it is
commonly assumed that the peptides are generated independ-
ently of one another and that each random peptide is either a
shuffled version of an original peptide or is generated according
to an independent and identically distributed (IID) model.
When optimal PSM p-values are available, they can be fed into
well-developed methods that control the FDR, of which the
first and most widely used is the Benjamini−Hochberg
procedure.1

There are several approaches to estimating the optimal PSM
p-value, including parametric methods that use a relatively small
sample of randomly drawn peptide databases to fit a parametric
family of distributions2 or a fully nonparametric approach that
relies on a brute force Monte Carlo approach.3 A different
approach is taken by methods that invest their efforts in
estimating the probability that a single random candidate
peptide (within the precursor mass tolerance) will match the
given spectrum at least as well as the optimal PSM does. A
variety of methods have been proposed to compute the latter
tail probability, including empirical curve fitting procedures4,5

and dynamic programming methods.6−8 To get from this
computed tail probability to the optimal PSM p-value, these
methods rely on the assumption that random candidate
peptides are independently drawn.
The second category of methods for FDR control does not

require computing optimal PSM p-values. For example, many
methods evaluate the optimal PSM using an alternative expect
value (E-value) instead of a p-value.4,7,9,10 In such cases, the
Benjamini−Hochberg procedure cannot be used. Therefore,
the FDR is estimated using an approach based on target−decoy
competition (TDC),11 in which each spectrum is searched
against a database containing real peptides (targets) and
reversed or randomly shuffled peptides (decoys). The FDR is
then directly estimated from the number of optimal PSMs that
involve decoy peptides, thereby circumventing the need to
estimate the p-value of the optimal PSMs.

1.2. Controlling the FDR with Peptide Groups

In typical mass spectrometry analysis, we consider a single flat
database of peptides, which reflects an implicit prior belief that
all peptides within a specified tolerance around the precursor
m/z are equally likely to have generated a given spectrum.
Unfortunately, this approach often leads to loss of statistical
power because not all of the peptides are equally likely to have
generated the given spectrum. For example, consider a case
where an observed spectrum matches two distinct peptide
sequences with exactly the same score. With no other
information, we would be unable to decide which spectrum is
more likely to have generated the spectrum. However, if we are
told that the spectrum came from a sample digested with
trypsin and if we are told that only one of the two peptides has

tryptic cleavage sites on both termini, then we would
reasonably prefer the match to the tryptic peptide over the
match to the nontryptic peptide. A similar argument holds, for
example, for peptides that harbor no post-translational
modifications (PTMs) versus peptides that contain a PTM,
although, in this case, the motivation for selecting the
unmodified peptide is the knowledge that there many ways
for a peptide to be modified but only one way for it to be
unmodified.
In general, when the peptides in the database naturally fall

into groups, an analysis that fails to take this grouping
information into account will sacrifice statistical power.12

Similar grouping phenomena have been considered, for
example, in the context of hypothesis testing for genome-
wide association studies.13 In our context, the loss of power can
manifest itself in the database search procedure or in the
ensuing statistical analysis. For example, if our database includes
PTMs, then spectra generated by unmodified peptides will be
scored against a larger number of irrelevant peptides than if the
database did not include PTMs. Thus, for these spectra, adding
PTMs to the database increases the risk of finding a random
match whose score exceeds the score of the correct match.
More insidiously, even if none of the random match scores
exceeds the score of the correct match, the p-value of the same
correct PSM will be much larger and hence less significant
when computed relative to the augmented database than when
computed relative to the unmodified peptide database. Indeed,
the p-value computation takes into account the number of
candidate peptides, which is directly related to the size of the
database, and clearly the augmented database is much larger
than the one containing only the unmodified peptides. In
addition to the overall loss of power that we just discussed,
ignoring the group structure leads to a somewhat undesirable
situation where the actual FDR among some peptide groups
exceeds the desired level.12,14

In mass spectrometry analysis, by far the most widely used
solution to this grouping problem is simply to discard most of
the peptide groups and to focus on one or two small groups
that are deemed most likely to be responsible for generating the
observed spectra. For example, many analysis pipelines consider
only the subset of peptides in the database that exhibit various
enzymatic cleavage properties (enzymatic cleavage sites at one
or both termini and a few or no missed cleavage sites internal to
the peptide). PTMs, if they are considered at all, are typically
limited to a few common modifications. One motivation for
limiting the peptide set in this way is to reduce the amount of
time spent in database search, but a more important motivation
is to increase the statistical power as suggested above.
A variety of more nuanced approaches to the peptide

grouping problem have been proposed in the literature. For
example, the Iterative Search for PTMs (ISPTM) method was
proposed in the context of PTM discovery but could be applied
to any grouping of peptides.15 In this method, groups of
peptides are arranged a priori in a series such that subsequent
peptide groups contain peptides that are deemed to be
increasingly less likely to occur in the sample. The ISPTM
method iteratively searches a spectrum over the series of
peptide groups, assigning to the spectrum the first peptide
whose E-value is smaller than a predefined threshold.
Similarly, the stratified search method,7 which was proposed

for handling peptides grouped based on enzymatic cleavage
properties, could be applied to any grouping of peptides.
Similar to ISPTM, the procedure uses an ordered series of
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peptide groups. However, in the stratified search approach, the
spectrum is searched iteratively against the union of the current
group and all previous groups in the series. At each stage, the E-
value of the optimal PSM is computed, and at the end of the
search, each spectrum is assigned the peptide with the smallest
E-value.
Both ISPTM and stratified search have the drawback that

they fail to control the FDR relative to the complete set of
spectra being analyzed. More recently, Fu et al.14 pointed out
that, in a set of PSMs with a correctly estimated FDR, the actual
FDR associated with subsets of specific classes of PSMs, such as
PSMs harboring post-translational modifications, will likely be
much different from the global FDR. The authors therefore
established a quantitative relationship, called transferred
subgroup FDR, between the overall FDR and the separate
FDRs calculated on groups. The proposed approach involves
postprocessing PSMs identified using the standard method-
ology and separately estimating FDRs for each group of PSMs.
The approach was evaluated on mass spectrometry data where
peptides containing the same type of PTMs were grouped
together.

1.3. Cascade Search

In this work, we generalize the ISPTM method to control the
FDR. The resulting cascade search algorithm operates on an
ordered series of peptide groups, similar to ISPTM and
stratified search. However, whereas ISPTM treats each
spectrum independently, thereby failing to control the FDR
in the reported list of optimal PSMs, cascade search takes into
account the entire collection of spectra to exert multispectrum

FDR control. To evaluate cascade search, we perform empirical
comparisons to two existing methods for controlling FDR at
the spectrum level: the ungrouped approach and the group
FDR method.14 We use simulated data and three real data sets,
two analyzed using peptide groups based on enzymatic cleavage
properties and the third analyzed using groups based on PTMs.
We evaluate the statistical power of the three methods applied
to real data based on the number of discoveries at a given FDR.
The latter is estimated using the Benjamini−Hochberg
procedure applied to optimal PSM p-values, which, in turn,
are evaluated on the basis of tail probabilities computed via
dynamic programming.8 To increase our confidence in this
FDR estimation procedure, we confirm that the selected
nominal FDR levels agreed with the corresponding FDR
estimates derived using an independent target−decoy competi-
tion (TDC).11 Independently of that, we also used TDC to
control the FDR in lieu of the Benjamini−Hochberg procedure
in all three search strategies we consider here in conjunction
with two other search engines, MS-GF+16 and X!Tandem.17

Overall, our experiments show that cascade search yields more
statistical power, i.e., the procedure identifies more spectra at a
fixed FDR threshold, than either the ungrouped or grouped
approach. An implementation of cascade search is available as
part of the Crux mass spectrometry analysis toolkit (http://
cruxtoolkit.sourceforge.net).18

Scheme 1. Details of Algorithm 1: Controlling FDR with No Peptide Groupsa

aThe input is a collection S of spectra, a peptide database D, and an FDR threshold α. The subroutine SEARCH(S,D) returns a list of selected peptides
E, the associated matching scores M, and the numbers of candidate peptides C, where |S| = |M| = |C| = |E|. The subroutine
CALCULATEPVALUES(S,M,C) converts raw scores into p-values and then adjusts each p-value to account for the corresponding number of candidate
peptides. The CONTROLFDRBYBH procedure takes as input a list P of p-values and a confidence threshold α and returns a list A of Booleans, each
indicating whether the corresponding p-value is accepted or not. Note that, in general, we use an uppercase variable name to refer to a list of values
and a lowercase variable with a subscript to refer to entries in that list, e.g., S = s1, ..., s|S|.

Scheme 2. Details of Algorithm 2: Controlling FDR with Peptide Groupsa

aThe input is a collection S of spectra, a series D1, ..., Dn of peptide databases, and an FDR threshold α.
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2. MATERIALS AND METHODS

2.1. Three Methods for Database Search and FDR Control

In this article, we consider three protocols for reporting a list of
PSM discoveries when searching a set of spectra against a
sequences of peptide databases: ungrouped, grouped, and
cascade search. We assume that these databases are of
increasing size and decreasing relevance. All three methods
share the basic features of most such database searches, but
they differ in how each component of the search is applied.
In general, the assignment of peptides and corresponding

confidence estimates to a collection S of tandem mass spectra
can be carried out in two steps: database search and FDR
control.
Typically, in the first step, each spectrum s ∈ S is searched

against a database D of peptide sequences. This step involves
iteratively comparing the spectrum to candidate peptides d ∈ D
whose masses lie within a specified tolerance of the spectrum
precursor mass. Each such comparison yields a score that
quantifies the quality of the PSM, and the spectrum s is
assigned the best scoring peptide e. The first two protocols we
consider, ungrouped FDR (Algorithm 1) and group FDR
(Algorithm 2), apply an identical search procedure: each
spectrum is searched against the union of the databases. The
third method, cascade FDR (Algorithm 3), applies a different
search strategy: initially, each spectrum is searched against the
first (and presumably smallest) database, and only those spectra
that, together with their assigned peptides, fail to achieve
statistical significance are used for further searches against the
subsequent database. The same principle applies iteratively to
the remaining databases.
In the second step, we need to estimate the FDR among the

list of discoveries and report only those PSMs that score above
a threshold at which the estimated FDR matches the desired
level. Controlling the FDR can be done in several ways, the
choice of which depends on whether or not one can estimate
the p-values of each optimal PSM. If no such estimates are
available, then one is forced to use target−decoy competition,11

but if such p-values are available, then one can use a method
like the Benjamini−Hochberg procedure1 to achieve FDR
control. Note that, although the following discussion is largely
framed in terms of the latter p-value based FDR controlling

procedure, it can be equivalently formulated using target−
decoy competition. We have accordingly provided general-
izations of the algorithms that can utilize p-values if they exist
(employing the Benjamini−Hochberg procedure) or, in the
absence of p-values, resort to using target−decoy competition
(Supporting Information Algorithms S1−S4).
In Algorithms 1−3, we assume that we can compute p-values.

Specifically, the algorithms assume that if the top-scoring
(optimal) PSM for a given spectrum achieves a score of s, then
we can compute p′ := p(X ≥ s), the statistical significance of the
PSM score s assuming the unique candidate peptide was chosen
at random according to an IID model. This probability is the
same as the spectral probability of ref 6. Such probabilities can
be assigned using approximate4,5,9,10 or exact methods.6−8

However, because the score s is selected as the best from c
candidates rather than using a unique candidate, the p-value of
the optimal PSM (defined as the probability of seeing a match
scoring s or better when searching against an entire null
database) should be corrected for that fact. Empirical evidence
suggests that it is reasonable to assume independence between
the scores assigned to different random candidate peptides.8

Under such an independence assumption, it readily follows that
the p-value of the optimal PSM is given by p = 1 − (1 − p′)c.
Note that this is often referred to as the Šidaḱ correction in the
context of hypothesis testing.19

Each of the three procedures we present here includes a step,
or multiple steps, to control the FDR in its reported list of
discoveries. All three rely on computing the relevant p-values as
described above, followed by applying the Benjamini−
Hochberg procedure,1 which takes as input a collection of p-
values and a desired FDR threshold α and produces as output a
set of accepted p-values.
Our three methods, however, differ in how they compute the

p-values and in how they apply the Benjamini−Hochberg
procedure. The ungrouped FDR procedure (Algorithm 1),
which corresponds to the case where we do not have
information (or choose to ignore information) about peptide
groups, estimates the FDR in a straightforward manner: the p-
values are computed relative to the union database and we
simply apply the Benjamini−Hochberg procedure to the set of
all PSM p-values, P (line 4, Algorithm 1).

Scheme 3. Details of Algorithm 3: Controlling FDR with Cascaded Groupsa

aLike the group FDR algorithm, the input is a collection S0 of spectra, a series D
1, ..., Dn of peptide databases, an FDR threshold α, and a threshold k

specifying the minimum number of identifications required per group.
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Alternatively, the group FDR procedure (Algorithm 2) uses
information about the peptides to compartmentalize the PSMs
into groups, as proposed by Fu et al.14 In this case, because the
search is still done relative to the union of the databases, the p-
values are computed, as in the group FDR procedure, relative
to that union; however, the Benjamini−Hochberg procedure is
executed separately on each group of PSMs, or each database,
and the union of the resulting set of accepted PSMs is returned.
Note that this procedure is a simplified form of the group FDR
procedure used by Fu et al. in which we do not include the
transferred subgroup FDR calculation. That calculation would
decrease the variance of the FDR estimates for each group,
particularly for groups with a small number of discoveries, but
would not affect the overall conclusions of this work (a point
that is given further evidence below).
Finally, as mentioned above, in the cascade FDR procedure

(Figure 1 and Algorithm 3), we interleave the database search
and the FDR control. Specifically, we iteratively search each
database, estimate the p-values relative only to the searched
database, and apply the Benjamini−Hochberg procedure in that
reduced context. Any spectrum that is identified with
confidence better than the specified FDR threshold α is
committed to be reported together with its matching peptide
and, consequently, this spectrum is left out of all subsequent
searches.
The minimal identifications threshold k, which is specific to

the cascade FDR procedure (line 7, Algorithm 2), guards
against situations where an unusually low number of
identifications compromises our ability to control the FDR.
As noted in a similar, although not identical, setup in ref 12,
separate FDR analysis is legitimate if the expected number of
identifications is reasonably large. In practice, we found that
setting k ∼ 20 seems to guarantee control of the FDR.

2.2. Target−Decoy Estimation

For target−decoy analysis, we generated decoy peptides by
shuffling each unique target peptide, leaving the N- and C-
terminal amino acids in place. If the decoy peptide already
appears either in the target database or in the previously

generated set of decoys, then the peptide is reshuffled up to 10
times to attempt to generate a distinct decoy. Homopolymers
for which decoys cannot be generated are left out of the decoy
database. Hence, the procedure approximately doubles the
number of the peptides in the database. After revealing the
target/decoy labels for a set of PSMs, the FDR among the
target PSMs is estimated as Nd/Nt, where Nd is the number of
decoy PSMs and Nt is the number of target PSMs.11

2.3. Data Sets

We analyze three previously described collections of shotgun
proteomics fragmentation spectra.
The yeast data set consists of 35 236 low-resolution MS/MS

spectra obtained on a trypsin-digested whole-cell membrane
fraction from the yeast Saccharomyces cerevisiae using an LTQ
ion trap mass spectrometer. This data set is fully described by
Kal̈l et al.20

The yeast protein sequence database was obtained from
http://noble.gs.washington.edu/proj/percolator/data/yeast.
fasta.gz. It contains 6734 protein sequences. Three peptide data
sets were generated, containing 146 034 fully tryptic, 2 424 546
semitryptic, and 42 859 931 nontryptic peptides. No missed
cleavages were allowed. One static modification was included:
carbamidomethylation (57.02146 Da) of cysteine. No variable
modifications were used.
The human data set consists of 23 713 high-resolution MS/

MS spectra derived from a lymphoblastoid cell line and stored
in the file Linfeng_120110_HapMap29_6.RAW.21 Protein
lysates were subjected to detergent cleanup, cysteine alkylation,
trypsin digestion, and isobaric tandem mass tag (TMT)
labeling. Digested peptides were labeled with sixplex TMT,
and the six TMT-labeled samples were equally mixed to
generate the final digest mixture. The mixture was analyzed on
an LTQ Orbitrap Velos (Thermo Scientific) equipped with an
online 2D nanoACQUITY UPLC System (Waters). Full MS
scans were acquired in the Orbitrap in the range of 400−1800
m/z at a resolution of 60 000, followed by the selection of the
10 most intense ions for HCD-MS2 fragmentation using a
precursor isolation window of 1.5 m/z. The normalized

Figure 1. Cascade search. Fragmentation spectra are searched against a series of peptide databases. After each search, spectra that are not matched
according to a user-specified FDR threshold are passed on to the next search.

Journal of Proteome Research Article

DOI: 10.1021/pr501173s
J. Proteome Res. 2015, 14, 3027−3038

3031

http://noble.gs.washington.edu/proj/percolator/data/yeast.fasta.gz
http://noble.gs.washington.edu/proj/percolator/data/yeast.fasta.gz
http://dx.doi.org/10.1021/pr501173s


collision energy for HCD was set to 38% at 0.1 ms activation
time. Ions with a singly charged state or unassigned charge
states were rejected for MS2. Ions within a 10 ppm m/z
window around ions selected for MS2 were excluded from
further selection for fragmentation for 60 s.
The IPI.Human database, version 3.87, contains 91 491

protein sequences. Two static modifications were included:
carbamidomethylation (57.02146 Da) of cysteine and TMT
labeling (229.16293 Da) of N-terminal amino acids. No
variable modifications were included. As in yeast, three peptide
data sets were generated, containing fully tryptic, semitryptic,
and nontryptic peptides. Two missed cleavages were allowed,
and peptides ranged in length from 7 to 20 amino acids. The
resulting databases contained 1 916 754, 29 226 648, and
155 553 742 peptides, respectively.
The Aurum data set is a publicly available collection of 9832

singly charged spectra, which were generated on an ABI 4700
MALDI-TOF/TOF instrument from 246 purified and trypsin-
digested protein samples. This data set was explicitly designed
for testing novel mass spectrometry algorithms and tools.22 The
data were downloaded from ProteomeCommons.org.
This spectrum data set was searched against seven theoretical

peptide databases, each generated from the IPI Human
database, version 3.87,23 containing 91 491 protein sequences.
The initial database contains 647 650 unmodified tryptic
peptides, and each subsequent database corresponds to a
specific PTM:

• 353 539 oxidized peptides (2MW + 15.9949),

• 1 800 839 methylated peptides (2ED + 14.0156),

• 363 539 dioxidated peptides (2MW + 31.9898),

• 203 901 iodinated peptides (1Y + 125.897),

• 1 295 300 peptides with amonia or water loss on the N-

terminus (−18.0106, −17.0265), and
• 647 650 peptides with acetylation on the N-terminus

(+42.0106).

All peptide are fully tryptic without missed cleavages and
carry at most two variable PTMs and one static modification:
carbamidomethylation (57.02146 Da) of cysteine.
All three data sets were searched using Tide with exact p-

values (--exact-p-value T), as implemented in Crux,
version 2.1.18 The precursor mass tolerance was set to 3 Da for
the yeast data, 10 ppm for the human data, and 1 Da for the
Aurum data. All other parameters were left at their default
values.
In addition, the yeast data was searched using MS-GF+,

v10089,16 and X!Tandem, v10-12-01-1.17 To ensure consis-
tency, both programs were provided with predigested peptides,
rather than full-length protein sequences. MS-GF+ was run
with “-e 10 -ignoreMetCleavage 1” to prevent enzymatic
cleavage of the input peptides. Both programs were used with
target−decoy search (“-tda 1” for MS-GF+ and “include reverse
= yes” for X!Tandem), without any cleavages and without
isotope errors. In both programs, the minimum and maximum
charge states were specified to be 1 and 5, respectively, whereas
precursor and fragment ion tolerances were specified to be 3
and 1 Da, respectively. X!Tandem was used without refinement
search.

3. RESULTS

3.1. The Cascade FDR Method Yields Improved Statistical
Power on Simulated Data

To compare the performance of the three methods, ungrouped,
grouped and cascade search, we performed a simulation
experiment. In agreement with our presumed setup, we
simulated grouping of the peptides into a sequence of three
databases of increasing size and decreasing relevance.
Specifically, in our simulations, peptides in the ith database
(peptide group) generated a corresponding spectrum set of size
proportional to 1/(i2). The total number of spectra thus
generated was 10 000, so, for example, the first spectrum set
that was generated by peptides from the first database had 7347
spectra, the second spectra set had 1837 spectra, and the third
spectrum set had 816 spectra generated by peptides from the
last group/database. We refer to those 10 000 spectra that were
generated by peptides in our databases as native. We added to
those spectra a set of 40 000 foreign spectra that correspond
either to peptides outside of the database or to nonpeptide
molecular species. Note that this native/foreign terminology is
formally introduced as an integral part of a probabilistic model
that we introduce in ref 24.
We next simulated searching our 50 000 spectra against our

three databases according to the three protocols. In line with
the assumption that the databases are increasing in size, we set
the number of candidate PSMs per spectrum in the three
databases according to the average number of tryptic,
semitryptic, and nontryptic candidate peptides in the yeast
database, yielding 358, 5936, and 107 407, respectively. Thus,
every spectrum was matched with a total of 113 701 candidate
PSMs.
Each PSM was assigned a label, true or false. Matching any

candidate peptide against a foreign spectrum obviously yields a
false PSM. Matching a native spectrum against the unique
peptide that generated it yields a true PSM, whereas matching it
against any other candidate peptide again yields a false PSM.
The p-values of the false PSMs were randomly sampled from a
uniform U(0,1) distribution, whereas the p-values of the true
PSMs were generated U(0,1) × 10−ξ, where ξ ∼ Poisson(a) .
The parameter a determines how distinct the true and false
PSMs are. We selected a = 8, which provided a realistic overlap
(data not shown).
The final steps of the simulation differ for the three different

search procedures. In the ungrouped FDR procedure, the
minimum of all 113 701 p-values was assigned to the
corresponding spectrum, yielding one PSM per spectrum.
That assignment was marked as false if the corresponding p-
value was generated by the uniform distribution; otherwise, it
was marked as true. To account for the number of candidates,
we adjusted this minimal p-value by the Šidaḱ correction with
factor n = 113 701. (This correction would normally be done in
the CalculatePValues procedure in Algorithm 1.) To
control the FDR, we used the Benjamini−Hochberg procedure
on the full set of PSMs (step 4 in Algorithm 1). The grouped
procedure is similar to the ungrouped except that each PSM
was assigned to the group/database associated with the
matched peptide. Benjamini−Hochberg was then carried out
separately on each of the three groups of PSMs.
At the ith step of the cascade FDR procedure, for each of the

remaining spectra we chose the smallest p-value from the
matched candidate peptides of the ith group/database. This p-
value was adjusted using the Šidaḱ correction with the number
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of candidate PSMs (358, 5936, or 107 407), as would normally
be done in the CalculatePValues procedure in
Algorithm 3. The Benjamini−Hochberg procedure was then
applied to the list of adjusted p-values (one per each remaining
spectrum), and spectra identified at a specified FDR threshold
α were then removed. The procedure was repeated iteratively
on subsequent groups.
The simulation shows that the cascade FDR procedure yields

better statistical power than either ungrouped or grouped FDR
at thresholds from 1 to 10% FDR (Figure 2A). For example, at
α = 0.01 (1% FDR), the ungrouped FDR procedure identifies
5662 PSMs, on average, across 100 simulations, whereas the
grouped and cascade FDR procedures identify 6139 and 7690
PSMs, respectively. For lower FDR thresholds, the grouped
procedure yields more PSMs, on average, than the ungrouped
procedure, whereas for higher thresholds (FDR >8%), this
difference disappears.
To better understand the relative performance of the three

methods, we used the true and false PSM labels to measure the
actual FDR within each of the three groups. This analysis was
performed using an FDR threshold of 5% for each of the three
methods. The overall actual FDRs for the ungrouped, grouped,
and cascade FDR methods is, on average, 4.22, 0.91, and 4.51%,
respectively. However, only the cascade approach shows a
consistent FDR across all three groups (Figure 2B). In contrast,
the ungrouped FDR procedure shows a striking upward trend
in FDR as we move from early groups with fewer candidate
peptides and a larger proportion of native PSMs (FDR far
below 5%) to later groups containing many candidate peptides
and few native spectra (FDRs >30%). This behavior, which has
been pointed out previously,14 arises because the PSMs in the
later groups are substantially more difficult to detect correctly.

Indeed, this phenomenon motivated the estimation of group-
specific FDRs.
Accordingly, the grouped FDR procedure successfully

eliminates this tendency to enrich the results associated with
the later groups in the series with more false PSMs; however,
the procedure does not fully eliminate the trend toward low
actual FDR rates for the first groups in the series. In particular,
the average actual FDR for the first group is only 1%.
We hypothesized that the conservative behavior of the

grouped FDR procedure for the initial groups is, at least in part,
a result of using the Benjamini−Hochberg procedure. This
procedure makes the implicit assumption that all of the p-values
being analyzed are drawn according to the null distribution.
Accordingly, a variety of subsequently described FDR
estimation procedures (reviewed in ref 25) improve upon the
Benjamini−Hochberg procedure by explicitly estimating a
mixture parameter π0, which represents the proportion of
hypotheses that are drawn according to the null. The
Benjamini−Hochberg procedure corresponds to π0 = 1, and
for alternate values of π0, the FDR can be estimated by
multiplying the Benjamini−Hochberg estimate by π0. In our
simulation, we used the true/false labels to compute the actual
values of π0. The results (Figure 2C) show that, as expected, the
proportion of false PSMs increases for later databases in the
series. For reference, in the ungrouped case the unique value of
π0 is 0.86.
Because each method has at least one π0 value that is less

than 1, we could improve the power of each method by using
one of these mixture model methods in place of Benjamini−
Hochberg. To test whether this improvement would eliminate
the observed differences in statistical power among the three
methods, we modified our simulation accordingly: rather than

Figure 2. Simulation of ungrouped, grouped, and cascade FDR procedures. (A) Plots, for each procedure, of the number of identified spectra as a
function of FDR threshold. (B) Plots, for each of the three groups, of the actual FDR produced by each of the three procedures. (C) Proportion π0
of PSMs that are marked false for each group. (D, E) Same as panels A and B but for a simulation in which the FDR estimates include the actual
value of π0. All simulations were repeated 100 times; means and standard deviations are indicated.
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using Benjamini−Hochberg to estimate FDR (which assumes
π0 = 1), we simulated the situation where we estimate π0 from
the data and incorporated this factor into the FDR control.
However, to eliminate any variability due to the quality of the
π0 estimate, we simply provided each method with the actual
value or values of π0. In particular, during the simulation, in any
call to the Benjamini−Hochberg procedure, which occurs once
for UngroupedFDR and multiple times for GroupFDR and
CascadeFDR, we provided the procedure with p-values that
were corrected by the true π0 associated with these p-values.
This setting thus represents an optimal situation, where π0 is
estimated perfectly. These experiments show that the π0
correction results in approximately uniform FDR estimates
for the grouped procedure (Figure 2E). However, critically,
although the difference in statistical power between the cascade
FDR method and the grouped FDR method has grown smaller,
we still see better power for the cascade FDR approach across a
range of confidence thresholds (Figure 2D). Note that this
modified simulation is unrealistic due to the use of the true
value of π0, which is unknowable in practice; our purpose is
simply to demonstrate that the difference in power offered by
the cascade approach cannot be explained away by differences
in how π0 is handled. Note that, to test for robustness, we
repeated both of these simulations (with and without the π0
correction) using a series of 50 databases and observed very
similar trends (Supporting Information Figure S1).
Importantly, this last simulation shows that methods that

improve the FDR estimation, such as the transferred subgroup
FDR of ref 14, will still be inferior to the proposed cascade
approach. Presumably these methods lose power at the search
step, which is executed against the union database rather than
sequentially as in the cascade approach.

3.2. The Cascade FDR Method Yields Improved Statistical
Power on Real Data

Having established the utility of the cascade FDR method in
simulation, we next applied the method, along with the
ungrouped and grouped FDR procedures, to three real data
sets. In this setting, we cannot distinguish between true and
false positive identifications. However, the preceding simu-
lations suggest that our method successfully controls the FDR.
Hence, our analysis compares, across the three methods, the
number of accepted PSMs at a fixed FDR.
For the first data set, composed of 35 236 low-resolution

MS/MS spectra obtained form a whole-cell membrane fraction
of the yeast S. cerevisiae, we grouped the peptides based upon
their enzymatic cleavage properties. In this particular experi-
ment, peptides were digested with trypsin. Accordingly, we
expect most of the identified peptides to have tryptic cleavage
sites on both ends (fully tryptic) and for semitryptic or
nontryptic peptides to be increasingly rare. On the other hand,
the total number of tryptic peptides in the database (146 034)
is much smaller than the numbers of semitryptic (2 424 546)
and nontryptic (42 869 931) peptides. Thus, in this case, we
expect the three groups of peptides to exhibit very different
rates of correct identifications.
Our results (Table 1) are consistent with this expectation. At

a 1% FDR threshold, the standard, ungrouped procedure yields
4245 PSMs, of which 58 are semitryptic and 159 are nontryptic.
The simulation results in Figure 2B suggest that the false
positives among these 4245 PSMs are highly enriched in the
semitryptic and nontryptic groups, and the group FDR analysis
of the yeast data set supports this hypothesis: analyzed

separately, the number of tryptic PSMs accepted at 1% FDR
increases from 4028 to 5536, whereas the number of nontryptic
PSMs decreases from 159 down to 61. The cascade FDR
approach improves upon group FDR still further, yielding a
total of 8947 PSMs at 1% FDR, an improvement of 110.8%
over the ungrouped FDR approach and 58.5% over the group
FDR approach. Interestingly, the cascade approach achieves
this high statistical power without accepting a single nontryptic
PSM. Analyses at FDR thresholds of 5 and 10% (Supporting
Information Table S1) are consistent with this overall trend in
statistical power. For reference, the distributions of p-values for
target and decoy PSMs, respectively, are provided in
Supporting Information Figure S2.
Next, we repeated this experiment with a high-resolution

data set, consisting of 23 713 spectra from a study of genetic
control of protein abundance in humans.21 The results (Table
2) are consistent with the results from the yeast experiment.

Switching from ungrouped to group FDR analysis yields 389
additional PSMs, corresponding to an increase in statistical
power of 33.9%. Switching from ungrouped to cascade search
yields an even larger improvement of 855 PSMs, or a 74.5%
increase in power. Similar to the yeast analysis, cascade search
fails to find any nonenzymatic identifications in the human
data; instead, most of the gain in statistical power comes in the
form of additional tryptic PSMs.
The increase in tryptic identifications arises because of the

difference in how p-values are adjusted in the two methods. In
the group FDR case, the p-values of all the PSMs are corrected
by the total number of candidate peptides, including tryptic,
semitryptic, and nontryptic candidates. In practice, this means
that, relative to the cascade search procedure, the tryptic PSM
p-values are overcorrected. Specifically, in the group FDR case,
the tryptic peptide p-values are corrected by, on average, a
factor of 113 701, whereas in the cascade search case, the same
p-values are corrected by a factor of only 358.
Next, we investigated the performance of the three

approaches on a data set in which peptides are grouped
according to post-translational modifications (PTMs). The data
set was generated on a MALDI TOF/TOF instrument from a
mixture of 246 purified human proteins and is known to
contain a variety of different types of PTMs. Our modification
series begins with unmodified peptides and then considers six
different possible PTMs: oxidation, methylation, dioxidation,
iodination, N-terminal ammonia or water loss, and N-terminal
acetylation. The results of this analysis (Table 3 and Supporting
Information Table S2) show the same relative performance of

Table 1. Number of Accepted PSMs at 1% FDR in the Yeast
Data Set

tryptic semitryptic nontryptic total

ungrouped 4028 58 159 4245
group 5536 48 61 5645
cascade 8827 120 0 8947

Table 2. Number of Accepted PSMs at 1% FDR in the
Human Data Set

tryptic semitryptic nontryptic total

ungrouped 1059 37 52 1148
group 1485 33 19 1537
cascade 1977 26 0 2003
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the three methods, with the ungrouped approach identifying
3458 PSMs, the grouped approach identifying 33 additional
PSMs, and the cascade approach identifying an additional 125
PSMs. Overall, using the cascade approach on this data set
boosts statistical power at FDR 1% by 3.6% relative to the
ungrouped approach.
Thus far, our analyses of the yeast, human, and Aurum data

sets have relied upon the validity of the p-values computed by
Tide using dynamic programming. To boost our confidence in
our Benjamini−Hochberg FDR control based on these p-
values, we repeated the comparison of the ungrouped, grouped,
and cascade approaches on the Aurum data set, this time using
a target−decoy approach to estimate FDR (Materials and
Methods).11 In this case, the size of the database was doubled
to include one decoy for each target peptide, and the entire
simulation was repeated. At the very end, the target/decoy
labels were revealed, and the FDR was re-estimated based on
these labels. Note that this is a different procedure from
controlling the FDR using TDC: here, controlling the FDR is
again done using the Benjamini−Hochberg procedure and only
the actual FDR in the reported discovery list was estimated
using TDC. The resulting estimates, for identifications with an
initial FDR estimate of 1% (Table 4), are consistent with the
estimates obtained using the Tide p-values. Similar results
(Supporting Information Table S3) were obtained using an
FDR threshold of 5% rather than 1%.
Finally, to demonstrate the generalizability of our approach,

we repeated the analysis of the yeast data set using the MS-GF+
and X!Tandem search engines coupled with target−decoy
competition (TDC) in lieu of the Benjamini−Hochberg p-value
derived FDR estimation (employing Supporting Information
Algorithms S1−S4). The results (Table 5) are consistent with
our observations for Tide: relative to both the ungrouped and
group FDR procedures, cascade search offers a boost in
statistical power. Specifically, at 1% FDR, the total number of
accepted PSMs increases by 70.74% for MS-GF+ and 81.94%

for X!Tandem relative to that with the ungrouped FDR
approach and by 16.07 and 31.61%, respectively, for the group
FDR approach.

3.3. The Cascade Approach Exhibits a Low Level of Early
Commitments

One potential drawback to cascaded search is that the
procedure might commit too early. For example, in an
enzymatic cascade over tryptic, semitryptic, and nontryptic
databases, a spectrum that is incorrectly assigned to a tryptic
peptide and receives a good enough score in the initial, tryptic,
search might receive an even better scoring semitryptic peptide
in the subsequent search, even after correcting for the larger
number of semitryptic candidate peptides.
We argue, on both intuitive and empirical grounds, that this

type of early commitment is unlikely to be a significant problem
for cascaded search, assuming that we are employing well-
calibrated statistical confidence estimates and that we order our
databases in a reasonable fashion. Consider the scenario
described above, in which we search first a tryptic and then a
semitryptic database. If we control the false discovery rate at,
say, 5%, then, on average, a maximum of ∼5% of the matches
produced during the tryptic search could potentially involve
spectra produced by semitryptic peptides. This 5% is
presumably composed of a mixture of spectra generated by
(1) tryptic peptides that were incorrectly identified, (2)
semitryptic peptides, (3) nontryptic peptides, and (4) non-
peptide species. Because tryptic peptides are far more common
than semitryptic, we expect a priori that group (1) will comprise
the bulk of the misidentifications.
To investigate the early commitment phenomenon empiri-

cally, we first revisited the simulations described in Section 3.1.
In the simulation, we define an early commitment as an
accepted PSM that is incorrect and that involves a native
spectrum whose generating peptide belongs to one of the
subsequent peptide groups. Note that this is a conservative
definition of early commitment, since, in practice, an early
commitment is problematic only if the above criteria are met
and the spectrum would actually have been correctly identified
in the subsequent search. However, even with this conservative
approach, we find (Figure 3A) that the fraction of early
commitments at an FDR threshold of 1% is less than 0.1%
among all accepted PSMs. Not surprisingly, as we increase the
FDR threshold, the proportion of early commitments rises.
To understand how the rate of early commitment varies as a

function of the size of the database, we repeated the simulation
experiment while varying the database size by factors of 2, 4, 8,
16, and 32 relative to that of the initial simulation. The results

Table 3. Number of Accepted PSMs at 1% FDR in the Aurum Data Set

tryptic oxidized methyl nt loss dioxid iodo nt acetyl total

ungrouped 2133 493 408 254 144 18 8 3458
group 2203 510 381 238 137 17 5 3491
cascade 2293 546 380 231 133 0 0 3583

Table 4. Target−Decoy FDR Estimates for the Aurum Data Seta

tryptic oxidized methyl nt loss dioxid iodo nt acetyl total

ungrouped 0.09 0.41 0.98 1.97 1.39 11.11 75.0 0.66%
group 0.36 0.59 1.05 0.84 0.73 11.77 0.0 0.57%
cascade 1.08 0.73 0.79 0.43 1.53 0 0 0.97%

aThe FDR was initially estimated at 1% using exact p-values, and then the target/decoy labels were revealed and the FDR was re-estimated for each
group. The table reports the target−decoy FDR estimates, as percentages.

Table 5. Spectrum Annotation at 1% FDR in the Yeast Data
Set Using MS-GF+ and X!Tandem

tryptic semitryptic nontryptic total

MS-GF+ ungrouped 6186 160 71 6417
group 9292 134 14 9440
cascade 10 804 153 0 10 957

X!Tandem ungrouped 3967 118 179 4264
group 5476 66 70 5612
cascade 7611 85 62 7758
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(Figure 3B) suggest that the overall rate of early commitments
decreases as a function of database size. A decrease in the total
number of early commitments as a function of database size is
not surprising: as the database gets larger, the total number of
accepted PSMs decreases due to a larger number of competing
peptides that can generate incorrect PSMs. However, the
observed decrease in the proportion of early commitments
among the accepted PSMs is less easy to explain. We
hypothesize that this trend occurs because the early commit-
ment PSMs are false and hence are generally of lower quality
than true PSMs. Thus, these PSMs are more susceptible to
being dropped due to the increase in the number of candidates.
We then examined the results from the Aurum data set,

searching for evidence of the early commitment phenomenon.
To do so, we first searched the entire set of spectra separately
against each peptide group and identified spectra using a given
FDR threshold. Note that in this single group protocol the
same spectrum may end up being accepted in multiple searches,
but the procedure provides a useful upper bound on the total
number of spectra that could be assigned to each group. We
then defined an early commitment as a PSM that (1) is
accepted by the cascade FDR procedure and (2) has an optimal
p-value that is greater than the smallest optimal p-value for that
same spectrum among all subsequent single group searches.
The results (Table 6) show, not surprisingly, that the rate of

early commitment depends strongly upon the FDR threshold
but that, even using a loose FDR threshold of 20%, the
proportion of early commitments among all accepted PSMs is
still quite low (4.46%).

4. DISCUSSION
An important difference between the cascade search procedure
and, say, the ungrouped approach is that cascade search

requires a bit more work from the user. In particular, cascade
search relies on an ordered series of databases. Requiring that
the peptides be subdivided into separate databases in such a
way that some databases are more likely than others to be
enriched for generating peptides is somewhat demanding. Still,
this much is also required to use the group FDR procedure.
What really sets the cascade search approach apart is not only
the requirement that the peptides be segregated into databases
but also that the databases must be ordered in such a way that,
a priori, we expect more identifications to come from the earlier
databases in the series. This observation naturally leads to the
following question: What happens if we get the order wrong?
Unfortunately, it is easy to see that, in an extreme case, a
misordering of peptide databases could be fatal to the cascade
search procedure. Imagine, for example, a case in which the first
database yields a very small number of identified spectra. In
such a setting, cascade search will terminate (line 7 in
Algorithm 3), even though the subsequent databases may
contain many identifications. It is therefore important that the
user employs a reasonable ordering of databases. If such an
ordering is not possible, i.e., if there is no prior expectation for
what classes of peptides are most likely to occur in the data set,
then the ungrouped or grouped procedures should be used.
Our simulated and real experiments suggest that cascade

search offers a much larger gain in statistical power in the
context of a series of databases representing differences in
enzymatic cleavage relative to that with a series of database
representing different PTMs. This difference can be attributed
primarily to the difference in the relative sizes of the databases
in the series. The enzymatic cleavage series contains in total
45 430 511 peptides, including 146 034 tryptic, 2 424 546
semitryptic, and 42 859 931 nontryptic peptides. Among
these, the tryptic PTMs are the most common, accounting
for 98.7% of the identifications at 1% FDR in the cascade FDR
approach. Critically, the cascade search procedure identifies
these tryptic peptide PSMs while searching against the much
smaller database that contains only the tryptic peptides. On the
other hand, the group FDR and ungrouped methods carry out
their searches in the cumulative peptide database and are thus
more likely to encounter a random peptide match that eclipses
the correct one while, at the same time, the p-value of any

Figure 3. Early commitments in simulation. (A) The proportion of early commitments, as defined in the text, in the simulation described in Section
3.1. (B) The proportion of early commitments in the total set of accepted PSMs, plotted as a function of the size of the peptide database. In both
panels, values are means and error bars represent standard deviation across 10 simulations.

Table 6. Early Commitments in the Aurum Data Set

FDR threshold accepted PSMs early commitments percentage

1% 3583 26 0.73%
5% 3931 54 1.37%
10% 4180 91 2.18%
20% 4621 206 4.46%
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optimal PSM must take into account the much larger search
space. Thus, in this case, the huge nontryptic data set is a
significant burden. In contrast, the databases in the PTM series
are less skewed, containing a total of 5 312 418 peptides
distributed roughly evenly over the subdatabases. Furthermore,
we observe empirically that each of these databases yields a
significant number of PSMs; hence, in this setting, searching
against each of the databases separately is roughly equivalent to
searching the union of the databases.
While this article was under review, an analysis by Woo et al.

was published that corroborates our primary conclusion.26 That
study discusses the special case of searching two databases in
the context of a proteogenomic cancer analysis. The authors
investigate three different methods of evaluating the FDR,
which coincide with the ones we describe when the number of
databases is two: their Combined-FDR is our ungrouped FDR,
their Separate-FDR is our group FDR, and their Two-Stage-
FDR is our cascade search. Note, however, that Woo et al.’s
application is quite specialized, and they do not compare or
validate their methods beyond the specific context in which
they are described. In addition, as noted in the discussion of our
cascade algorithm, the described Two-Stage-FDR might, in
general, fail to control the FDR because it lacks some method,
such as our abort condition (line 7, Algorithm 3), that
guarantees FDR control when the number of discoveries is low.
An alternative approach to the one we have adopted here is

to incorporate knowledge about peptide groups into a machine
learning postprocessor. Such methods, instantiated in tools like
PeptideProphet27 and Percolator,20 take as input PSMs
produced by a search engine and then use a supervised
classification algorithm to learn to discriminate between correct
and incorrect PSMs. In addition to the primary PSM score, this
learning procedure typically takes into account features of the
spectrum, features that reflect the quality of the match, and
features of the peptide, such as the number of tryptic termini
and the number of missed cleaveages. In contrast, statistical
analysis methods like cascade search, stratified search, ISPTM,
and the group FDR method take into account only (1) the
score produced by the database search engine and (2) the
segregation of peptides into different groups. This direct
approach is simpler than the postprocessor approach, removing
the need for decoy PSMs or a hand-derived gold standard data
set, for computation of a series of features for each PSM or for
training of the classifier itself. More importantly, due to its
relative simplicity, the direct approach allows us to make more
precise statistical claims. Finally, in contrast to a postprocessor
that must be adapted to each new search engine,28,29 cascade
search is a meta-analysis procedure that works with any search
engine, without requiring any tweaking or redesign.
Another alternative approach would be to incorporate

information about peptide groups directly into the score
function rather than relying upon the postprocessor to
incorporate this information. During review of this article, we
learned about an undocumented feature of the MS-GF+
algorithm that follows this route. Specifically, the algorithm
defines an efficiency for each enzyme and adds in a term, scaled
by this efficiency, that differentially penalizes nonenzymatic
peptides relative to enzymatic peptides. An interesting avenue
for future work would be to explore how best to compute this
enzymatic score term and to compare this type of approach to
the ungrouped, grouped, and cascade search procedures
outlined here.

An interesting direction for future work would involve
inferring the proper ordering in a data-driven fashion. As noted
previously, there exist a variety of methods that aim to estimate,
on the basis of a collection of p-values, a mixture parameter π0
that represents the proportion of hypotheses that are drawn
according to the null.25 An extended version of cascade search
could employ such a method to attempt to automatically learn
the proper ordering of databases. Such an approach might be
particularly useful in the context of a metaproteomics study,
where the size of the database may or may not be reflective of
the prior probability that a given observed spectrum is
generated by a given peptide. For example, an organism with
a small genome might be very abundant in the analyte. In such
settings, the ordering of the databases would have to be done
either on the basis of prior knowledge about species abundance
or by estimating π0 separately for each database.
Another important avenue for future research is improving

the power of the cascade algorithm by relaxing the abort
condition (line 7, Algorithm 3). We again stress that some
condition such as this one is necessary to control the FDR;
however, we suspect that this particular condition is overly
conservative and that alternative, more liberal conditions might
still be able to guarantee the desired FDR control in the context
of small discovery numbers.
In summary, cascade search provides a principled and flexible

way to assign peptides to observed spectra with high statistical
power, as long as the user is willing to provide in advance a
statistical confidence threshold and a series of appropriately
ordered peptide databases. Cascade search will be particularly
valuable in studies that include increasingly diverse types of
PTMs and particularly in the context of large proteogenomics
studies where unexpected sequence variants must be
considered.
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