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ABSTRACT

Summary: Qvality is a C++ program for estimating two types of
standard statistical confidence measures: the q-value, which is an
analog of the p-value that incorporates multiple testing correction,
and the posterior error probability (PEP, also known as the local
false discovery rate), which corresponds to the probability that a
given observation is drawn from the null distribution. In computing
q-values, qvality employs a standard bootstrap procedure to
estimate the prior probability of a score being from the null
distribution; for PEP estimation, qvality relies upon non-parametric
logistic regression. Relative to other tools for estimating statistical
confidence measures, qvality is unique in its ability to estimate both
types of scores directly from a null distribution, without requiring the
user to calculate p-values.
Availability: A web server, C++ source code and binaries are
available under MIT license at http://noble.gs.washington.edu/proj/
qvality
Contact: lukas.kall@cbr.su.se
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
A common feature of high-throughput experiments is that they
generate large amounts of data of variable quality. Such data require
associated statistical confidence measures. A common way to derive
such a measure is by comparing the observed score distribution
with the distribution generated by a model representing the noise
of the process, a so called null model. The null model can either be
empirical—i.e. the analysis is repeated in a setting that permutes the
data or the labels—or, if we have sufficient knowledge about the
noise in the process, we can derive an analytical model.

Given these two distributions, the experimenter must decide what
statistical confidence measure to use. This decision depends on
whether they want to draw conclusions regarding a set of data points
or they are interested in characterizing individual data points. The
QVALITY software calculates two complementary and widely used
statistical confidence measures: the q-value and the posterior error
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probability (PEP). To understand these two measures, consider a set
of observations ranked according to scores s1, ...,sn. The p-value
of a score si is defined as the probability of observing a score
as extreme as or more extreme than si, assuming that the null
hypothesis is correct. The q-value is an analog of the p-value
that incorporates multiple testing correction (Storey and Tibshirani,
2003). Specifically, the q-value associated with score si is defined as
the minimal false discovery rate (FDR) level at which si would be
deemed significant. Thus, although the q-value is associated with a
single observation, it is fundamentally a rate and hence is a property
of the collection of scores s1, ...,si. On the other hand, the PEP of
score si is simply the probability that this score is drawn according
to the null hypothesis. In the statistics literature, PEP is sometimes
referred to as the local false discovery rate.

Given a set of p-values, computing corresponding false discovery
rates and hence q-values is relatively straightforward (Storey
and Tibshirani, 2003); however, computing accurate PEPs is
considerably more difficult. Indeed, given accurate PEPs, computing
the FDR is trivial: the FDR is simply the sum of PEPs of
the significant examples divided by the number of significant
examples (Storey et al., 2005). The converse is not true. Deriving
PEPs from FDRs would lead to an estimated PEP with high
variance. In QVALITY, we instead build upon a previously described
non-parametric regression method (Anderson and Blair, 1982),
modifying it for PEP estimation. Similar methods have been used
previously in the analysis of microarray gene expression data (Efron
et al., 2001; Storey et al., 2005).

The QVALITY software is a C++ standalone executable that
calculates q-values and PEPs. Many existing tools can be used
to estimate one or both of these confidence measures [reviewed
in Strimmer (2008)]. However, unlike other tools, QVALITY does
not require that the user provide p-values or z-scores as input;
instead, the user may simply input two sets of scores: the observed
distribution and an empirical null distribution. The q-values are
estimated directly (Storey, 2002), and the PEPs are estimated using
non-parametric logistic regression. Significantly, QVALITY does not
fit two individual distributions for the alternative and the null
hypotheses, but models the ratio between the two distributions.
QVALITY provides both a command line and a library interface, and
a web server is available for users who do not want to download the
software.
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QVALITY

Shotgun proteomics Digital genomic footprinting DNA motif scanning

Fig. 1. Application of QVALITY to three different datasets. Each panel in the top row plots the observed score distribution and (in two cases) the corresponding
empirical null distribution. The three applications are shotgun proteomics, digital genomic footprinting and DNA motif scanning. The second row of panels
illustrates the accuracy of the inferred q-values, plotting the quantiles of the distributions of q-values estimated directly from the empirical null and indirectly
via the PEP estimates. In the bottom three panels, the dotted lines correspond to the lines y=2x and y=0.5x.

2 EXAMPLES OF QVALITY FUNCTIONALITY
In Figure 1, we demonstrate the broad utility of QVALITY by applying
it to three diverse bioinformatics applications. Details of each dataset
are given in the online supplement. Briefly, the three applications
are as follows.

First, we used shotgun proteomics to generate fragmentation
spectra, and we assigned a peptide to each spectrum using a database
search procedure coupled with a machine learning post-processor.
In the top left panel of Figure 1, the series labeled ‘target’ is
the distribution of observed scores, and the ‘decoy’ distribution is
generated by searching against a database of shuffled sequences.
In this example, the hypothesis we want to test is whether we
have successfully identified the peptide that generated the observed
spectrum.

The bottom left panel of Figure 1 demonstrates the accuracy
of the PEPs estimated by QVALITY. The figure plots the quantiles
of two different q-value distributions, one computed directly from
the empirical null following the methodology of Storey (2002),
and the other computed indirectly by first computing PEPs and
then integrating. The latter method is expected to be less accurate,
because we can measure the false discovery rate directly from the
observed distributions of scores, while the PEPs are calculated
using a smoothed estimate of the ratio between the observed and
empirical null distribution. The figure shows that the two sets
of q-values agree within a factor of two over four orders of
magnitude.

The second application involves estimating statistical confidence
scores for protein-binding footprints observed in a DNaseI-based
cleavage assay. Here, the empirical null is derived by locally
shuffling the cleavage counts. Again, Figure 1 shows the empirical
and null distributions (top middle panel) and the accuracy of the
estimated q-values (bottom middle panel).

QVALITY can also be applied to data for which analytical p-values
are available. To illustrate this functionality, we scanned the
ENCODE regions of the human genome with a position-specific
scoring matrix representing the binding affinity of the DNA-binding
protein CTCF. The right-hand panels in Figure 1 show the empirical
distribution of these p-values, as well as the accuracy of the inferred
q-values.

3 USAGE AND IMPLEMENTATION
QVALITY takes two files as input, containing the empirical and
null score distributions. If the null distribution is not provided,
then the empirical scores are interpreted as p-values. The program
produces a three-column file listing the raw score, the q-value and
the PEP as output. Note that, when a user applies an empirical
null model, it is preferable to provide the observed and null
scores separately, rather than precomputing p-values for input to
QVALITY. This is because QVALITY requires the null scores for
the PEP estimation procedure. If only p-values are provided,
then QVALITY must estimate the null scores themselves from the
p-values.

The input data are pooled together and binned into 500 equally
sized bins. The fraction of null scores is calculated for each bin
separately. A set of 2D spline knots are constructed from the median
scores of the bins and the fractions of null scores. Thereafter, an
interpolating natural cubic spline (Green and Silverman, 1994) is
fitted to the spline knots with an iteratively reweighted least squares
technique, and the roughness penalty is set to minimize cross-
validation error using golden section search. Our approach is similar
to that of Efron et al. (2001) and is described in more detail in Käll
et al. (2008).
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Computing q-values and PEPs for 70 000 scores and the same
number of null scores takes ∼3 s on a 2.33 GHz Intel Xeon processor.
The computation time and memory usage scales linearly with the
size of the input.
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