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Abstract

We develop a novel multi-class classification
method based onoutput codesfor the problem
of classifying a sequence of amino acids into
one of many known protein structural classes,
calledfolds. Our method learns relative weights
between one-vs-all classifiers and encodes in-
formation about the protein structural hierarchy
for multi-class prediction. Our code weighting
approach significantly improves on the standard
one-vs-all method for the fold recognition prob-
lem. In order to compare against widely used
methods in protein sequence analysis, we also
test nearest neighbor approaches based on the
PSI-BLAST algorithm. Our code weight learn-
ing algorithm strongly outperforms these PSI-
BLAST methods on every structure recognition
problem we consider.

1. Introduction

Many statistical, homology-based methods have been de-
veloped for detecting protein structural classes from pro-
tein primary sequence information alone. They can be cat-
egorized into three major types of methods: pairwise se-
quence comparison algorithms (Altschul et al., 1990; Smith
& Waterman, 1981), generative models for protein fami-
lies (Krogh et al., 1994; Park et al., 1998), and discrimina-
tive classifiers (Jaakkola et al., 2000; Leslie et al., 2002;
Liao & Noble, 2002). Many recent studies have shown
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that discriminative classifiers, such as support vector ma-
chines (SVMs), outperform the other two types of pro-
tein classification methods (Leslie et al., 2004) in the con-
text of binary remote homology detection—prediction of
whether a sequence belongs to a single structural class or
not—especially when incorporating unlabeled protein data
(Kuang et al., 2005; Weston et al., 2003). However, it is
uncertain how to combine these predictive binary classi-
fiers properly in order to tackle the multi-class problem of
classifying protein sequences into one of many structural
classes.

In the machine learning literature, two main strategies have
been devised to tackle multi-class problems: formulat-
ing large multi-class optimization problems that general-
ize well-known binary optimization problems such as sup-
port vector machines (Vapnik, 1998; Weston & Watkins,
1999), or reducing multi-class problems to a set of binary
classification problems and processing the binary predic-
tions in simple ways to obtain a multi-class prediction (All-
wein et al., 2000; Dietterich & Bakiri, 1995). The diffi-
culty with the first method is that one usually ends up with
a complex optimization problem that is computationally
expensive. The second method is more computationally
tractable, since it involves training a set of binary classifiers
and assigns to each test example a vector of real-valued dis-
criminant scores or binary prediction rule scores which we
call theoutput vectorfor the example. In the standard one-
vs-all approach, one trainsN one-vs-the-rest classifiers to
obtain a lengthN output vector, and one predicts the class
with the largest discriminant score; standard all-vs-all is
similar, but one trains all pairwise binary classifiers to ob-
tain a lengthN(N − 1)/2 output vector (Allwein et al.,
2000). One can also represent different classes by binary
vectors oroutput codesin the output vector space and pre-
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dict the class based on which output code is closest to the
binary output vector for the example (Dietterich & Bakiri,
1995; Crammer & Singer, 2000). (We will use the terms
“output space” and “code space” interchangeably for the
output vector space.) This approach, called error-correcting
output codes (ECOC), appears more flexible than the other
standard methods, though a recent empirical study sug-
gests that the one-vs-the-rest approach performs well in
most cases (Rifkin & Klautau, 2004). There has not been
much work on applying newer multi-class techniques for
protein classification, though recently, Tan et al. (2003) ap-
proached the multi-class fold recognition problem by sta-
tistically integrating one-vs-all and all-vs-all classifiers at
the binary rule level to generate new classifiers for the final
problem.

In this work, motivated by the strong performance shown
by discriminative base classifiers for binary protein clas-
sification, we develop a multi-class approach for protein
fold recognition based on output codes, where we inte-
grate binary classifiers with extra information provided
by a known hierarchical taxonomy, such as the manu-
ally curated Structural Classification of Proteins (SCOP)
(Murzin et al., 1995). Our method somewhat resembles
the error-correcting codes approach to multi-class classifi-
cation. However, instead of usingad hocoutput codes, we
design codes that are directly related to the structural hier-
archy, based on fold and superfamily detectors, and instead
of using binary prediction scores, we solve an optimization
problem to learn aweightingof the real-valued binary clas-
sifiers. Our approach is therefore conceptually related to
the more general theory of adapting codes and embeddings
developed by Ratsch et al. (2002), but we consider only
the restricted problem of reweighting the output space so
that our fixed codes perform well for the multi-class prob-
lem. To set up the optimization problem during training, we
use a cross-validation scheme to embed protein sequences
in output space by SVM discriminant score vectors, as de-
scribed below.

In our experiments, we make use of two levels of the SCOP
hierarchy as a method for designing codes for multi-class
learning:folds, consisting of proteins with the same struc-
tural elements in the same arrangement; andsuperfamilies,
subclasses of folds consisting of proteins with probable but
remote shared evolutionary origin. Suppose the number
of superfamilies and folds in a SCOP-based data set isk
and q respectively. Our approach for solving the multi-
class protein classification problem involves producing a
real-valued output vector,~f(x ) = (f1(x ), ..., fk+q(x )),
for each test sequencex , where thefi are binary SVM
superfamily or fold detectors trained using profile string
kernels (Kuang et al., 2005), and using(k + q)-length bi-
nary code vectorsCj that combine superfamily and fold
information. We use training data to learn a weight vector

W = (W1, . . . ,Wk+q) to perform multi-class predictions
with the weighted code prediction rule,ŷ = arg maxj(W∗
~f(x )) · Cj , where W ∗ ~f(x ) denotes component-wise
multiplication. We learnW by a cross-validation set-up
on the training set, using either a ranking perceptron or
structured SVM algorithm. The full methodology con-
sists of five steps: (1) split the training data into 10 cross-
validation sets; (2) learn fold- and superfamily-level de-
tectors from the partitioned training set—performing fold
recognition and superfamily recognition on the held-out
cross-validation sets, thereby generating training data for
code weight learning; (3) use either the ranking percep-
tron algorithm or the structured SVM method for learning
optimal weighting of classifiers in code space; (4) re-train
superfamily and fold detectors on the full training set; and
(5) test on the final untouched test set.

The rest of the paper is organized as follows. We first
briefly provide an overview of how the base SVM classi-
fiers using profile string kernels are constructed. Then we
show how we incorporate structural hierarchy into codes,
and we explain the theory of how to combine base classi-
fiers through code embeddings using the ranking percep-
tron algorithm or structured SVM. This explanation is fol-
lowed by the actual results on multi-class fold recognition,
comparing our approach with three alternatives: an un-
weighted combination of maximum margin one-vs-all base
classifiers, PSI-BLAST nearest neighbor searches on the
non-redundant protein database, and Platt’s conversion of
SVM prediction scores to probabilities using sigmoid fit-
ting (Platt, 1999) for direct classifier comparisons. Sup-
plementary code and data can be found athttp://www.
cs.columbia.edu/compbio/code-learning/ .

2. Profile-based string kernel SVM

For our base binary classifiers, we use profile-based string
kernel SVMs (Kuang et al., 2005) that are trained to recog-
nize SCOP fold and superfamily classes. The profile ker-
nel is a function that measures the similarity of two pro-
tein sequence profiles based on their representation in a
high-dimensional vector space indexed by allk-mers (k-
length subsequences of amino acids). Specifically, for a se-
quencex and its sequence profileP (x ) (e.g. PSI-BLAST
profile), thepositional mutation neighborhoodat position
j and with thresholdσ is defined to be the set ofk-mers
β = b1b2 . . . bk satisfying a likelihood inequality with re-
spect to the corresponding block of the profileP (x ), as
follows:

M(k,σ)(P (x [j + 1 : j + k])) =

{β = b1b2 . . . bk : −
k∑
i=1

log pj+i(bi) < σ}.
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Note that the emission probabilities,pj+i(b), i = 1 . . . k,
come from the profileP (x )—for notational simplicity, we
do not explicitly indicate the dependence onx . Typically,
the profiles are estimated from close homologs found in
a large sequence database; however, these estimates may
be too restrictive for our purposes. Therefore, we smooth
the estimates using the training set background frequen-
cies q(b), where b ∈ Σ (the alphabet of amino acids),

via p̃i(b) =
pi(b) + tq(b)

1 + t
for i = 1 . . . |x | and wheret

is a smoothing parameter. We use the smoothed emission
probabilitiesp̃i(b) in place ofpi(b) in defining the mutation
neighborhoods.

We now define the profile feature mapping as

ΦProfile
(k,σ) (P (x )) =

∑
j=0...|x |−k

(φβ(P (x [j+ 1 : j+ k])))β∈Σk

where the coordinateφβ(P (x [j + 1 : j + k])) = 1 if β
belongs to the mutation neighborhoodM(k,σ)(P (x [j + 1 :
j + k])), and otherwise the coordinate is 0. Note that the
profile kernel between two protein sequences is simply de-
fined by the inner product of feature vectors:

KProfile
(k,σ) (P (x ), P (y)) = 〈ΦProfile

(k,σ) (P (x )),ΦProfile
(k,σ) (P (y))〉.

The use of profile-based string kernels is an example of
semi-supervised learning, since unlabeled data in the form
of a large sequence database is used in the discrimination
problem. Moreover, profile kernel values can be efficiently
computed in time that scales linearly with input sequence
length. Equipped with such a kernel mapping, one can use
SVMs to perform binary protein classification on the fold
level and superfamily level. We call these trained SVMs
fold detectorsandsuperfamily detectors.

3. Embedding base classifiers in code space

Suppose that we have trainedq fold detectors. Then for
a protein sequence,x , we form a prediction discriminant
vector, ~f(x ) = (f1(x ), ..., fq(x )). The simple one-vs
all prediction rule for multi-class fold recognition iŝy =
arg maxj fj(x ). The primary problem with this prediction
rule is that the discriminant values produced by the differ-
ent SVM classifiers are not necessarily comparable. While
methods have been proposed to convert SVM discriminant
scores into probabilistic outputs, for example using sig-
moid fitting (Platt, 1999), in practice there may be insuf-
ficient data to estimate the sigmoid, or the fit may be poor.
Our approach, in contrast, is to learn optimal weighting for
a set of classifiers, thereby scaling their discriminant values
and making them more readily comparable. We also incor-
porate information available from the superfamily detectors
for doing multi-class fold recognition by designingoutput

codesthat encode information about the output space that
is relevant to the structural class prediction problem.

We construct our codes to incorporate knowledge about the
known structural hierarchy provided by SCOP (see Figure
2). Define for superfamily classesj ∈ {1, ..., k}, code vec-
torsCj = (superfamj , foldj), where superfamj and foldj
are vectors with length equal to the number of known su-
perfamilies (k) and folds (q), and each of these two vec-
tors has exactly one non-zero component corresponding to
structural class identity. Each component inCj is known as
a code elementand represents the state of the correspond-
ing classifier when we later combine the code elements to
do multi-class prediction. For fold recognition, since every
superfamily belongs to a fold in the SCOP hierarchy, each
superfamily code also maps to a fold.

We adapt the coding system to fit the training data by learn-
ing a weighting of the code elements (or classifiers). The fi-
nal multi-class prediction rule iŝy = arg maxj(W∗ ~f(x ))·
Cj , where∗ denotes the component-wise multiplication
between vectors. To learn the weight vectorW, we formu-
late a hard margin optimization problem as,minW ||W||22,

subject to
(
W ∗ ~f(xi)

)
· (Cyi − Cj) ≥ 1, ∀j 6= yi. In-

tuitively, our problem is to find an optimal re-weighting of
the discriminant vector elements, such that a weighted em-
bedding of the discriminant vector in code spaceRk+q will
exhibit large margins to discriminate between correct and
incorrect codes (i.e. class identity).

We use two approaches to find approximate solutions to
this optimization problem, the ranking perceptron and the
structured SVM algorithm, as described below.

3.1. Using the ranking perceptron algorithm to learn
code weights

The ranking perceptron algorithm (Collins & Duffy, 2002)
is a variant of the well-known perceptron linear classifier
(Rosenblatt, 1958). In our experiments, the ranking per-
ceptron receives as input the discriminant vectors for train-
ing sequences and produces as output a weight vectorW
which is a linear combination of the input vectors projected
onto code space. We modify the ranking perceptron algo-
rithm such that it will learn our weight vector,W, by sat-
isfying n constraints:

W · (~f(xi) ∗Cyi − ~f(xi) ∗Cj) ≥ m, ∀j 6= yi (1)

wherem is the size of the margin we enforce (Figure 1).

The update rule of the ranking perceptron algorithm can
be different depending on what kind of loss function one is
aiming to optimize. In standardzero-one loss(or classifica-
tion loss), one counts all prediction mistakes equally, where
lz(y, ŷ) is 1 if ŷ 6= y, and 0 otherwise. The final zero-
one empirical loss is1n

∑
i lz(yi, ŷi). In balanced loss, the
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(A) Learning code weights with the ranking perceptron
algorithm
1: DefineF (x , y) = W · (~f(x ) ∗Cy)
2: Inputν:
3: W← ~0
4: for i = 1 to n do
5: j = arg maxp F (xi, p)
6: if F (xi, yi)−m < maxq∈{Y−j} F (xi, q) then

7: W←W + νk−1
i

(
~f(xi) ∗Cyi − ~f(xi) ∗Cj

)
8: end if
9: end for

10: ReturnW

(B) Predicting examples with learned code
weights
1: DefineF (x , y) = W · (~f(x ) ∗Cy)
2: InputW, xi:
3: Returnŷ ← arg maxj F (xi, j)

Figure 1. Pseudocode for the ranking perceptron algorithm
used to learn code weighting.In the pseudocode,ν is the learn-
ing parameter;ki = |{yj : yj = yi}| for balanced-loss, and
ki = 1, for zero-one loss.

cost of each mistake is inversely proportional to the true
class size, wherelb(y, ŷ) is 1

|yi:yi=y| if ŷ 6= y and 0 other-

wise. The final balanced empirical loss is1|Y |
∑
i lb(yi, ŷi),

whereY denotes the set of output labels.

Balanced loss is relevant to the protein structure prediction
because class sizes are unbalanced, and we do not want to
perform well only on the largest classes. The particular
ranking perceptron training and prediction algorithms that
we use are summarized in the pseudocode in Figure 1, in-
cluding update rules for both zero-one and balanced loss.

3.2. Using structured SVMs to learn code weights

Support vector machines have been applied to prob-
lems with interdependent and structured output spaces
in Tsochantaridis et al. (2004). These authors make
use of a combined feature representationψ(x , y) as in-
put vectors to learn a linear classification rulêy =
arg maxy∈Y 〈W, ψ(x , y)〉. Specifically, they use the
ψ(·, ·) relation to discover input-output relations by form-
ing n|Y | − n linear constraints. These linear constraints
specify that all correct input-output structures must be
clearly separated from all incorrect input-output structures;
i.e., for all i and all targetsy different from yi, we re-
quire that,〈W, δψi(y)〉 > 0, whereδψi(y) ≡ ψ(xi, yi) −
ψ(xi, y). By defining,ψ(xi, y) = ~f(xi) ∗ Cy, we arrive
at linear constraints that are a special case of Equation 1.
Using standard maximum-margin methods like SVMs, we

obtain the hard margin problem

minW
1
2 ||W||

2
2

∀i, ∀y ∈ {Y − yi} : 〈W, δψ(y)〉 ≥ 1,

and the soft margin problem

minW,ξ
1
2 ||W||

2
2 + C

n

∑n
i=1 ξi

∀i, ξi ≥ 0;∀i, ∀y ∈ {Y − yi} : 〈W, δψ(y)〉 ≥ 1− ξi,

whereξi corresponds to the slack variables (the amount an
example can violate the margin), andC corresponds to the
trade-off between maximizing the margin and the degree
to which noisy examples are allowed to violate the margin.
Intuitively, our definition ofψ defines the distance between
two different protein embeddings in code space, and we
are using large margin SVM methods to find the relative
weighting of the dimensions in code space. Moreover, one
can optimize balanced loss by rescaling the slack variables

ξi ←
ξi

lb(yi, y)
in the constraint inequalities.

4. Data set

4.1. Data set for training base classifiers

Our training and testing data is derived from the SCOP
1.65 protein database. We use ASTRAL (Brenner et al.,
2000) to filter these sequences so that no two sequences
share greater than 95% identity. Before running the ex-
periments, we first remove all folds that contain less than
three superfamilies so that there is a meaningful hierarchy
in the remaining data. In addition, we select at least one
superfamily from within the fold which contains more than
one family, so that aremote homologydetection problem
can be properly constructed—that is, we want a superfam-
ily recognition problem where the test sequences are only
remotely related to (not from the same SCOP family as)
the training sequences. Note that in some cases, there can
be several superfamily recognition experiments within the
same fold if there are enough multi-family superfamilies.
Our data filtering scheme results in a data set that con-
tains 46 SCOP superfamilies belonging to 24 unique SCOP
folds. Details on training the binary superfamily and fold
detectors are given immediately below.

4.1.1. SUPERFAMILY DETECTORS

We completely hold out 46 SCOP families for final testing
of multi-class prediction algorithms. In order to make our
classification problem hard and meaningful, we find fami-
lies that comprise at most 40% of the total number of se-
quences in their corresponding superfamilies, leaving only
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Figure 2. A hypothetical SCOP structure for illustrating data set
construction, showing SCOP folds, superfamilies, and families.
For example, the superfamily recognition problem for super-
family 1.1.1 will have {1.1.1.2, 1.1.1.3} as positive training
data,{1.1.1.1} as positive testing data,{1.2.3.2, 1.2.3.3, 2.1.2.1,
2.1.2.3} as negative training data, and{1.2.3.1, 2.1.2.2} as nega-
tive testing data.

60% for learning. The important point to emphasize here
is that the selected held-out families are completely un-
touched during any stages of training, so that a valid remote
homology detection problem is in place. In general, our ex-
perimental setup is the same as the Jaakkola et al. (2000)
remote homology detection experiment design, but we also
ensure that the negative data for each superfamily detector
does not include positive training data of other superfamily
detectors in the same fold.

4.1.2. FOLD RECOGNITION SETUP(FOLD DETECTORS)

Fold recognition setup is analogous to the superfamily
recognition setup, except that we now deal with recogni-
tion one level up the hierarchy. Furthermore, the sequences
used in the superfamily setup are a proper subset of the fold
setup.

4.2. Data set for learning weights

As outlined in the introduction, the first two stages of the
method involve generating the appropriate training data for
our weight learning algorithms. Specifically, we need vec-
tors of SVM discriminant scores—given by trained fold
and superfamily detectors—to embed sequences in output
space in order to learn the code weighing. To do this,
we use the following cross-validation scheme: we generate
cross-validation experiments by randomly partitioning the
positive training data of each superfamily (fold) detector
into 10 mutually exclusive sets; in each cross-validation ex-
periment, we train the superfamily (fold) detector in order
to produce a set of discriminant vectors (SVM predictions)
on the held-out set. Then we collect all the discriminant
vectors from the 10 held-out sets to use as training data for
our weight learning algorithms.

5. Methods

5.1. Baseline methods

Our main baseline comparison is the one-vs-all approach,
using the 24 one-vs-all fold detectors directly for multi-
class fold recognition with the prediction rule iŝy =
arg maxj fj(xi). We also test one-vs-all with both fold and
superfamily detectors; in this case, if a superfamily detec-
tor has largest discriminant score, our prediction is the fold
that the superfamily belongs to.

To compare against a standard refinement of one-vs-all, we
report the error rates achieved by applying Platt’s sigmoid
fitting (Platt, 1999) on each one-vs-all base classifier. We
obtain the discriminants for learning the sigmoid function
parameters by doing a 10-fold cross-validation on the train-
ing set.

We also compare our code weight learning approach to the
multi-class performance of the widely used PSI-BLAST al-
gorithm. We test two variants of a nearest neighbor ap-
proach using PSI-BLAST searches on the non-redundant
protein database, called the query-based profile and target-
based profile approaches. For the query-based profile ap-
proach, we build a profile around each test sequence and
use the resulting profiles to rank all training sequences. We
take the training sequence with the smallest E-value and
predict its fold label for the query. For the target-based
profile approach, we build a profile around each training se-
quence and use it to rank the list of test sequences, thereby
computing an E-value for each test sequence. Then for each
query, we use the training sequence that assigned the lowest
E-value for our fold prediction.

Finally, to test our method on a previously published
benchmark, we apply our code weight learning algorithm
on an earlier multi-class protein fold recognition data set
of Ding and Dubchak (2001) consisting of 27 SCOP folds,
with 299 training examples and 383 test examples. More
details on this data set are given in the results section.

5.2. Code weight learning methods

As base classifiers, we use the profile kernel SVM with
profiles generated by PSI-BLAST on the non-redundant
protein database. We perform cross-validation experiments
which resulted in a total of 1772 training discriminant vec-
tors for code weight learning. We use SPIDER to train our
individual SVM detectors. SPIDER can be downloaded
from http://www.kyb.tuebingen.mpg.de/bs/
people/spider/ .

5.2.1. RANKING PERCEPTRON

When learning code weights using the ranking perceptron
algorithm, we first randomly permute the training data set
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and then run the perceptron algorithm iteratively until the
squared norm of the difference between successive weight
vectors is less than 0.01. For statistical robustness, we re-
port results that average final error rates over 100 random-
ized runs. The learning parameter for all ranking percep-
tron experiments is set to 0.1, and the required margin is
chosen to bem = 2.

5.2.2. STRUCTUREDSVM

We implemented an instance of SVM-Struct (Tsochan-
taridis et al., 2004) and used it to learn code weights with
the minimum constraint violationε set at10−8. This vari-
able controls the termination criterion of the SVM and thus
directly affects the running time. Experiments with a sub-
set of the data indicate that further increasing this termi-
nation threshold yields no significant improvements. The
SVM margin-slack trade-off variableC is set at 0.1 for all
structured SVM experiments.

6. Results

We report overall multi-class fold recognition results in Ta-
ble 1 and Table 2. Table 3 shows the multi-class fold recog-
nition results partitioned into biologically meaningful sets
of SCOP folds. The error rate variances of reported av-
eraged perceptron runs are in the order of10−4 to 10−6.
We also note that whenever an experiment usesfull-length
codes, we employ a different measure of fold loss that is
different from the simple “hard” rule of checking output
label equality([ŷ = y]). In the full-length codes scenario,
a prediction is considered correct even if the label belongs
to a different superfamily from the correct fold, i.e. we can
simply infer the fold identity from the superfamily identity
given the predefined hierarchical structure of SCOP.

Table 1. Multi-class fold recognition error rates usingfull-length
codesvia the ranking perceptron and an instance of SVM-Struct,
compared to baseline methods. The results for the ranking per-
ceptron algorithm are averaged over 100 randomized runs.

method zero-one error balanced error
sigmoid fitting 0.5592 0.7207

query-based PSI-BLAST 0.3728 0.4627
target-based PSI-BLAST 0.3195 0.4627

one-vs-all 0.1775 0.4869
SVM-Struct (optimize zero-one loss) 0.1627 0.2983
SVM-Struct (optimize balanced loss) 0.1361 0.3222
perceptron (optimize zero-one loss) 0.1592 0.3195
perceptron (optimize balanced loss) 0.1251 0.2795

Our results show that the code weight learning algorithm
strongly outperforms Platt’s algorithm on this particular
problem, but we believe that the poor performance of
sigmoid fitting is due to the small amount of training
data available. We also outperform all PSI-BLAST near-
est neighbor approaches and simple one-vs-all prediction

Table 2. Multi-class fold recognition error rates usingfold-only
codesvia the ranking perceptron and an instance of SVM-Struct,
compared to baseline methods. The results for the ranking per-
ceptron algorithm is averaged over 100 randomized runs.

method zero-one error balanced error
sigmoid fitting 0.5592 0.7207

query-based PSI-BLAST 0.3728 0.4627
target-based PSI-BLAST 0.3195 0.4627

one-vs-all 0.2189 0.5351
SVM-Struct (optimize zero-one loss) 0.1982 0.4717
SVM-Struct (optimize balanced loss) 0.2041 0.5024
perceptron (optimize zero-one loss) 0.1620 0.4073
perceptron (optimize balanced loss) 0.1749 0.4214

rules. Our best approach usesfull-length codes(super-
family and fold detectors) which yielded approximately
50% reduction in overall error rate for the multi-class fold
recognition problem. Usingfold-only codes(fold detectors
only), we are also able to reduce error rates, but not as dra-
matically as full-length codes. When we look at the accu-
racy of the perceptron (trained using balanced loss) parti-
tioned by different SCOP protein classes (α, β,α/β,α+β,
membrane proteins, small proteins), we outperform target-
based PSI-BLAST method in balanced accuracy for 5 of 6
SCOP classes of folds, and all SCOP classes when com-
pared against the query-based PSI-BLAST method.

6.1. Use of Hierarchical Labels

We next investigated the nature of the strong improve-
ment in accuracy of using full-length codes versus fold-
only codes for multi-class fold classification. First, we re-
tained all fold structures intact while randomizing super-
family structures within each fold to create a new data set
with true fold structures but fictitious superfamily struc-
tures. Using this new perturbed data set, we repeated our
experiments. The results, shown in Table 4, illustrate that
the error rates obtained using these randomized superfami-
lies resemble the error rates obtained while using just fold-
only codes. Looking at the weights returned from the code
weights learning algorithms, we observed that the random-
ized superfamily full-length codes abandoned many super-
family detectors by setting their weights to 0. We also in-
vestigated using full-length codes with supervision at the
fold level only, that is, only making updates in the percep-
tron or enforcing constraints in SVM-Struct based on fold
labels rather than superfamily labels. Full-length codes
with fold-level supervision outperformed fold-only codes
but did not perform as well as full-length codes with full
supervision. We conclude that the superfamily detectors
and the hierarchical structure information incorporated into
full-length codes play a significant role in reducing the er-
ror rates.
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Table 3. A comparison of multi-class fold classification average accuracy using PSI-BLAST nearest neighbor method and using ranking
perceptron codes learning algorithm withfull-length codes. The ranking perceptron is trained using balanced loss.

SCOP class proteins # ex. method zero-one accuracy balanced accuracy

α (4 folds) 40
perceptron 1.0000 1.0000

query-based PSI-BLAST 0.8500 0.8155
target-based PSI-BLAST 0.8500 0.6984

β (9 folds) 145
perceptron 0.8552 0.7448

query-based PSI-BLAST 0.6621 0.6264
target-based PSI-BLAST 0.6483 0.4210

α/β (5 folds) 93
perceptron 0.8882 0.5789

query-based PSI-BLAST 0.5806 0.4516
target-based PSI-BLAST 0.8495 0.8277

α+ β (3 folds) 18
perceptron 0.4611 0.4510

query-based PSI-BLAST 0.3889 0.2879
target-based PSI-BLAST 0.4444 0.3833

membrane (1 fold)
3

perceptron 1.0000 1.0000
query-based PSI-BLAST 0.3333 0.3333
target-based PSI-BLAST 0.0000 0.0000

small (2 folds)
39

perceptron 1.0000 1.0000
query-based PSI-BLAST 0.5128 0.2703
target-based PSI-BLAST 0.3846 0.4866

Table 4. Multi-class fold recognition using codes that incorporate
different taxonomic information. The ranking perceptron algo-
rithm is configured to optimize for balanced loss.

code type balanced error
full-length 0.2795

full-length (randomized superfamilies) 0.3869
full-length (supervise only on folds) 0.4023

fold-only 0.4214

6.2. Comparison with Previous Benchmark

Finally, we compared our method to previously published
multi-class results (Ding & Dubchak, 2001), which used
physical-chemical features to represent protein sequences
and one-vs-all and all-vs-all approaches with neural net and
SVM classifiers. Since the original sequences were not re-
tained, we extracted the current (possibly somewhat differ-
ent) sequences from PDB corresponding to the given PDB
identifiers. Relative to the current version of the SCOP hi-
erarchy, 17% of the examples have mislabeled folds, but we
keep the original labels for comparison purposes. We show
in Table 5 that our base classification system strongly out-
performs the previously published multi-class results, and
despite the presence of mislabeled data, our code weight
learning algorithm still manages to improve balanced ac-
curacy by another 1%.

Table 5. Application of code weight learning algorithm on bench-
mark data set. SVM-2 is the previous benchmark’s best classifier.
The ranking perceptron is trained using balanced loss.

method balanced accuracy
SVM-2 43.5%

one-vs-all (profile kernel) 72.5%
perceptron (profile kernel) 73.5%

7. Discussion

We have presented a novel method for performing protein
fold recognition that significantly improves on directly us-
ing an ensemble of one-vs-all classifiers. We observe an
average 50% reduction in overall balanced loss for the fold
recognition problem. We also strongly outperform PSI-
BLAST nearest neighbor methods on almost every class
of fold (see Table 3). Both algorithms presented in Section
3.1 and Section 3.2 have similar performance, supporting
the core idea of learning weighted codes that separates in-
dividual one-vs-all classifiers. Protein classification data is
usually highly unbalanced, and a good learning algorithm
must account for this imbalance in order to succeed. Both
variants of the code learning algorithm use asymmetrical
updates of constraint violations according to the observed
relative class sizes. This approach strongly penalizes errors
made in smaller sample populations, forcing the algorithm
to concentrate on the less represented examples.

The presented approach is general and can be potentially
applied to any problem with structure in the outputs. For
the protein classification problem, our method can be natu-
rally extended to adding further structure, and future work
will investigate leveraging this additional information. For
example, we can add family-based detectors to our chosen
output space, or detectors from multiple algorithms, such
as including both SVM and PSI-BLAST based detectors at
once, and then learning their relative weights.
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