
Modeling Biological Sequences Using HTK

William Noble Grundy
Department of Computer Science and Engineering

University of California, San Diego

Prepared for Entropic Research Laboratory, Inc.
March 27, 1997

1





1

1 Introduction

Entropic Research Laboratory’s Hidden Markov Model Toolkit (HTK) [17, 18, 19,
20] is a software toolkit for designing and implementing state-of-the-art speech
recognition systems. Recently, hidden Markov models (HMMs) have been applied
by computational biologists to the task of characterizing families of related protein
or DNA sequences. This report describes how HTK can be applied to this new
problem domain. Using HTK, computational biologists can bring to bear many of
the HMM techniques and algorithms developed by speech recognition researchers
over the past two decades.

Hidden Markov models were first applied to problems in molecular biology in
1989 by Gary Churchill [5]. Krogh et al. [12] applied HMMs to protein modeling
and brought widespread recognition to the approach. We refer to the linear HMMs
described in that paper as "standard HMMs". Both of the most commonly used,
publicly available software systems for hidden Markov modeling of biological
sequences use these standard HMMs: the Sequence and Alignment Modeling
System (SAM) [16, 11] developed by the Haussler group at UC Santa Cruz, and
Sean Eddy’s HMMER programs [10, 6].

Although the standard HMM topology is efficient and has proven to work well
in general, the constraints it imposes are not appropriate for every problem. In
particular, standard HMMs are acyclic: once a state has been traversed it can
never be revisited. Many biological sequence families contain repeated domains
for which an acyclic model is inappropriate. HTK allows the computational
biologist to experiment with arbitrary HMM topologies, including models with
cycles for repeated domains.

Furthermore, HTK allows computational biologists to exploit a long history
of HMM research in speech recognition. HMMs were first applied to speech
recognition in 1975 by J. K. Baker [3], and many important advances have been
made in the ensuing 22 years. HTK might, for example, allow for feature-based
models of biological sequences in which the relationships between features (e.g.,
domains or motifs) would be specified via a high-level grammar or other language
model [13]. Word-spotting techniques, used in speech recognition to extract
isolated words from a stream of background noise, might be applied to gene
recognition or motif recognition tasks. And protein family recognition tasks, in
which a single unknown protein is compared to large set of protein family HMMs,
could be straightforwardly accomplished in HTK by combining all candidate
models in parallel using a simple network specification.



2 2 SEQUENCE INPUT

Finally, HTK is a state-of-the-art software system with guaranteed technical
support. In the ARPA tests evaluating all major speech recognition systems, HTK
was ranked the best performing system overall in 1993 and 1994. The programs
are available with source code, giving the researcher complete flexibility. HTK
is currently used by speech researchers throughout the world. Entropic Research
Laboratory provides these researchers with technical support.

This report describes how to build and use HTK models of protein families.
The description is aimed at the computational biologist who is familiar with the use
of HMMs. The following section describes how standard sequence formats can be
converted to a format usable by HTK. The process of designing prototype models
and of training them using known family members is described next. Finally, the
procedure for comparing sequences to models and generating sequence scores is
explained.

2 Sequence Input

As anyone who has worked with DNA or protein sequences knows, sequence data
can be recorded in many different formats. Some of the more common formats
include Fasta, GenBank, NBRF, EMBL, PIR, and ASN.1. Unfortunately, because
HTK is primarily a speech recognition toolkit, it does not directly support any
of these biological sequence formats. The easiest way to convert sequences into
HTK format is to first convert them to a simple, standard format such as Fasta
format, and then to write a conversion program to translate from Fasta to HTK
format. The first step of this conversion process can be accomplished easily using
the publicly available readseq sequence conversion program [8]. The second
step is more complicated.

A program which translates from Fasta to HTK format must accomplish three
separate tasks. First, whereas biological sequence data is typically stored in
flat files containing many sequences, HTK expects each sequence to appear in a
separate file. Thus, the conversion program must split a Fasta file containing �

sequences into � separate files. Within each sequence, the program must convert
the letters of the DNA or amino acid alphabet into numbers, since HTK expects
numeric input. Finally, the program must store this numeric representation in a
binary format readable by the computer. The details of how to effect this storage
are given in Appendix A.

Note that the conversion program requires that a decision be made concerning



3

˜ o <DISCRETE> <StreamInfo> 1 1
<BeginHMM>
<NumStates> 4
<State> 2

<NumMixes> 20
<DProb> 7105 7105 7105 7105 7105 7105 7105 7105 7105 7105

7105 7105 7105 7105 7105 7105 7105 7105 7105 7105
<State> 3

<NumMixes> 20
<DProb> 8361 14027 15473 13904 8472 13919 14743 4108 13547 1345

10693 11262 14320 13488 13374 12351 11579 5123 9094 12865
<State> 4

<NumMixes> 20
<DProb> 10436 12142 15140 14148 9870 14035 15094 2760 14021 7731

12305 14317 14583 14520 12845 12649 11310 1330 16684 14137
<State> 5

<NumMixes> 20
<DProb> 11737 14596 14152 14516 15130 14630 15585 9244 13276 13305

13911 11918 14705 13580 13581 6972 347 9661 17696 16123
<TransP> 5
0.0 1.0 0.0 0.0 0.0
0.0 0.9 0.1 0.0 0.0
0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.2 0.0 0.8
0.0 0.0 0.0 0.0 0.0

<ENDHMM>

Figure 1: A sample HTK HMM in text format. This particular HMM contains
five states. State 2 has a self-loop, and states 3 through 5 are connected in a cycle.

ambiguous characters (e.g., for proteins, B, U, X, and Z); i.e., whether to code
each ambiguous character separately or to combine one or more of these characters.
Whatever convention is selected must be maintained in the later, modeling phase.

3 Designing Models

In order to train the parameters of a hidden Markov model, HTK needs a prototype
model to use as a starting point. HTK stores hidden Markov models as text files
in a simple, human readable format. A sample, four-state model specification is
shown in Figure 1. The keyword “<DISCRETE>” indicates that this model (like all
models of biological sequences) uses discrete emission probability distributions.

The first section of the HMM specification contains an emission probability
distribution for each state. The “<NumMixes>” parameter at each state tells



4 4 INITIALIZING MODELS

the number of characters in the alphabet and hence the number of bins in the
discrete distribution. The HMM in Figure 1 models protein data, so it uses a 20-
character alphabet. The discrete probability distribution appears after the keyword
“<DProb>”. Probabilities are scaled to integer values via the following equation:

���������
	���������������������
	��
2371 � 8 �

where
� ��� ���
	

is the stored discrete log probability for symbol
�

in stream � of state 
. This storage format improves the efficiency of HTK, while allowing the storage

of probabilities between 0.000001 and 1.0. For example, the emission distribution
of state 1 in Figure 1 is uniform; hence, each value in the distribution is 7105.
This corresponds to an actual probability of

��
���!�
7105

�
2371 � 8 � � 0 � 05.

The model specification ends with a description of the transition probabilities
between states of the HMM. The transition matrix, labeled “<TransP>,” specifies
these probabilities directly. Each value in the matrix specifies the probability asso-
ciated with a particular arc in the HMM. The row index of the value corresponds to
the source of the arc, and the column index corresponds to the arc’s target. Thus,
for example, in Figure 1, state 2 has two arcs emanating from it, one leading back
to state 2 (with probability 0.9) and one leading to state 3 (with probability 0.1).
The sum of probabilities in each row of the transition matrix must be 1.0, with the
exception of the last row, which contains all zeroes. Similarly, because state 1 is
always the start state, the first column of the matrix must contain all zeroes.

4 Initializing Models

Although the structure of the initial model may be designed by hand, the ini-
tial emission and transition probability distributions should be generated in some
principled fashion. HTK provides a straightforward means of estimating initial
probability distributions. The tool HInit uniformly segments the training data
and computes emission distributions using the occurrence count for each symbol.
HInit then uses the Viterbi algorithm to re-segment the data and re-compute the
parameters. Transition probabilities are computed by counting transition occur-
rences in the Viterbi alignments. This re-estimation procedure is repeated until
convergence. Note that HInit takes a prototype HMM as input, but that HInit
ignores the values of the given HMM’s emission and transition probabilities. Thus,
the user need only specify by hand the form of the HMM.

As an example, the following command line would initialize an HMM:



5

HInit -w 1.0 -S training.list -M initial an_HMM

Here, the prototype HMM is called an HMM, and the list of files containing training
sequences is training.list. The -w 1.0 option sets a floor for emission
log probabilities to prevent them from reaching zero. The re-estimated model will
be called an HMM and will be written to the the directory initial. For more
information about model initialization see pages 158–159 and 227–229 of The
HTK Book.

HInit provides the simplest means of initializing HTK models, but other
methods are available. For example, acyclic HMMs generated by a software
package such as SAM or HMMER could be translated into HTK format and used to
initialize more complex, HTK models. Alternatively, non-HMM models of motifs
or domains may be translated into HTK format and used in the initialization
phase. Candidates for such initialization software include MEME [1, 15], the
Gibbs sampler [14] and BLOCKMAKER [9, 4].

5 Training Models

Once the model has been designed and initialized, it is ready to be fully trained. The
HTK tool HRest uses the Baum-Welch version of the expectation-maximization
algorithm, rather than the Viterbi estimation algorithm employed by HInit.
Otherwise, the usage of HRest is exactly similar to HInit. The following
command line would continue the training of the previously initialized model,
initial/an HMM:

HRest -w 1.0 -S training.list -M trained \
initial/an_HMM

The re-estimated HMM an HMM will be stored in the directory trained.
Note that, because HTK is typically used for training small models, the HRest

program contains an error check for model states which receive no training data.
For biological modeling, it is often the case that a few states of the model receive
no training data. Consequently, before using HRest to train a large, discrete
model, it may be necessary to remove this error check. Appendix B explains how
to make this change.



6 6 SCORING SEQUENCES

6 Scoring Sequences

The final step in using HTK is to apply the trained model to the task of recognizing
related sequences. For a model of a protein family, for example, this would
involve comparing the model to each member of a database such as GenBank [7]
or SWISS-PROT [2]. The HTK tool HVite provides a Viterbi recognizer which
will score each sequence. Because HTK typically recognizes speech utterances,
the interface to HVite involves specifying some elements, such as a dictionary and
a grammar, which are not relevant to biological sequence comparisons. However,
most of these details are easy to automate via a shell script.

A sample HVite command line looks like this:

HVite -T 1 -i label_file -o TWM -w lattice_file \
-S sequence_list dictionary HMM_list

The elements of the above command line have the following meanings:

� The first option, -T 1, tells HVite to set the trace level to 1. This causes
the program to print diagnostic information, including the length of the given
sequence and the Viterbi score.

� The -i label file option tells HVite to write the Viterbi scores to a
file called label file. Note that these scores are recorded with a higher
precision than the score printed in the trace output.

� The option -o TWM simplifies the label file output by telling HVite not to
print times, words or model names.

� The lattice file specifies the relationship between multiple HMMs
being used at once. Since most biological applications involve the use of a
single model, the lattice file is simple:

N=3 L=2
I=0 W=!NULL
I=1 W=an_HMM
I=2 W=!NULL
J=0 S=2 E=1
J=1 S=0 E=2



7

The above file may be used as a template for any single-model recognition,
where an HMM is the name of the model. For more details on how this
lattice file was generated, see Appendix C.

� sequence list is a single file containing the filenames of all of the
sequences in the database. Note that these files must have been previously
converted to HTK format.

� The dictionary normally maps from models to their pronunciations.
For single-model recognition, dictionary is a file containing the name
of the model, twice:

an_HMM an_HMM

� Finally, the HMM list normally contains the list of all HMMs being used
during the recognition run. For single-model recognition, this list contains
one entry:

an_HMM

Once the Viterbi scores have been computed, it is necessary to normalize them
to account for varying sequence lengths. Simply dividing the scores by length
is ineffective. Instead, the normalization may be computed empirically using,
for example, the empirical Z-score estimation procedure of Krogh et al. [12],
which is available as part of the SAM distribution [16]. Alternatively, log-odds
scores may be computed. This second method requires the specification of a
background model and the computation, using HVite, of a background score for
each sequence.

7 Conclusion

HTK provides computational biologists with a powerful new tool for the analysis
of biological sequence data. By developing more flexible hidden Markov models
and by applying the techniques and algorithms developed in the field of speech
recognition, users of HTK will be able to explore and improve the use of hidden
Markov modeling in computational biology.



8 REFERENCES

References

[1] T. L. Bailey and C. P. Elkan. Fitting a mixture model by expectation-
maximization to discover motifs in biopolymers. In R. Altman, D. Brutlag,
P. Karp, R. Lathrop, and D. Searls, editors, Proceedings of the Second In-
ternational Conference on Intelligent Systems for Molecular Biology. AAAI
Press, 1994.

[2] A. Bairoch. The SWISS-PROT protein sequence data bank: current status.
Nucleic Acids Research, 22(17):3578–3580, September 1994.

[3] J. K. Baker. The Dragon system — an overview. IEEE Trans. Acoust. Speech
Signal Processing, ASSP-23(1):24–29, February 1975.

[4] Blocks WWW server. http://www.blocks.fhcrc.org.

[5] G. A. Churchill. Stochastic models for heterogeneous DNA sequences.
Bulletin of Mathematical Biology, 51:79–94, 1989.

[6] S. R. Eddy. Multiple alignment using hidden Markov models. In C. Rawlings
et al., editor, Proceedings of the Third International Conference on Intelligent
Systems for Molecular Biology, pages 114–120. AAAI Press, 1995.

[7] GenBank overview. http://www.ncbi.nlm.nih.gov/Web/Gen-
bank/index.html.

[8] D. G. Gilbert. readseq. gopher://ftp.bio.indiana.edu:70/-
11/Molecular-Biology/Molbio%20archive/readseq, 1990.

[9] S. Henikoff, J. G. Henikoff, W. J. Alford, and S. Pietrokovski. Automated
construction and graphical presentation of protein blocks from unaligned
sequences. Gene-COMBIS, Gene, 163(GC):17–26, 1995.

[10] S. R. Eddy group, Dept. of Genetics, Washington University. http://-
genome.wustl.edu/eddy/hmm.html.

[11] R. Hughey and A. Krogh. Hidden Markov models for sequence analysis:
Extension and analysis of the basic method. CABIOS, 12(2):95–107, 1996.



REFERENCES 9

[12] A. Krogh, M. Brown, I. Mian, K. Sjolander, and D. Haussler. Hidden Markov
models in computational biology: Applications to protein modeling. Journal
of Molecular Biology, 235:1501–1531, 1994.

[13] D. Kulp, D. Haussler, M. G. Reese, and F. H. Eeckman. A generalized hidden
Markov model for the recognition of human genes in DNA. In Proceedings
of the Fourth International Conference on Intelligent Systems for Molecular
Biology, 1996.

[14] C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald, and
J. C. Wootton. Detecting subtle sequence signals: A Gibbs sampling strategy
for multiple alignment. Science, 262(5131):208–214, 1993.

[15] MEME – multiple EM for motif elicitation. http://www.sdsc.edu/-
MEME.

[16] SAM: sequence alignment and modeling system. http://www.cse.-
ucsc.edu/research/compbio/sam.html.

[17] P. C. Woodland, C. J. Leggetter, J. J. Odell, V. Valtchev, and S. J. Young.
The 1994 HTK large vocabulary speech recognition system. International
Conference on Acoustics Speech, and Signal Processing, 1:73–76, 1995.

[18] P. C. Woodland, J. J. Odell, V. Valtchev, and S. J. Young. Large vocabulary
continuous speech recognition using HTK. In IEEE International Conference
on Acoustics, Speech and Signal Processing, volume 2, pages 125–128.
IEEE, 1994.

[19] S. J. Young, P. C. Woodland, and W. J. Byrne. Spontaneous speech recogni-
tion for the credit card corpus using the HTK toolkit. IEEE Transactions on
speech and audio processing, 2(4):615–621, October 1994.

[20] Steve Young, Joop Jansen, Julian Odell, Dave Ollasen, and Phil Woodland.
The HTK Book. Cambridge University, 1995.



10 C GENERATING HTK LATTICE FILES

A Storing sequence data in HTK format

HTK data files are binary files which begin with a 12-byte header. The header
contains four parameters: the length of the current sequence, the sample period in
100ns units (irrelevant for biological data), the number of bytes per sample, and a
code representing the type of sample (discrete samples have code 10). For more
information, see The HTK Book, pp. 72-73.

The following fragment of C code shows how to write binary data tooutfile.
The code uses the function WriteHTKHeader from the HTK module HWave.
The sequence data is assumed to be stored in an array called sequence data
of length num samples.

/* Print the header. */
WriteHTKHeader(outfile, num_samples, 10, 2, 10);

/* Write the data to a file. */
for (i_sample = 0; i_sample < num_samples; i_sample++)
{
fwrite(&(sequence_data[i_sample]), sizeof(short),

1, outfile);
}

B Removing the error check for untrained states

In the source file HRest.c, replace the following line (In HTK version 2.0, this
is line 977.):

HError(2222,"RestTransP: Zero state %d occupation count",i);

with this:

continue;

C Generating HTK lattice files

Lattice files are generated from grammar files using the HTK tool HParse. A
single-model grammar looks like this:



11

(an_HMM)

where an HMM is the name of the model. Assuming that the above grammar
is stored in the file grammar, an appropriate lattice file would be generated as
follows:

HParse an_HMM lattice_file

More complex grammars might be useful for feature-based computational
biology applications, such as the modeling of multiple domains. See pages 168–
172 of The HTK Book for more information on grammars and lattices.


