Modeling Biological Sequences Using HTK

William Noble Grundy
Department of Computer Science and Engineering
University of California, San Diego

Prepared for Entropic Research Laboratory, Inc.
March 27, 1997

1 Introduction

Entropic Research Laboratory’sHidden Markov Model Toolkit (HTK) [17, 18, 19,
20] is a software toolkit for designing and implementing state-of-the-art speech
recognition systems. Recently, hidden Markov models(HMMs) have been applied
by computational biologiststo thetask of characterizing familiesof related protein
or DNA sequences. This report describes how HTK can be applied to this new
problem domain. Using HTK, computational biologists can bring to bear many of
the HMM techniques and algorithms devel oped by speech recognition researchers
over the past two decades.

Hidden Markov modelswerefirst applied to problemsin molecular biology in
1989 by Gary Churchill [5]. Krogh et al. [12] applied HMMs to protein modeling
and brought widespread recognition to the approach. Werefer to thelinear HMMs
described in that paper as "standard HMMSs'. Both of the most commonly used,
publicly available software systems for hidden Markov modeling of biological
sequences use these standard HMMs: the Sequence and Alignment Modeling
System (SAM) [16, 11] developed by the Haussler group at UC Santa Cruz, and
Sean Eddy’s HMMER programs|[10, 6].

Although the standard HMM topology is efficient and has proven to work well
in genera, the constraints it imposes are not appropriate for every problem. In
particular, standard HMMs are acyclic: once a state has been traversed it can
never be revisited. Many biological sequence families contain repeated domains
for which an acyclic model is inappropriate. HTK allows the computational
biologist to experiment with arbitrary HMM topologies, including models with
cyclesfor repeated domains.

Furthermore, HTK allows computational biologists to exploit a long history
of HMM research in speech recognition. HMMs were first applied to speech
recognition in 1975 by J. K. Baker [3], and many important advances have been
made in the ensuing 22 years. HTK might, for example, allow for feature-based
models of biological sequences in which the relationships between features (e.g.,
domains or motifs) would be specified viaa high-level grammar or other language
model [13]. Word-spotting techniques, used in speech recognition to extract
isolated words from a stream of background noise, might be applied to gene
recognition or motif recognition tasks. And protein family recognition tasks, in
which asingle unknown proteinis compared to large set of protein family HMMs,
could be straightforwardly accomplished in HTK by combining al candidate
modelsin parallel using a simple network specification.

2 2 SEQUENCE INPUT

Finaly, HTK is a state-of-the-art software system with guaranteed technical
support. Inthe ARPA tests evaluating all major speech recognition systems, HTK
was ranked the best performing system overall in 1993 and 1994. The programs
are available with source code, giving the researcher complete flexibility. HTK
is currently used by speech researchers throughout the world. Entropic Research
Laboratory provides these researchers with technical support.

This report describes how to build and use HTK models of protein families.
Thedescription isaimed at the computational biologist whoisfamiliar withtheuse
of HMMs. The following section describes how standard sequence formats can be
converted to aformat usable by HTK. The process of designing prototype models
and of training them using known family membersis described next. Finally, the
procedure for comparing sequences to models and generating sequence scores is
explained.

2 Sequence Input

As anyone who has worked with DNA or protein sequences knows, sequence data
can be recorded in many different formats. Some of the more common formats
include Fasta, GenBank, NBRF, EMBL, PIR, and ASN.1. Unfortunately, because
HTK is primarily a speech recognition toolkit, it does not directly support any
of these biological sequence formats. The easiest way to convert sequences into
HTK format is to first convert them to a simple, standard format such as Fasta
format, and then to write a conversion program to trandate from Fasta to HTK
format. Thefirst step of this conversion process can be accomplished easily using
the publicly available r eadseq sequence conversion program [8]. The second
step is more complicated.

A program which trandates from Fastato HTK format must accomplish three
separate tasks. First, whereas biological sequence data is typicaly stored in
flat files containing many sequences, HTK expects each sequence to appear in a
separate file. Thus, the conversion program must split a Fasta file containing n
sequences into . separate files. Within each sequence, the program must convert
the letters of the DNA or amino acid alphabet into numbers, since HTK expects
numeric input. Finaly, the program must store this numeric representation in a
binary format readable by the computer. The details of how to effect this storage
aregivenin Appendix A.

Note that the conversion program requiresthat a decision be made concerning

" 0 <DI SCRETE> <Streanmnfo> 1 1
<Begi nHMW>
<Nuntt at es> 4
<State> 2
<NunmM xes> 20
<DPr ob> 7105 7105 7105 7105 7105 7105 7105 7105 7105 7105
7105 7105 7105 7105 7105 7105 7105 7105 7105 7105
<State> 3
<NunmM xes> 20
<DProb> 8361 14027 15473 13904 8472 13919 14743 4108 13547 1345
10693 11262 14320 13488 13374 12351 11579 5123 9094 12865
<State> 4
<NunmM xes> 20
<DPr ob> 10436 12142 15140 14148 9870 14035 15094 2760 14021 7731
12305 14317 14583 14520 12845 12649 11310 1330 16684 14137
<State> 5
<NunmM xes> 20
<DPr ob> 11737 14596 14152 14516 15130 14630 15585 9244 13276 13305
13911 11918 14705 13580 13581 6972 347 9661 17696 16123

<TransP> 5

0.01.00.00.00.0

0.00.90.1210.00.0

0.0 0.00.01.00.0

0.0 0.00.20.00.8

0.0 0.00.00.00.0
<ENDHMV>

Figure 1. A sample HTK HMM in text format. This particular HMM contains
five states. State 2 hasa self-loop, and states 3 through 5 are connected in a cycle.

ambiguous characters (e.g., for proteins, B, U, X, and Z);i.e., whether to code
each ambiguous character separately or to combineone or more of thesecharacters.
Whatever convention is selected must be maintained in the later, modeling phase.

3 Designing Models

In order to train the parametersof ahidden Markov model, HTK needsa prototype
model to use as a starting point. HTK stores hidden Markov models as text files
in asimple, human readable format. A sample, four-state model specification is
showninFigurel. Thekeyword“<DISCRETE>" indicatesthat thismodel (likeall
models of biological sequences) uses discrete emission probability distributions.
The first section of the HMM specification contains an emission probability
distribution for each state. The “<NumMixes>" parameter at each state tells

4 4 INITIALIZING MODELS

the number of characters in the alphabet and hence the number of bins in the
discrete distribution. The HMM in Figure 1 models protein data, so it uses a 20-
character alphabet. The discrete probability distribution appears after the keyword
“<DProb>". Probabilities are scaled to integer values viathe following equation:

Pjs[v] = exp(—d;s[v]/2371.8)

where d;[v] isthe stored discrete log probability for symbol v in stream s of state
J. Thisstorage format improvesthe efficiency of HTK, while allowing the storage
of probabilitiesbetween 0.000001 and 1.0. For example, the emission distribution
of state 1 in Figure 1 is uniform; hence, each value in the distribution is 7105.
This corresponds to an actual probability of exp(—7105/2371.8) = 0.05.

The model specification ends with a description of the transition probabilities
between states of the HMM. The transition matrix, labeled “<TransP>,"” specifies
these probabilitiesdirectly. Each valueinthe matrix specifiesthe probability asso-
ciated with aparticular arcintheHMM. Therow index of the value correspondsto
the source of the arc, and the column index corresponds to the arc’s target. Thus,
for example, in Figure 1, state 2 has two arcs emanating fromit, one leading back
to state 2 (with probability 0.9) and one leading to state 3 (with probability 0.1).
The sum of probabilitiesin each row of the transition matrix must be 1.0, with the
exception of the last row, which contains all zeroes. Similarly, because state 1 is
alwaysthe start state, the first column of the matrix must contain all zeroes.

4 Initializing Models

Although the structure of the initial model may be designed by hand, the ini-
tial emission and transition probability distributions should be generated in some
principled fashion. HTK provides a straightforward means of estimating initial
probability distributions. The tool HI ni t uniformly segments the training data
and computes emission distributions using the occurrence count for each symbol.
HI ni t then usesthe Viterbi algorithm to re-segment the data and re-compute the
parameters. Transition probabilities are computed by counting transition occur-
rences in the Viterbi aignments. This re-estimation procedure is repeated until
convergence. Notethat HI ni t takes a prototype HMM as input, but that HI ni t

ignoresthe valuesof thegiven HMM'’semission and transition probabilities. Thus,
the user need only specify by hand the form of the HMM.

As an example, the following command line would initialize an HMM:

Hnit -w1.0 -Straining.list -Minitial an_HW

Here, the prototypeHMM iscalled an HVM andthelist of filescontainingtraining
sequencesistraining.list. The-w 1. 0 option sets afloor for emission
log probabilitiesto prevent them from reaching zero. The re-estimated model will
be called an_HVMand will be written to the the directory i ni ti al . For more
information about model initialization see pages 158-159 and 227-229 of The
HTK Book.

Hl ni t provides the simplest means of initializing HTK models, but other
methods are available. For example, acyclic HMMs generated by a software
package such as SAM or HMMER could betrandated intoHTK format and used to
initialize more complex, HTK models. Alternatively, non-HMM models of motifs
or domains may be trandated into HTK format and used in the initialization
phase. Candidates for such initiadization software include MEME [1, 15], the
Gibbs sampler [14] and BLOCKMAKER [9, 4].

5 Training Models

Oncethemodel hasbeendesigned andinitialized, itisready to befully trained. The
HTK tool HRest usesthe Baum-Welch version of the expectation-maximization
algorithm, rather than the Viterbi estimation algorithm employed by Hi ni t .
Otherwise, the usage of HRest is exactly similar to H ni t. The following
command line would continue the training of the previoudy initialized model,
initial/anHwW

HRest -w 1.0 -S training.list -Mtrained \
initial/an_HW

The re-estimated HMM an_HMMwill be stored in the directory t r ai ned.

Notethat, because HTK istypically used for training small models, the HRest
program contains an error check for model states which receive no training data.
For biological modeling, it is often the case that a few states of the model receive
no training data. Consequently, before using HRest to train a large, discrete
model, it may be necessary to removethis error check. Appendix B explains how
to make this change.

6 6 SCORING SEQUENCES

6 Scoring Sequences

Thefinal stepinusing HTK isto apply the trained model to the task of recognizing
related sequences. For a model of a protein family, for example, this would
involve comparing the model to each member of a database such as GenBank [7]
or SWISS-PROT [2]. The HTK tool HVi t e provides a Viterbi recognizer which
will score each sequence. Because HTK typically recognizes speech utterances,
theinterfaceto HVite involves specifying some el ements, such asadictionary and
agrammar, which are not relevant to biological sequence comparisons. However,
most of these details are easy to automate viaa shell script.
A sample HVi t e command line lookslike this:

Hvite -T 1 -i label _file -o TWM-w lattice file \
-S sequence_list dictionary HW | i st

The elements of the above command line have the following meanings:

e Thefirstoption, - T 1, tellsHVi t e to set the trace level to 1. This causes
the programto print diagnosticinformation, including thelength of thegiven
sequence and the Viterbi score.

e The-i | abel fil e optiontelsHVit e towritethe Viterbi scoresto a
filecalled| abel fil e. Notethat these scores are recorded with a higher
precision than the score printed in the trace outpui.

e Theoption- 0o TWMsimplifiesthe label file output by telling HVi t e not to
print times, words or model names.

e Thel atticefil e specifies the relationship between multiple HMMs
being used at once. Since most biological applicationsinvolve the use of a
single model, the lattice fileis ssmple:

i

P ONPEFOW

L=2

WE! NULL
Wean_HWM
WE! NULL
S=2 E=1
S=0 E=2

[e

The above file may be used as a template for any single-model recognition,
where an_HWM s the name of the model. For more details on how this
|attice file was generated, see Appendix C.

e sequence i st is a single file containing the filenames of al of the
sequences in the database. Note that these files must have been previously
converted to HTK format.

e The di cti onary normaly maps from models to their pronunciations.
For single-model recognition, di ct i onary is afile containing the name
of the model, twice:

an_HWM an_HW

e Finally, the HWMI i st normally contains the list of all HMMs being used
during the recognition run. For single-model recognition, thislist contains
one entry:

an_HW

Oncethe Viterbi scores have been computed, it is necessary to normalizethem
to account for varying sequence lengths. Simply dividing the scores by length
is ineffective. Instead, the normalization may be computed empirically using,
for example, the empirical Z-score estimation procedure of Krogh et al. [12],
which is available as part of the SAM distribution [16]. Alternatively, log-odds
scores may be computed. This second method requires the specification of a
background model and the computation, using HVi t e, of a background score for
each sequence.

7 Conclusion

HTK provides computational biologists with a powerful new tool for the analysis
of biological sequence data. By developing more flexible hidden Markov models
and by applying the techniques and algorithms developed in the field of speech
recognition, users of HTK will be able to explore and improve the use of hidden
Markov modeling in computational biology.

REFERENCES

References

[1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

T. L. Bailey and C. P. Elkan. Fitting a mixture model by expectation-
maximization to discover motifsin biopolymers. In R. Altman, D. Brutlag,
P. Karp, R. Lathrop, and D. Searls, editors, Proceedings of the Second In-
ternational Conference on Intelligent Systems for Molecular Biology. AAAI
Press, 1994.

A. Bairoch. The SWISS-PROT protein sequence data bank: current status.
Nucleic Acids Research, 22(17):3578-3580, September 1994.

J. K. Baker. The Dragon system — an overview. | EEE Trans. Acoust. Soeech
Sgnal Processing, ASSP-23(1):24-29, February 1975.

Blocks WWW server. ht t p: / / www. bl ocks. f hcrc. org.

G. A. Churchill. Stochastic models for heterogeneous DNA sequences.
Bulletin of Mathematical Biology, 51:79-94, 1989.

S. R. Eddy. Multipleaignment using hidden Markov models. In C. Rawlings
et a., editor, Proceedings of the Third Inter national Conference on Intelligent
Systems for Molecular Biology, pages 114-120. AAAI Press, 1995.

GenBank overview. http://ww. ncbi . nl m ni h. gov/ Wb/ Gen-
bank/i ndex. htm .

D. G. Gilbert. readseq. gopher://ftp. bio.indi ana. edu: 70/ -
11/ Mol ecul ar - Bi ol ogy/ Mol bi o%20ar chi ve/ r eadseq, 1990.

S. Henikoff, J. G. Henikoff, W. J. Alford, and S. Pietrokovski. Automated
construction and graphical presentation of protein blocks from unaligned
sequences. Gene-COMBI S, Gene, 163(GC):17—-26, 1995.

S. R. Eddy group, Dept. of Genetics, Washington University. http:// -
genone. wust | . edu/ eddy/ hrm htm .

R. Hughey and A. Krogh. Hidden Markov models for sequence analysis.
Extension and analysis of the basic method. CABIOS, 12(2):95-107, 1996.

REFERENCES 9

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

A.Krogh, M. Brown, |. Mian, K. Solander, and D. Hauss er. Hidden Markov
modelsin computational biology: Applicationsto protein modeling. Journal
of Molecular Biology, 235:1501-1531, 1994.

D.Kulp, D. Hausder, M. G. Reese, and F. H. Eeckman. A generalized hidden
Markov mode for the recognition of human genesin DNA. In Proceedings
of the Fourth International Conference on Intelligent Systems for Molecular
Biology, 1996.

C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald, and
J. C. Wootton. Detecting subtle sequence signals: A Gibbs sampling strategy
for multiple alignment. Science, 262(5131):208-214, 1993.

MEME — multiple EM for motif dicitation. htt p: / / ww. sdsc. edu/ -
MEME.

SAM: sequence alignment and modeling system. htt p: // www. cse. -
ucsc. edu/ r esear ch/ conpbi o/ sam htni .

P. C. Woodland, C. J. Leggetter, J. J. Odell, V. Vatchev, and S. J. Young.
The 1994 HTK large vocabulary speech recognition system. International
Conference on Acoustics Soeech, and Sgnal Processing, 1:73—76, 1995.

P. C. Woodland, J. J. Odell, V. Valtchev, and S. J. Young. Large vocabulary
continuous speech recognition using HTK. In|EEE International Conference
on Acoustics, Speech and Sgnal Processing, volume 2, pages 125-128.
|EEE, 1994.

S. J. Young, P. C. Woodland, and W. J. Byrne. Spontaneous speech recogni-
tion for the credit card corpus using the HTK toolkit. IEEE Transactions on
speech and audio processing, 2(4):615-621, October 1994.

Steve Young, Joop Jansen, Julian Odell, Dave Ollasen, and Phil Woodland.
The HTK Book. Cambridge University, 1995.

10 C GENERATING HTK LATTICE FILES

A Storing sequencedatain HTK format

HTK data files are binary files which begin with a 12-byte header. The header
contains four parameters: the length of the current sequence, the sample period in
100ns units (irrelevant for biological data), the number of bytes per sample, and a
code representing the type of sample (discrete samples have code 10). For more
information, see The HTK Book, pp. 72-73.

Thefollowing fragment of C code showshow towritebinary datatoout fi | e.
The code uses the function Wi t eHTKHeader from the HTK module HWave.
The sequence data is assumed to be stored in an array called sequence _dat a
of lengthnumsanpl es.

[* Print the header. */
Wit eHTKHeader (outfile, numsanples, 10, 2, 10);

/[* Wite the data to a file. */

for (i _sanple = 0; i _sanple < num sanpl es; i _sanpl e++)
{
fwite(& sequence data[i _sanple]), sizeof(short),
1, outfile);
}

B Removingtheerror check for untrained states

In the source file HRest . ¢, replace the following line (In HTK version 2.0, this
isline977.):

HError (2222, "Rest TransP: Zero state %l occupation count”,i)

with this:

conti nue;

C Geneating HTK latticefiles

Lattice files are generated from grammar files using the HTK tool HPar se. A
single-model grammar looks like this:

11

(an_HW)

where an_HWMM is the name of the model. Assuming that the above grammar
is stored in the file gr anmar , an appropriate lattice file would be generated as
follows:

HParse an_HW |l attice_file
More complex grammars might be useful for feature-based computational

biology applications, such as the modeling of multiple domains. See pages 168—
172 of The HTK Book for more information on grammars and | attices.

