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of making the set of segment labels as small as possible, while still 
retaining their capacity to accurately model the observations.

Because the label at one position is unknown but is influenced 
by the label at the previous position, a hidden Markov model 
(HMM) provides a natural solution for the segmentation task. Use 
of an HMM, however, has some limitations. For example, HMMs 
handle missing data poorly, requiring interpolation and smooth­
ing to process regions where data are not reported. Similarly, hard 
or soft constraints on segment lengths prove complex and difficult 
to implement with a simple HMM.

Dynamic Bayesian networks (DBNs), in contrast, provide a 
powerful framework for modeling the complex hidden relation­
ships that explain observed data sampled at regular intervals along 
some axis, such as physical positions on a genome. Automatic 
speech recognition researchers have long used DBNs8, and now 
scientists have started using them to solve biological problems9.

A DBN is a graphical structure that depicts the conditional 
independence properties of multiple random variables. We can 
represent a standard HMM by a DBN with a hidden random vari­
able for the HMM’s hidden state and an observed random vari­
able for the observations. With a DBN, however, we can easily 
incorporate complex relationships among variables at the current  
or nearby positions in the genome. The DBN therefore allows us 
to include multiple hidden variables and model their interrelation­
ships without flattening them into a single state variable and 
thereby ignoring the properties implied by these interrelation­
ships. For example, the DBN can incorporate a structured state 
space in which superlabels and sublabels augment a simple label 
set: the superlabel might represent a region of active euchromatin, 
and the sublabel might represent the 3′ end of an active gene in 
active euchromatin. In general, incorporating various types of 
prior knowledge and interpreting a trained model proves much 
easier with a DBN than with an HMM. For example, our model 
includes a principled mechanism for handling heterogeneous 
missing data. This mechanism is necessary because functional 
genomics assays may target only a subset of the genome or because 
repetitive sequences may lead to different patterns of missing  
data in different experiments (Supplementary Discussion, 
Supplementary Fig. 1 and Supplementary Table 1).

Here we describe a segmentation method, Segway, that uses 
DBN techniques to simultaneously segmentat and cluster genomic 
data. We describe the application of Segway to human chromatin 
immunoprecipitation sequencing (ChIP-seq), DNase I hypersen­
sitive site sequencing (DNase-seq) and formaldehyde-assisted iso­
lation of regulatory elements sequencing (FAIRE-seq) data from 
the Encyclopedia of DNA elements (ENCODE) Project1.
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We trained Segway, a dynamic Bayesian network method,  
simultaneously on chromatin data from multiple experiments, 
including positions of histone modifications, transcription-
factor binding and open chromatin, all derived from a human 
chronic myeloid leukemia cell line. In an unsupervised fashion, 
we identified patterns associated with transcription start sites, 
gene ends, enhancers, transcriptional regulator CTCF-binding 
regions and repressed regions. Software and genome browser 
tracks are at http://noble.gs.washington.edu/proj/segway/.

Recently, the genomics community has seen an explosion in the 
availability of large-scale functional genomics data. Researchers 
have produced genome-wide data sets on the locations of 
transcription-factor binding, histone modifications, open chro­
matin and RNA transcription with sequence census assays that 
measure properties genome-wide by analyzing the location and 
count of sequenced tags. Consequently, our representation of 
the whole human genome has expanded from a sequence of 
nucleotides, occasionally annotated with discrete features, to a 
collection of numerical data tracks with values at almost every 
part of every chromosome. We will soon have access to data 
from dozens of cell types1. How can we make sense out of this 
multitude of data?

A segmentation procedure provides a conceptually simple 
approach to finding patterns in genomic data2–7. The segmen­
tation task involves finding segment boundaries while simultane­
ously assigning labels to the segments. One partitions the genome 
into nonoverlapping contiguous segments, assigning one of a finite 
set of labels (such as ‘promoter’ or ‘enhancer’) to each, such that 
regions sharing the same segment label have in common certain 
properties in observed data. Occam’s razor implies the desirability 
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We carried out unsupervised training on 1% of the human genome 
with the Segway model and 31 ENCODE signal tracks that showed 
locations of histone modifications, transcription-factor binding and 
open chromatin. Whereas large numbers of labels may have statisti­
cal support, we arbitrarily fixed the number of labels at 25 so that the 
set of labels would be sufficiently small to remain interpretable by 
biologists. Our method aims to reduce complex data for easier inter­
pretation, and using a small number of labels served this purpose. 
The discovered parameters characterized a diverse set of biological 
patterns (Fig. 1). We then identified the most probable path of seg­
ment labels given the trained parameters and observed signal.

We refer to the resulting assignment of labels to nonoverlap­
ping genomic regions as a segmentation (Supplementary Results, 
Supplementary Fig. 2 and Supplementary Table 2). The labels 
allow one to easily identify other regions that show similar signal  
patterns in the observation tracks. By examining the learned 
parameters directly (Fig. 1 and Supplementary Fig. 3) and 
comparing the segmentation to public annotations (Fig. 2 and 
Supplementary Figs. 3–5), we assigned functional categories to 
groups of segment labels on the basis of notable features. Many 
of these labels recapitulated known patterns in the chromatin 
literature, and some represented new patterns.

Notably, Segway ‘rediscovered’ protein-coding genes, as the 
unsupervised segmentation included chromatin states associ­
ated with the starts, middles and ends of genes (Fig. 2) found 
without direct recourse to information traditionally used to 
find genes, such as primary sequence, similarity to mRNAs or 
genome sequences of other species. Several labels tended to 
reside in particular locations in protein-coding genes, and the 
discovered transition parameters of the model increased the 
probability of moving from the labels that tended to reside in  
5′ ends of genes to the labels found more often in 3′ ends of genes. 
We also found expected patterns of transcription factor binding 
near the transcription start site (TSS), histone H2A.Z associated 
with the TSS10, and histone mark H3K79me2 associated with the 
gene start10 (Supplementary Fig. 6). The patterns of chromatin 

structure in protein-coding genes fit well with existing knowledge 
(Supplementary Results and Supplementary Figs. 3 and 7).

Many of the chromatin states that seemed, at first glance, to 
be associated with protein-coding genes turned out to be associ­
ated only with genes active in the tissue type assayed for the data 
used in the segmentation (Supplementary Results). Segway also 
discovered patterns associated with specific functional elements, 
such as enhancers, insulators, regions of repressed gene expres­
sion and regions of no or very low biochemical activity (‘dead’ 
regions) (Supplementary Results, Supplementary Figs. 5 and 8 
and Supplementary Table 3).

We used Segway to generate hypotheses about the role of indi­
vidual sequences in promoting transcription that we then tested 
experimentally. We began by identifying expressed and unexpressed 
genes using RNA data. To determine whether specific sequences 
identified by segmentation labels correctly identified these genes 
as being expressed or not expressed, we used transient transfec­
tion followed by luciferase assays to test transcription of small  
(~1-kilobase) constructs that overlapped the gene’s TSS and either 
a segmentation TSS label (24 predictions of expression, referred 
to as ‘positive predictions’) or an ‘R’ (repressed) label (as defined 
by 67 predictions of no expression, referred to as ‘negative predic­
tions’). Every positive prediction resulted in substantial expression 
of a reporter, a majority of the negative predictions resulted in 
no substantial expression, and a larger majority of negative pre­
dictions not overlapping CpG islands resulted in no substantial 
expression (Supplementary Fig. 9). Positive predictions showed 
higher median expression activity than negative predictions.

Segway differs substantially from several previously described 
methods for jointly analyzing chromatin data (Supplementary 
Discussion). For example, Segway solves a fundamentally different 
problem than ChromaSig11, which does not attempt to fully parti­
tion the genome or integrate arbitrary combinations of functional 
genomics data. Segway is most similar to an HMM-based method 
called ChromHMM5. However, Segway and ChromHMM differ in 
several respects, chiefly in the relative resolution. Segway operates  

Figure 1 | Heat map of discovered Gaussian  
parameters in an unsupervised 25-label segmentation  
trained on 31 tracks of histone modification,  
transcription-factor binding and open chromatin  
signal data in 1% of the human genome. Row labels  
include last names of the principal investigator in  
whose laboratory data were generated, when assays  
were conducted in multiple laboratories (Stam,  
Stamatoyannopoulos). Each row contains parameters  
for one signal track, and each column contains  
parameters for one segment label. Within each row,  
we did an affine transformation, such that the largest  
mean was 1 and the smallest 0. The color in each  
cell indicates the transformed mean parameter µ  
according to the color bar on the left. The width  
of the black inner boxes is proportional to the  
square root of the variance parameter σ2, after  
multiplying by the linear factor used in the  
transformation of µ. Dendrogram show a  
hierarchical clustering by both rows and columns.  
Functional categories manually assigned to segment  
labels: D, dead; F, FAIRE; R, repression; H3K9me1,  
histone 3 lysine 9 onomethylation; L, low; GE, gene end; TF, transcription factors;  
C, CTCF; GS, gene start; E, enhancer; GM, gene middle; segment label numbers were 
assigned arbitrarily.
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on the full data set, whereas ChromHMM works at 200-base-pair 
(bp) resolution and condenses each data track to a single binary 
datum within each 200-bp window. Consequently, Segway pro­
vides a finer-grained segmentation. Whereas the segments in a 
published ChromHMM segmentation5 had a minimum length 
of 200 bp, a mean of 4,862 bp and a median of 800 bp, Segway 
segments had a mean length of 168 bp and a median of 124 bp.

We compared the behavior of Segway and ChromHMM genome-
wide and, specifically, at three separate loci (Supplementary 
Results and Supplementary Fig. 10). The Segway methodology 
resulted in several distinct advantages, such as the ability to detect 
elements at subnucleosomal resolution, better precision in find­
ing known elements and superior handling of missing data.

We found that Segway reduced heterogeneous genomic data sets 
into understandable patterns with clear biological implications. 
The flexibility of the DBN suggests a potential solution to the 

problem of learning large numbers of segment labels while retain­
ing comprehensibility. Extension to a hierarchical segmentation 
would allow the learning of many sublabel patterns, while keep­
ing a higher-level, yet smaller-order, structure that a researcher 
could analyze and understand more readily. Whereas effective 
hyperparameter setting for hierarchical segmentation requires 
additional research, we have already implemented the capability 
for hierarchical training and identification in Segway.

Methods
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturemethods/.
Note: Supplementary information is available on the Nature Methods website.
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ONLINE METHODS
Signal generation. We selected data from 31 ChIP-seq, DNase-seq 
and FAIRE-seq assays carried out in the chronic myeloid leuke­
mia cell line K562 by the ENCODE Project1. We downloaded 
tagAlign files from the ENCODE Data Coordination Center12 
(Supplementary Table 4). We used Wiggler (http://code.google.
com/p/align2rawsignal/) to convert tag alignment positions into 
an extended reads per base signal for each position of the genome, 
pooling multiple replicates when available. We then loaded the signal 
data into a Genomedata13 archive. We include the URL for each of 
the tagAlign and signal files used in Supplementary Table 3.

Signal transformation. To reduce the distorting effects of high 
data values in sequence census assay data, Segway first trans­
forms all data values with the inverse hyperbolic sine function 
asinh x = ln(x +√(x2 + 1)). This function has the compressing 
effect of a function like ln x for large values of x but has much 
less of a compressing effect for small values. Additionally, it is 
defined on the entire real number line, preserving the input data 
values as positive or negative. One therefore avoids the discon­
tinuities inherent in the use of a simple logarithmic transforma­
tion and the necessity of first adding some offset to deal with 
zero values14.

The core model. Segway carries out training and inference on a 
DBN model designed for genomic segmentation (Supplementary 
Fig. 11). The core of the default Segway DBN has some similarity 
to an HMM, with multiple observation tracks and a number of 
discrete hidden variables. The default Segway DBN has a seg­
ment label backbone defined for each base pair of a genomic 
region. This hidden variable emits an observation variable for 
each observation track present at that position. An observation 
track is a sequence of numerical observations, such as the number 
of sequence tags overlapping successive genomic positions, or 
the intensity of a microarray probe associated with a position. In 
the default model, the ith observation track is represented by the 
sequence of random variables X1:T

(i) = (X1
(i), …, XT

(i)). Some posi­
tions t may not correspond to a defined value of Xt

(i). Examples 
include unmappable sequence in sequence census assays, or 
sequence not represented by a probe in a microarray assay. To 
explicitly model these missing data, we use an indicator variable 
to mark whether Xt

(i) is defined (X°t
(i) = 1) or undefined (X°t

(i) = 0).  
The observation variables at every position have dependency 
only on the hidden segment label variable at that position Qt 
(Supplementary Fig. 11). When the indicator variable (X°t

(i) = 0,  
then Xt

(i) does not have a dependence on Qt. In that case,  
the conditional parent arc from Qt to Xt

(i) is, for all intents and 
purposes, nonexistent in the DBN15. Segway models the asinh- 
transformed data with an m × n matrix of scalar Gaussians, with 
one Gaussian for each combination of n observation tracks and 
m segment labels. Each Gaussian has a mean parameter µ, and 
variance parameter σ2, which control the signal distribution that 
the Gaussian emits. Segway ties variance parameters such that 
they are all equal for a given observation track.

Weighting. Segway weights the contribution of each observation 
variable such that tracks with different numbers of data points still 
have roughly the same contribution to the overall likelihood of the 
model. It does this by exponentiating during inference calculations  

every occurrence of an original probability P(Xt
(i) | Qt) for some 

track i by the number of data points for that track N(i) = Σt(X°t
(i) 

divided by the maximum number of data points for any particular 
track N* = maxjN

(j). In other words, it replaces the original prob­
ability with a new probability: 

P X Q P X Qt
i

t t
i

t
N i
N′( | ) ( ( | ))( ) ( )
( )
*=

Because probabilities are always in the range [0, 1], an increase in 
weight will result in a decreased probability of the model overall, 
but when the weight is held constant, changes in the probabilities 
exponentiated to higher weights will affect the overall probability 
more than those exponentiated to lower weights.

The duration model. The Segway model includes additional ran­
dom variables that allow tuning beyond the simple HMM-like 
core model. A discrete countdown variable Ct allows the speci­
fication of minimum or maximum segment length. This vari­
able begins with an initial value dependent on Qt, and decreases 
by 1 at every position where the ruler marker variable Mt is 1 
(‘ruler marks’). Decreasing the countdown variable only upon 
the occurrence of an occasional ruler mark decreases the count­
down variable state space while still allowing longer minimum 
or maximum segment lengths. This heuristic greatly decreases 
computational complexity. A binary segment transition variable Jt  
can either force the segment label to change at the current posi­
tion (Jt = 1), or prevent it from changing (Jt = 0). Segway generates 
a conditional probability table P(Jt = 1 | Qt−1, Ct−1) that maps each 
(Qt−1, Ct−1) tuple to one of three rules that determine the value of 
Jt: (i) force, P(Jt = 1) = 1; (ii) prevent, P(Jt = 0) = 1; or (iii) allow, 
P(Jt = 1) = 1/(1 + L). The duration in which the segment label is 
unchanged following the point where the ‘allow’ rule becomes 
active follows a geometric distribution with an expected length 
of the L value9,16. In this study, we set Ct = 10 and the ‘force’ rule 
at the beginning of each segment. We also set the ruler marker 
every ten positions. This setting allows the enforcement of large 
minimum segment lengths with only a small increase in state 
space and computational complexity. When Ct decreases to 0, we 
set the ‘allow’ rule with L = 100,000 to model broader behavior 
when the observation variables do not control the segment label 
as they usually do. Despite the enforcement of a minimum dura­
tion before allowing a change in segment label, it is still possible 
to have very short segments at the end of input sequences, such 
as at the 3′ ends of genome assembly scaffolds.

DBN inference. Segway uses the graphical models toolkit 
(GMTK)17 to do expectation-maximization training18 and Viterbi 
decoding19 on the Segway models. Segway uses model structure 
files in the GMTKL specification language, and users may modify 
them or replace them with a DBN of arbitrary complexity. For 
decoding, Segway divides large sequences into nonoverlapping 
windows of no more than 2 Mb in size each so that the necessary 
computation can fit into available memory.

Training and parameters. We carried out ten separate instances 
of expectation-maximization training, each with different initial  
parameters, and each instance had no more than 100 itera­
tions. Segway picks an initial mean parameter µ for each track  
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uniformly from the values in µ~ ± 0.2 σ~ for the empirical mean 
µ~ and s.d. σ~ of the training data. It sets variance parameters σ2 
to the difference between the maximum and minimum data  
values within a particular observation track. We did training  
on the ENCODE pilot regions (http://hgdownload.cse.ucsc.edu/
goldenPath/hg18/database/encodeRegions.txt.gz), which repre­
sent 1% of the human genome (30 Mb). Segway sets the prob­
abilities P(Q1 = q) of starting a sequence with each segment label  
q ∈ [1, n] to 1/n, and does not adjust these probabilities during 
training. The conditional probability table P(Qt | Qt − 1), which 
Segway only uses when the segment transition variable Jt = 1, has 
only zeroes in its diagonal. This prevents a ‘transition’ that does 
not change the segment label. Segway initially sets the other values 
equally, but expectation-maximization training will adjust them. 
A training instance continues until the difference between the 
difference between the current likelihood Ln and the likelihood 
from the previous round Ln − 1 diminishes such that: 

log log

log

L L

L
n n

n

−
<

−

−

−1

1

510

We designated the training instance with the highest final likeli­
hood as the winning training instance and used its parameters to 
create the primary segmentation discussed here.

Segment identification and visualization. We carried out 
Viterbi decoding on 92% of the genome (2,828 Mb), excepting 
excluded blacklist regions downloaded from the ENCODE Data 
Coordination Center12 (http://hgdownload.cse.ucsc.edu/golden­
Path/hg18/encodeDCC/wgEncodeMapability/wgEncodeDuk­
eRegionsExcluded.bed6.gz). These regions contain repetitive 
elements that cause artifactually high signal in sequence census 
assays. We created the primary segmentation discussed here with 
the winning training instance parameters but did Viterbi decod­
ing with parameters from the other nine training instances for 
comparison purposes. Segway produces segmentations in BED 
format, designed for easy uploading and display on the UCSC 
Genome Browser20.

Distributed computing. Segway uses the Grid Engine or Platform 
LSF distributed computing systems through the Distributed 
Resource Management Application API (http://www.drmaa.org/) 
interface. Using these systems, Segway trains or decodes on multiple 
sequences and multiple initial parameter values at once, leading to a 
considerable savings in wall clock time. Segway automatically tunes 
memory usage by first queuing jobs with a small amount of memory 
(such as 2 gigabytes) and then repeating with ever larger amounts 
of memory if GMTK cannot complete inference with the smaller 
amount. This approach allows efficient resource management even 
when one cannot easily predict the memory usage in advance.

Genome assembly and annotations. We did all training, segmen­
tation, and analysis on the NCBI36 assembly of the human genome 
(hg18). We used GENCODE21 version 3c gene annotations (http://
www.gencodegenes.org/releases/3c.html) for aggregation and over­
lap analyses, as well as track display. We used ENCODE Project 
CAGE22 data (ftp://genome.crg.es/pub/Encode/data_analysis/TSS/
Mar-July2010/Gencodev3c_TSS.gff) for overlap analyses. We down­
loaded PhastCons scores for multiple alignments of 45 vertebrates  

to the human genome23 from the UCSC Genome Browser. We 
downloaded nucleosome positioning signal data collected in K562 
by micrococcal nuclease digestion and high-depth sequencing from 
the UCSC Genome Browser (http://genome.ucsc.edu/cgi-bin/hgFi
leUi?db=hg19&g=wgEncodeSydhNsome). We produced genome-
wide visualizations and summary statistics using Segtools24. We 
based precision and recall statistics on the overlap of the bases 
within a segment against some annotation, where true positives 
(TP) are positions where the segment label overlaps the annotation, 
false positives (FP) are positions where the segment label does not 
overlap the annotation, and false negatives (FN) are positions where 
the annotation does not overlap the segment label. We expanded 
point annotations (such as TSSs) by 500 bp on each side before cal­
culating these statistics. Precision (also known as positive predictive 
value) is defined as TP/(TP + FP). Recall (also known as sensitivity) 
is defined as TP/(TP + FN). We used precision and recall for evalu­
ation instead of receiver operating characteristic curves, because 
precision and recall can provide a more informative measurement 
of performance25. We defined TSSs with reproducible CAGE  
support as those with at least two cytoplasmic CAGE tags.

Transient transfection luciferase assays. We predicted the pro­
moter activity of sequences in the segmentation selected by the 
following procedure. We started with the segments that overlapped 
both GENCODE manually annotated protein-coding TSSs and a 
catalog of existing constructs from SwitchGear Genomics. We then 
excluded the segments that overlapped RepeatMasker 3.27 regions 
downloaded from the UCSC Genome Browser (http://hgdown 
load.cse.ucsc.edu/goldenPath/hg18/database/). We defined posi­
tive predictions as those segments with a TSS label that overlapped 
a GENCODE TSS with at least two K562 cytosolic poly(A)+ CAGE 
tags and a GENCODE TSS for a gene with at least K562 RNA-seq 
reads per kilobase per million reads (RPKM) above the 90th per­
centile. We defined negative predictions as those segments with  
R labels that overlapped a GENCODE TSS with no CAGE tags in 
any K562 cellular compartment, and a GENCODE TSS for a gene 
with 0.0 RPKM K562 RNA-seq reads. We further divided negative 
predictions by whether they had GM12878 RNA-seq read RPKM 
over the 10th percentile or not. This process resulted in a candi­
date set of 26 positive predictions and 74 negative predictions. 
SwitchGear Genomics did transient transfection luciferase assays 
in triplicate on 24 positive predictions, 67 negative predictions, and 
5 control constructs, narrowing from the candidate set on the basis 
of constructs in stock. They mixed 100 ng luciferase reporter DNA, 
0.4 µm Lipofectamine LTX (Invitrogen), and 0.1 µl PLUS Reagent 
(Invitrogen), and incubated it for 30 min. SwitchGear then thor­
oughly mixed this suspension with 25,000 freshly counted K562 
cells resuspended in warm, complete media. They dispensed 100 µl  
of the combined suspension into replicate white 96-well assay 
plates and incubated them at 37 °C for 24 h. They then removed 
the plates from the incubator, added SteadyGlo reagent (Promega) 
to each well, and kept the plates in the dark for >30 min. They 
then read the plates on an LmaxII-384 luminometer (Molecular 
Devices). We considered the resulting data points substantial when 
their activity exceeded a threshold of the mean control activity 
plus six times the s.d. of control activity.

Gene Ontology enrichment analysis. We analyzed the sets of 
GENCODE TSSs that overlapped with each segment label for 
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the enrichment of GO terms. We used the Ensembl26 Perl API to 
convert GENCODE transcript identifiers to UniProt27 identifiers. 
We then used FuncAssociate28 to find enrichment in 25 result­
ing gene sets, using 10,000 resamplings for each to determine  
hypothesis-wise P values. We then multiplied these P values by 25 
as a Bonferroni correction for testing multiple hypotheses.

Transcription factor motif analysis. We obtained position spe­
cific scoring matrices (PSSMs) from the TRANSFAC 10.2 (ref. 29) 
and JASPAR CORE 2009 (ref. 30) databases. Using FIMO31, we 
scanned the human genome for significant matches to the PSSM 
(q < 0.1). From these candidate motifs, we selected known verte­
brate cis-regulatory motifs with at least 1,000 significant matches 
in the genome. We used the genome structure correction mar­
ginal region overlap test in block_bootstrap32, as implemented in 
Statmap (http://www.statmap-bio.org/), to test each segment label 
for enrichment in matches to each of the selected motifs. We then 
applied the Bonferroni correction to the resulting P values.

Statistical analysis. We carried out statistical analysis with R 2.11 
(http://www.rproject.org/).
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