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ABSTRACT

Motivation: A variety of algorithms have been developed to predict
transcription factor binding sites (TFBSs) within the genome by
exploiting the evolutionary information implicit in multiple alignments
of the genomes of related species. One such approach uses
an extension of the standard position-specific motif model that
incorporates phylogenetic information via a phylogenetic tree and
a model of evolution. However, these phylogenetic motif models
(PMMs) have never been rigorously benchmarked in order to
determine whether they lead to better prediction of TFBSs than
obtained using simple position weight matrix scanning.
Results: We evaluate three PMM-based prediction algorithms, each
of which uses a different treatment of gapped alignments, and we
compare their prediction accuracy with that of a non-phylogenetic
motif scanning approach. Surprisingly, all of these algorithms appear
to be inferior to simple motif scanning, when accuracy is measured
using a gold standard of validated yeast TFBSs. However, the PMM
scanners perform much better than simple motif scanning when we
abandon the gold standard and consider the number of statistically
significant sites predicted, using column-shuffled ‘random’ motifs
to measure significance. These results suggest that the common
practice of measuring the accuracy of binding site predictors using
collections of known sites may be dangerously misleading since
such collections may be missing ‘weak’ sites, which are exactly
the type of sites needed to discriminate among predictors. We then
extend our previous theoretical model of the statistical power of
PMM-based prediction algorithms to allow for loss of binding sites
during evolution, and show that it gives a more accurate upper
bound on scanner accuracy. Finally, utilizing our theoretical model,
we introduce a new method for predicting the number of real binding
sites in a genome. The results suggest that the number of true sites
for a yeast TF is in general several times greater than the number
of known sites listed in the Saccharomyces cerevisiae Database
(SCPD). Among the three scanning algorithms that we test, the
MONKEY algorithm has the highest accuracy for predicting yeast
TFBSs.
Contact: j.hawkins@imb.uq.edu.au

1 INTRODUCTION
An important goal in current molecular biology research is to
understand the cellular systems that regulate gene expression.
One part of this goal lies in identifying the binding locations of
transcription factors (TFs)—proteins that bind to DNA segments
and regulate the expression of nearby genes. Due to the difficulty
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in accurately assaying protein–DNA interactions on a large scale,
we have only a small amount of high-quality experimental data
regarding the location of these binding sites. Hence, we require good
computational tools for identifying the remaining sites.

Unfortunately, attempts to construct accurate binding site
predictors have been frustrated by the small size of the binding
sites, which means that DNA regions identical to functional binding
sites occur by chance with high frequency. As a result, standard
probabilistic motif search using a position weight matrix (PWM)
suffers from overwhelming numbers of false positive predictions
(Wasserman and Sandelin, 2004). In order to produce better
predictors, researchers have turned to other sources of information.

The biological reality is that many components of the cellular
system cooperate to produce a protein–DNA binding event. For
example, TFs tend to bind in groups to form macro-molecular
complexes, and the binding is thus stabilized by the presence of
other TFs (Levine and Tjian, 2003). Furthermore, there is emerging
evidence that a range of epigenetic factors contribute to the binding
of TFs (Guccione et al., 2006; Kouzarides, 2007; Liu et al., 2006).
Computational tools have been constructed that make use of TF
protein complex information (Berman et al., 2002) and epigenetic
DNA modifications (Narlikar et al., 2007; Whitington et al., 2008).

An alternative source of information, which is not exploited by
the cell itself, comes from comparative genomics. We expect that
important features in biological sequences tend to evolve more
slowly than the neutral rate. This assumption has been exploited
to identify functional regions by comparative genomics techniques
such as phylogenetic footprinting (Gumucio et al., 1992) and
shadowing (Boffelli et al., 2003). The assumption of evolutionary
conservation has also been utilized by a class of motif scanning
algorithms based on what we call phylogenetic motif models
(PMMs). These models extend the popular PWM motif models
used in computational biology to represent and identify sequence
features such as TF binding sites (TFBSs), splice junctions and
binding domains in DNA, RNA and protein molecules, respectively
(GuhaThakurta, 2006; Stormo, 2000). Whereas a PWM computes
the probability of given region in a single genome being an instance
of a motif, a PMM computes the probability of an ungapped region
in a multiple alignment being comprised of instances of the motif
that evolved independently from an ancestral instance.

PMM scanning algorithms are an extension of simple PWM
scanning algorithms. Instead of scanning a single sequence,
however, a PMM algorithm scans a multiple alignment of
orthologous sequences, usually produced by a tool such as ClustalW
(Chenna et al., 2003), MAFFT (Katoh et al., 2002), MULTIZ
(Blanchette et al., 2004) or Multi-LAGAN (Brudno et al., 2003).
The PMM scanning approach also requires an explicit model of
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nucleic acid substitution and a phylogenetic tree describing the
relationship and evolutionary distances among the species from
which the orthologous sequences are taken. Several TFBS prediction
algorithms have been implemented that use PMMs. These include
the Monkey algorithm (Moses et al., 2004), a variant called rMonkey
(Moses et al., 2006), and Motiph, which is available as part of the
MEME Suite (http://meme.nbcr.net).

Surprisingly, earlier attempts to demonstrate that these PMM
scanning algorithms are superior to simple PWM scanners failed
to show any significant difference (Hawkins and Bailey, 2008).
In that work, we evaluated the algorithms using TF motifs,
multiple alignments and known TFBSs from yeast (Saccharomyces
cerevisiae). In addition to indicating that simple PWM scanning
might be as accurate (at least in yeast) as PMM scanning, the
accuracy of PMM scanners at predicting the known binding sites was
orders of magnitude less than it should theoretically be, assuming
that binding sites are not lost and that the multiple alignments are
reasonably accurate.

One explanation for why the accuracy of PMM scanners appeared
no better than that of simple PWM scans in previous work is that
the gold standard might be biased against more sensitive scanning
methods. One way in which this could happen is if the experimental
methods used in creating the sets of known TFBSs systematically
leave out weakly binding sites. Such weak sites will tend to have low
PWM scores, and be missed by PWM scanners. However, weak sites
are known to be important biologically (Gertz et al., 2008), so they
will tend to be conserved, causing PMM scanners to detect them. If
weak sites are systematically more likely to be missing from the gold
standard, PMM scanners will appear to be less accurate (due to larger
numbers of apparent false positive predictions—the weak-but-real
sites) than simple PWM scanners.

Missing functional sites in the gold standard would also explain
some, but not all, of the discrepancy between the theoretical
and empirical accuracy of PMM scanners. Our earlier simplifying
assumption that binding sites have not been lost in some of
the orthologous species in the multiple alignment is clearly false
(Moses et al., 2006). Relaxing this assumption in the theoretical
model would lower the theoretically achievable prediction accuracy
because loss-of-site events make real sites harder to distinguish
from background sequence. Errors in the multiple alignments
of orthologous species would also account for some of the
discrepancy in accuracy, and the assumption that the multiple
alignments correctly align orthologous positions is clearly overly
optimistic.

The contributions of the present work are 4-fold. First, we
extend our previous study of the empirical accuracy of PMM-
based scanners using a set of known sites (a ‘gold standard’),
confirming the apparent paradox noted above. Secondly, we show
that the paradox disappears when we adopt an alternative evaluation
approach that uses column-shuffled (‘random’) motifs, rather than
a set of known sites, to measure prediction accuracy. Under this
metric, PMM scanners are more accurate than a simple PWM scan,
and heuristics for locally correcting errors in the multiple alignments
are beneficial. Thirdly, we extend our theoretical model of PMM
scanner accuracy to allow for site loss and and show that it more
accurately fits the available data for yeast. Finally, we show how
theoretical models of prediction accuracy can be used to estimate
the number of functional binding sites of a TF in a genome, and
provide such estimates for 21 yeast TFs.

2 MATERIALS AND METHODS

2.1 TFBS prediction algorithms
All the binding site prediction algorithms in this study use a matrix
representation of a motif, M, in which the rows represent each of the four
possible nucleic acids and the columns correspond to positions within the
motif. Each matrix entry is the probability of seeing the given residue in the
specified position. The algorithms all make use of a background distribution
of nucleic acids, B, a single vector that contains the overall frequencies of
the nucleic acids in the target genome. The PMM algorithms also require
a phylogenetic tree with distances (in substitutions per site), relating the
species in the alignments of orthologous regions that they scan.

Scoring a site using a PMM involves computing a log-likelihood ratio of
an alignment column σ of N sequences given evolutionary models of the
motif and background θM and θB, respectively. Under the assumption that
the columns of the motif model are independent, the log-likelihood scores
are additive; hence, the scoring function generalizes easily to the score for
an alignment of length L by summing the scores of the individual columns.
When aligned with the j-th position in the motif, the log-likelihood score for
this column is written as

S(σ ) = log
Pr(σ |θMj ,T )

Pr(σ |θB,T )
, (1)

where θMj refers to the motif model for the j-th position in the motif and T is a
phylogenetic tree containing the evolutionary distances between the species.
The two models θM and θB incorporate the frequencies in the position-
specific probability matrix of the motif, M, the background frequencies
of the residues, B, different substitution rates for the two models RM and
RB, respectively, and an evolutionary model for calculating the substitution
probabilities. We use the HKY (Hasegawa et al., 1985) model with the
Halpern–Bruno modification (Halpern and Bruno, 1998) (HKY+HB) with
all PMM scanning algorithms in this study.

The PMM scanning algorithms that we test differ primarily in how they
handle gaps. The Motiph algorithm simply ignores regions with gaps. The
MONKEY (Moses et al., 2004) and rMonkey (Moses et al., 2006) algorithms
treat gaps as mistakes in the multiple alignment. MONKEY removes gaps
locally, creating an ungapped local alignment for each position in the
reference species. Each of these re-alignments can only use positions that
are close to each other in the original multiple alignment. The rMonkey
algorithm uses a slightly different heuristic for fixing gaps. Using the PWM
model, it identifies the highest scoring site in the reference sequence, and
then realigns it (without gaps) to the other sequences. Only regions that
overlap the reference match by at least one base pair in the original multiple
alignment are considered in the realignment. This process is repeated for
the remaining binding-site free intervals in the reference sequence until no
single species match remains that passes a significance threshold.

2.2 Measuring prediction accuracy
We measure the accuracy of TFBS prediction methods using false discovery
rate (FDR), which expresses the proportion of the predictions that are false
positives. We report accuracy as either FDR at a given sensitivity level or at
a given number of predictions. In general, we are interested in knowing what
the FDR is when we choose a particular score as a threshold for deciding
which positions in the genome are predicted to be binding sites. Without
loss of generality, assume that a prediction algorithm assigns a score, s, to a
position in a genome, and that larger values of s indicate higher confidence
that the position is a binding site.

When we evaluate prediction accuracy using a gold standard set of known
sites, we define the FDR for each score threshold t such that there is at least
one position with score t or larger as

FDR(t) = #N{s≥ t}
#S{s≥ t} , (2)

where #S{s≥ t} is the total number of positions in the genome whose score s,
is at least t, and #N{s≥ t} is the number of ‘negatives’(non-binding positions)
in the genome with score at least t.
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When we evaluate prediction accuracy without reference to a set of known
sites, we replace the numerator in Equation (2) with the expected number of
negative predictions with score t or greater. This is simply npt , where n is the
total number positions scored, and pt is the P-value of the score threshold.
We estimate the P-value of score t using the empirical null score distribution
we construct as described below in Section 2.4. This gives an (estimated)
FDR of

FDR(t) = npt

#S{s≥ t} . (3)

We also make use of the q-value, a quantity closely related to FDR. The
q-value is defined as the minimum FDR at which a score is deemed significant
(Storey, 2002). Assuming, as before, that higher scores are more significant,
the q-value of score t is therefore

qt = argmin
s≤t

FDR(s). (4)

2.3 Estimating prediction accuracy using known sites
The most straightforward way to compare binding site prediction algorithms
is by estimating their ability to discriminate a known set of binding sites from
non-binding sites. The Saccharomyces cerevisiae Database (SCPD) (Zhu and
Zhang, 1999) contains sets of known binding sites in the S.cerevisiae genome
for a number of TFs. We use only the 21 TFs whose sets contain at least five
known sites. We build motifs for each of these TFs to measure the accuracy
(FDR) of the scanning algorithms in a cross-validation setup. Using the set
of sites for a single TF, we build a set of motifs in which, for each motif,
exactly one of the sites is removed. Using each motif independently, we scan
multiple alignments of all intergenic regions of four species of yeast, ignoring
predictions for the sites we used in building that motif. We then compute the
FDR at a given sensitivity level (percentage of positives predicted) of the
combined predictions made using all of the motifs for the given TF, assuming
that all positions not listed in the set of known sites are negatives (non-binding
sites).

In our experiments, we use the multiple alignments and phylogenetic
tree given in Kellis et al. (2003). The alignments cover all the intergenic
regions in S.cerevisiae aligned with the orthologous regions in S.paradoxus,
S.mikatae and S.bayanus. The Newick-formatted species tree (with
distances in substitutions per site) is (((Scer:0.146, Spar:0.105):0.077,
Smik:0.216):0.086, Sbay:0.333). The background frequencies are derived
from the yeast data and are A=3.235e−01,C =1.778e−01,G=1.770e−01
and T =3.217e−01. To all motifs we add a pseudo count of 0.01 to ensure
non-zero probabilities. We apply the PMM scanners Motiph, Monkey and
rMonkey. We also run Motiph as a simple PWM scanner to scan just
the S.cerevisiae intergenic regions, ignoring the multiple alignment and
evolutionary tree.

2.4 Estimating prediction accuracy using
column-shuffled motifs

An alternative way to estimate the prediction accuracy of a PMM or PWM
scanning algorithm, that does not require a set of known sites, is to estimate
the score distribution of the ‘negatives’ (non-binding positions). Using this
null score distribution, we can compute the P-value of any score threshold t,

pt =Pr(s≥ t),

which we then use to compute the FDR at that score threshold [Equation (3)]
To estimate the null distribution of scores for a given motif, we extend

an approach that was developed for measuring the prediction accuracy of
regular expression motifs (Kheradpour et al., 2007). The basic idea is to use
a set of ‘random’ (control) motifs as input to the scanning algorithm and
count the number of times each score occurs. The estimate of the probability
of each score is then gotten by normalizing these counts so that the total
probability sums to one. Summing the probabilities of all scores greater than
or equal to t gives the P-value, pt .

The challenge in this approach is to create control motifs whose score
distributions are similar to the true null distribution we wish to estimate. In
a nut shell, we create a set of 20 control motifs by first creating 100 column-
shuffled versions of the original motif, and then selecting 20 motifs that
are least similar to known yeast TF motifs, and are as dissimilar from each
other as possible. In selecting the motifs, we also enforce a few additional
constraints, as discussed below.

The process begins with the generation of 100 candidate control motifs by
shuffling the columns of the target motif. In generating our shuffled motifs,
we use the additional constraint that columns within the motif can only be
exchanged if the information content of the two columns differs by less than
a certain threshold, which we set at 0.4, exactly one-fifth of the maximal
information content of a column.

We use the set of 100 shuffled motifs as input to the prediction algorithm to
scan the yeast intergenic region multiple alignments. We also scan using the
real motif. Using the scan results, we filter out all candidate control motifs that
do not yield a number of ‘hits’ within ±20% of the real motif, where a hit is
defined as a score with P-value at most 0.001. (Each of the algorithms tested
provides estimates of score P-values.) We then use the software described in
Kheradpour et al. (2007) to perform the following steps. First, we cluster the
remaining set of potential motifs, along with all the known yeast TF motifs
(from SCPD), and eliminate any clusters that contain one or more known
motifs. Then, we randomly select one representative control motif from each
remaining cluster. The 20 representative motifs that are least similar to any
known motif comprise our set of control motifs, and we use the scores from
scans using them to estimate the null score distribution of the real motif, as
described above.

2.5 Theoretical accuracy of PMM scanning allowing
site loss

In order to quantify the predictive power of PMM scanning algorithms, we
previously developed a method to estimate the distributions of PMM scores
of binding sites and non-binding sites (Hawkins and Bailey, 2008). This
approach allows us to estimate the probability of any score, s, under either
the motif model,

PM (s) = Pr(s|θM ,T ), (5)

or under the background model,

PB(s) = Pr(s|θM ,T ). (6)

We can thus give estimates of true positive rates and false positive rates for
any PMM score.

Our previous work was based on the simplifying assumption that binding
sites are not lost during evolution. Since it is well-known that binding sites
are frequently lost in one or more lineages (Doniger and Fay, 2007), we now
present a method for calculating PMM score distributions under a theoretical
model that allows sites to be lost independently in any lineage. Note that we
do not permit a site to be regained once it has been lost.

We assume that the instantaneous probability of the loss of a site is
independent of how long it has been conserved and does not change over
time. Hence, the appropriate probability density function is a continuous
exponential distribution of the form f (t)=λe−λt where λ is the single
parameter that governs the rate of loss. To compute the cumulative probability
that a given site is lost in time t, we integrate f (t) over the interval [0,t] that
gives the cumulative probability distribution

F(t) = 1−e−λt . (7)

Once a site loss occurs, the evolutionary model switches permanently from
the site model (θM ) to the background model (θB).

For our theoretical models, we use a phylogenetic tree with star topology
and equal branch lengths. D. Following Eddy (2005), we place the target
(first) genome in the center of the star. This placement allows a dynamic
programming solution that computes the score probability distribution in
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time linear in the motif parameters. We have previously verified that for small
evolutionary distances, this approach produces extremely accurate estimates
of the score distribution calculated using real phylogenetic trees (Hawkins
and Bailey, 2008).

Two assumptions of independence simplify the process of calculating the
probability distributions required in computing the distribution of the log-
likelihood scores, s. First, the assumption of a phylogenetic star with the
target genome in the center means that each genome evolves from the target
independently; hence, the probability of N genomes is the probability of
the first N −1 genomes times the probability of seeing the N-th genome.
Second, the assumption of independence between the positions within the
motif implies that the probability distribution for the score considering only
the first m columns in the multiple alignment is the probability of seeing the
first m−1 columns times the probability of the m-th column.

These assumptions allow us to apply dynamic programming to calculate
a discretized approximation to the score probability distributions (Staden,
1990). We calculate the distribution under both the assumption that we
are dealing with a conserved motif, and under the assumption that we are
dealing with a neutral sequence. We are then able to generate the cumulative
distributions under each model and determine the false positive and false
negative rates at each possible score.

We use the HKY (Hasegawa et al., 1985) substitution model to
calculate the substitution probabilities for both the background and the
motif evolutionary models. (Our analysis allows any of the standard
substitution models, and our implementation incorporates the Jukes-Cantor,
Kimura 2-parameter, F81, F84, HKY and Tamura-Nei models.) We use the
parameter settings of the HKY model employed in MONKEY (Moses et al.,
2004, 2006), so that the transition–transversion ratio is set to 3.8, and the
background distribution, B, is set to BA =BT =0.3 and BC =BG =0.2. These
values are very similar to the ones employed by (Eddy, 2005) in his numerical
verification of his phylogenetic footprinting study using an HKY-generated
sample.

When the tree has a uniform star topology with the target genome in the
center, the score function [Equation (1)] can be rewritten as

S(σ ) = log
Pr(σ1|Mj)

∏N
i=1 Pr(σi|σ1,θMj ,D)

Pr(σ1|B)
∏N

i=1 Pr(σi|σ1,θB,D)
,

= log
Pr(σ1|Mj)

Pr(σ1|B)
+

N∑
i=2

log
Pr(σi|σ1,θMj ,D)

Pr(σi|σ1,θB,D)
, (8)

where Pr(σi|σ1,θ,D) is the probability of seeing the letter σi in the i-th
genome given the symbol σ1 in the target, given evolutionary distance
D separating the target from each of the other genomes, and given the
evolutionary model θ . (Note that the first term in Equation (8) is just the
PWM score of the position in target genome.)

We compute the probability under the background evolutionary model,
Pr(σi|σ1,θB,D), using the ‘pruning algorithm’ of Felsenstein (1981). The
same is true for evolution under the motif model, Pr(σi|σ1,θM ,D), when we
do not allow site loss. When sites can be lost, however, this probability is the
sum of two cases—either there is no site loss event, or there is exactly one.
Letting Loss be a Boolean variable indicating whether such an event occurs,
we can rewrite the probability as

Pr(σi|σ1,θMj ,D) = Pr(Loss,σi|σ1,θMj ,D)+
Pr(Loss,σi|σ1,θMj ,θB,D),

= e−λD Pr(σi|σ1,θMj ,D)+
Pr(Loss,σi|σ1,θMj ,θB,D). (9)

The first term in the sum in Equation (9) is the probability of no loss event
[1−F(D), Equation (7)] times the probability under the no-loss model,
which can be computed using the pruning algorithm. The second term in
the sum in Equation (9), Pr(σi,Loss|σ1,θMj ,θB,D), is the probability that a
loss occurred sometime over the period D and symbol σi in the i-th genome

‘evolved’ from residue σ1 in the target genome given that prior to the loss
it evolved according to the motif model, k θM , and after the loss event it
evolved according to the background model, θB. This term can be computed
by integrating over all times, t, where the loss event might have occurred,
and over all symbols, a, that might have been present at the time of the loss,

Pr(Loss,σi|σ1,θMj ,θB,D)=
∫ D

t=0
λe−λt

(∑
a∈A

Pr(a|σ1,θMj ,t)Pr(σi|a,θB,D− t)
)

dt, (10)

where A is the DNA alphabet. To compute Equation (10), we numerically
approximate the integral using the rectangle method with the midpoint
rule, computing each of the probabilities using the pruning algorithm.
We validated the effectiveness of this approach by empirically generating
multiple alignments in which motif sites were lost with a frequency
determined by our exponential loss function. The numerical approximations
produced probabilities correct to three decimal places.

2.6 Estimating the number of TFBSs in a genome
One way to estimate the number of binding sites in a genome is to
choose the smallest number of sites such that our theoretical model of
PMM score distributions predicts a higher (better) sensitivity (number of
predictions) at all q-values than we observe when measuring empirical
accuracy using column-shuffled motifs. This is motivated by the assumption
that the theoretical model provides an (estimated) upper bound on prediction
accuracy, so the empirical accuracy estimates should not exceed the
theoretical accuracy estimates. As described in Section 3.4, we find that
the requirement that the theoretical sensitivity be higher at all q-values is too
strict. Therefore, we instead estimate the smallest number of sites such that
the requirement is met on the q-value interval [0,Q]. We study the behavior
of this estimate as we vary Q.

To compute our estimate of the true number of binding sites, b, for a given
TF, we first use the shuffled-motif method to compute empirical estimates of,
for each observed score, s, the q-value of the score, QE (s) and the observed
number of predictions with that score or better, CE (s). We then use our
theoretical model of PMM score distributions to compute the equivalent
(theoretical) values QT (s,b) and CT (s,b), each of which depends on an
assumed number of true binding sites, b. To describe our requirement that
the theoretical accuracy always be better than the empirical at all q-values,
we need to define functions that map q-values to scores. Because more than
one score may have the same q-value, we define the inverse functions as the
minimum score with a given q-value,

SE (q) = argmin
QE (s)=q

s, and

ST (q,b) = argmin
QT (s,b)=q

s.

Finally, we search for the minimum value of b, b̂(Q), such that the
requirement that the observed number of predictions, CE (s), is always less
than the expected number of predictions under the theoretical model, CT (s,b)
for all values of q in the range [0,Q],

b̂(Q) = argmin
q∈[0,Q],CE (SE (q))≤CT (ST (q,b))

b (11)

For each value of Q, b̂(Q) gives an estimate of the true number of sites.
In order to get our theoretical estimates of the q-values and numbers of

predictions at different scores, we proceed as follows. Given that there are
b true binding sites and n−b non-binding sites, we expect that there will be
TP(s,b)=bPM (s) true positive predictions and FP(s,b)= (n−b)PB(s) false
positive predictions at a score threshold of s, where PM (s) and PB(s) are as
defined in Equations (5) and (6), respectively. The expected theoretical FDR
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of score s is the proportion of false positive predictions:

FDR(s,b) = FP(s,b)

FP(s,b)+TP(s,b)
,

= (n−b)PB(s)

(n−b)PB(s)+bPM (s)
.

Plugging this estimate of FDR into Equation (4) gives us QT (s,b), our
theoretical score to q-value mapping function. The theoretical score to
number of predictions map is just the sum of the numbers of true and false
positives, CT (s,b)=TP(s,b)+FP(s,b).

For comparison, we apply a previously described statistical technique
which assumes that the observed score distribution is a mixture of
two distinct distributions. One distribution characterizes the real sites
(alternative distribution), and the other characterizes the background sites
(null distribution). The values π0 and π1 are defined as the fraction of scores
drawn according to the null and alternative distributions, respectively. To
estimate these two values, we use an implementation of the bootstrapping
method described by Storey (2002). This method selects an optimal P-value
threshold, p̂, and then estimates π0 as

π0(p̂) = #{pi > p̂}
(1−np̂)

where n is the total number of P-values. Using this approach, the estimate
of the number of real sites is

b̂(p̂) = n(1−π0(p̂)).

3 RESULTS AND DISCUSSION

3.1 PMM scanners perform worse than a simple PWM
scan at predicting known TFBSs

We first show that using a gold standard of known yeast TFBSs in
a cross-validated experiment indicates that there is no advantage in
prediction accuracy with PMM scanners compared with a standard
PWM scan. Actually, the opposite appears true, as shown in Table 1.
At a sensitivity level of 50%—when half of the known binding
sites are detected—the simple PWM scan has better accuracy (lower
cross-validated FDR) than all three PMM scanners tested for 14
out of the 21 TF motifs. The apparent superiority of simple PWM
scanning persists over all sensitivity levels (data not shown).

The differences in accuracy are often substantial. For one TF
(PDR1), the PWM scan of just the S.cerevisiae genome achieves
a 0% FDR, while the three PMM algorithms, which scan multiple
alignments of four yeast genomes, have false discovery rates of
at least 55% and up to 99%. In the few cases where the simple
PWM scan does not outperform the other methods, its FDR is often
quite close to that of the other algorithms. The one exception is the
TF ROX1, where the phylogenetic algorithms achieve much lower
FDR than the single sequence scan (20% versus 87%). In general,
however, this experiment fails to demonstrate any substantial benefit
to using phylogenetic motif scanning.

Several explanations are possible for the apparent failure of the
phylogenetic motif scanners in this test. Errors in the multiple
alignments of the intergenic regions could be causing conserved
sites to receive poor scores. This explanation is supported by the
observation that the rMonkey algorithm, which performs extensive
re-alignment of the sequences during scanning, does slightly better
than Motiph, which simply ignores gapped regions. Re-alignment
strategies used by Monkey and rMonkey can also recover sites
that have ‘drifted’–the original site is not conserved but a new site
has emerged nearby. Both algorithms restrict re-alignments to very

Table 1. Evaluation of PWM and PMM scanners using a gold standard

TF name False discovery rate at 50% sensitivity

PWM Motiph Monkey rMonkey

ABF1 76.6 69.2a 70.2 71.3
BAS1 88.2 76.2 51.6a 55.9
GAL4 0.0a 31.5 29.6 24.2
GCN4 76.5a 84.8 80.8 79.0
HAP1 75.0a 94.3 96.2 94.6
HSE,HSTF 63.2a 82.3 69.9 71.7
MATalpha2 68.1a 95.1 98.7 97.0
MCM1 31.8a 83.0 75.4 78.6
MIG1 85.5a 99.4 99.5 99.5
PDR1 0.0a 55.4 99.2 98.7
PHO4 81.7a 87.5 90.6 89.3
RAP1 55.9a 91.8 86.9 58.8
REB1 94.1 91.1 88.5 88.2a

repressor_of_CAR1 90.4a 97.7 97.8 97.1
ROX1 86.6 20.0b 20.0b 20.0b

SWI5 89.4a 95.9 92.1 89.9
TBP 99.0 96.8 96.3 95.2a

UASH 99.0a 100.0 99.9 99.6
UASPHR 99.9 100.0 99.9 99.3a

UIS 72.7a 83.3 89.0 89.1
URS1H 29.0 25.0a 40.0 40.0

Wins 14 2 1 3
Ties 0 1 1 1

The cross-validated FDR (%) at a sensitivity of 50% of a simple PWM scanner and three
different PMM scanning algorithms evaluated on a gold standard set of yeast TFBSs is
shown. Column headings give the name of the program. All PMM-based scans use the
HKY+HB evolutionary model. Each row gives FDR when predicting the gold standard
sites of the named TF.
aThe best for values (lowest) in their row.
bValues tied for the best FDR. Total number of wins and ties for each method is shown
at bottom.

narrow windows, however, and neither can correct for sites that have
drifted to the opposite strand. These limitations may partially explain
the fact that Monkey and rMonkey do not perform substantially
better than Motiph, which has no re-alignment strategy. (Careful
examination of Table 1 shows that Motiph has lower FDR than both
Monkey and rMonkey in 8 out of 21 cases.)

An alternative explanation for the apparent failure of the
phylogenetic motif scanners is that errors within the gold standard
are systematically biased against phylogenetic-based scanning. We
expect that the gold standard is missing some, and possibly many,
functional sites. These missing sites will be flagged as false positives,
and can cause an algorithm that correctly detects them to have a
larger (apparent) FDR. The sites missing from the gold standard
are likely to be minor variants of the motif with slightly lower
binding affinity, such that the experimental methods for identifying
protein to DNA binding sites overlook them. If these sites are
nevertheless highly conserved, then the phylogenetic scanners will
score them much higher and appear to have a larger number of false
positive predictions. This effect may be contributing to the apparent
failure of the phylogenetic motif scanners to improve upon single
sequence scanning. We provide evidence for this hypothesis in the
next section.
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Table 2. Evaluation of PWM and PMM scanners using a shuffled-motif control

TF name q-value (min FDR) at 20 predictions q-value (min FDR) at 50 predictions

PWM Motiph Monkey rMonkey PWM Motiph Monkey rMonkey

ABF1 20.1 19.5 7.4a 12.4 61.9 43.7 33.6a 37.8
BAS1 71.0 72.5 34.8a 35.0 92.8 75.7a 75.9 80.1
GAL4 60.4a 94.4 69.0 85.9 97.7 95.3 88.5a 97.2
GCN4 59.1 13.4a 19.6 26.2 78.1 51.5a 61.6 71.5
HAP1 66.5 27.7a 32.8 41.5 66.5 47.5 34.8a 46.1
HSE,HSTF 27.6 17.7a 29.0 25.5 42.9a 46.9 64.0 62.2
MATalpha2 75.7 58.1 53.4a 56.9 77.0 63.9 62.6a 66.2
MCM1 11.4a 22.1 25.5 19.5 30.8a 51.2 60.9 66.2
MIG1 43.5 35.0 25.8a 31.9 57.7 64.7 54.7a 60.1
PDR1 27.2a 31.8 61.1 58.9 41.2 33.9a 61.1 58.9
PHO4 41.5 25.5 18.3a 27.0 56.8 45.8 39.0a 46.7
RAP1 16.5a 30.0 27.5 21.0 48.9a 64.2 52.3 49.2
REB1 48.7 10.9 7.3a 9.0 48.7 24.9 17.7a 23.1
repressor_of_CAR1 20.5 10.7 8.0 7.7a 45.5a 57.0 55.5 57.8
ROX1 63.9 64.9 40.4a 48.5 79.3 67.3 60.2 54.6a

SWI5 72.8 76.0 64.0a 75.7 81.3 76.0 64.0a 75.7
TBP 13.3 0.0b 0.0b 6.8 13.3a 22.1 17.8 20.2
UASH 77.8 79.2 73.8a 73.9 79.4 79.2 77.1 73.9a

UASPHR 59.0 47.7a 64.0 50.5 70.8 70.2a 79.7 71.8
UIS 51.4 50.0 31.5a 45.0 73.0 70.6 54.4a 56.5
URS1H 3.2 7.0 1.0a 1.4 53.4 41.2 27.6a 31.3

Wins 4 4 11 1 5 4 10 2
Ties 0 1 1 0 0 0 0 0

The estimated q-value (minFDR %) of a simple PWM scanner and three different PMM scanning algorithms. Column headings give the name of the program. All PMM-based
scans use the HKY+HB evolutionary model. Each row gives q-value (minFDR) estimated using shuffled motifs to estimate the null score distribution.
a The best q-values in their row.
bValues tied for the best q-value. Total number of wins and ties for each method at the given number of predictions is shown at bottom.

3.2 PMM scanners are more accurate than PWM
scanners

When we measure prediction accuracy without reference to gold
standard sets of known sites, it becomes clear that PMM scanners
are more accurate than simple PWM scans. The q-value (minimum
FDR) of each of the scanners, estimated using the column-shuffled
motif approach, is shown for the yeast TF motifs in Table 2. The table
gives the prediction accuracy at two different levels of sensitivity—
20 and 50 total predicted sites. When making 50 binding site
predictions, PMM scans have lower minimum FDR than PWM
scans with 16 of the 21 yeast TF motifs used in this study. When 20
binding sites are predicted, PMM scans have lower minimum FDR
for 17 out of 21 motifs. The improvement over the simple PWM scan
of each of the PMM scanners is statistically significant according
to a signed rank test (Motiph, p=0.013; Monkey, p=0.001; and
rMonkey, p=0.008).

The systematic improvement of all phylogenetic motif scanners
over the PWM scanner strongly supports the hypothesis that the
gold standard data are systematically biased against the phylogenetic
motif scanners. Therefore, these results suggest that not only do all
of the models perform better than the gold standard indicates, but in
many cases the PMMs provide a considerable advantage over PWM
scanning.

The results in Table 2 also indicate that the different realignment
strategies used by the three PMM scanners make a large difference.
The approach used by the Monkey algorithm works best with the

21 yeast TF motifs studied here. Monkey has the best accuracy
among all the prediction algorithms for 11 out of the 21 motifs at a
sensitivity level of 20 predictions, and for 10 motifs at a sensitivity
level of 50 predictions.

3.3 Incorporating site loss improves our theoretical
estimate of the statistical power of PMM scanners

The extension of our earlier model of the statistical power of PMM
scanners to allow loss-of-site events causes it to agree more closely
with the observed power of PMM scanners on the yeast gold standard
TFBS sets. We evaluate the accuracy of the theoretical model by
comparing the ROC curves (Swets, 1988) it predicts with the ROC
curves generated by our cross-validation experiments with the 21
yeast TF motifs. An example of the behavior of the theoretical
model under five different assumptions of the probability of site
loss events, ranging from no loss to up to 51% chance of loss in any
lineage, is shown in Figure 1. Assuming 51% chance of loss shifts
the theoretical ROC curve about an order of magnitude closer to the
observed ROC curve. This plot is typical of the plots for all 21 TF
motifs (data not shown).

The extended theoretical model also agrees well with empirical
estimates of statistical power based on the shuffled-motif approach.
Figure 2 shows that, if we assume that there are 51 realABF1 binding
cites in the yeast intergenic regions, the theoretical estimate of the
statistical power of PMM scanning fits the empirical results using
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Fig. 1. Theoretical and empirical ROC curves for the ABF1 motif. The
empirical ROC curves are shown as points, and are the results of the cross-
validation experiment using the gold standard binding site set for ABF1. The
theoretical curves are shown for different choices of the loss rate parameter, λ,
and the corresponding percentage chance of a loss in any lineage is indicated.

the Monkey scanning algorithm quite closely, except for very high
q-values (low search specificity).

In the extreme case where the probability of loss is 51%, the
total probability that any particular site is conserved over all three
comparative genomes (assuming independence) is equal to 12.5%.
This value acts as a reasonable upper bound on the expected amount
of site loss we would expect in this study, because estimates of the
rate at which binding sites are perfectly conserved across three yeast
genomes vary from 13% to 20% (Borneman et al., 2007; Tuch et al.,
2008).

3.4 Estimating the number of TFBSs in yeast
Our procedure for predicting the number of real binding sites in
S.cerevisiae results in estimates that are realistic, and in much greater
agreement with the SCPD database than the estimates produced
using the bootstrapping method, as shown in Table 3. We fit our
theoretical model with individual site loss occuring at a probability
of 51% to the empirical data. Our model-based procedure finds the
minimum number of sites such that the theoretical model expects
more predictions than we observe according to the empirical, for
all q-values up to the threshold Q. The alternative method, called
bootstrapping, uses P-values estimated using the shuffled-motif
approach. The complete list of P-values for all positions scanned
within the genome is used to estimate the proportion, π1, of the
P-values that do not belong to the null distribution, hence the
number of real binding sites (Storey, 2002) (Section 2.6). We ran
the bootstrapping method, with 10 000 bootstraps, 100 times, and
we report the mean and SD of the estimate of true binding sites.

The plot in Figure 3 illustrates the results of our model-based
method with a typical example of the relationship between the
q-value threshold, Q, and number of predicted real sites, b̂(Q),
for the motif ABF1. We include in the plot the results for the
theoretical model with and without binding site loss. In the plot
allowing binding site loss, we have calibrated the parameters of the
loss model to emulate the most pessimistic estimate in the literature
(Tuch et al., 2008), such that a site has 51% probability of being
lost on an individual branch of the tree. We observe that, for all
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Fig. 2. Theoretical and empirical statistical power curves for the ABF1
motif. The empirical curve (points) is computed using the shuffled-motif
approach with the Monkey PMM scanning algorithm. The two theoretical
curves are generated using the theoretical model with 51% chance of loss on
any lineage and with the given estimates of the numbers of real sites (shown
in parentheses).

Table 3. Estimated number of real binding sites for 21 yeast TFs

TF Name SCPD Model-based Bootstrapping

No. of sites No. of sites No. of sites (SD)

ABF1 16 51 175 (62)
BAS1 5 15 117 (0)
GAL4 10 9 49770 (956)
GCN4 10 47 62587 (1957)
HAP1 5 44 56753 (2892)
HSE,HSTF 7 34 131 (0)
MATalpha2 12 20 0 (0)
MCM1 34 40 0 (0)
MIG1 9 37 739 (23)
PDR1 11 4 36 (0)
PHO4 8 36 1091 (82)
RAP1 16 24 42434 (1967)
REB1 17 105 59299 (709)
repressor_of_CAR1 12 42 51189 (990)
ROX1 8 18 46 (0)
SWI5 6 5 133 (0)
TBP 10 118 427 (8)
UASH 14 14 145 (31)
UASPHR 15 25 93 (9)
UIS 5 21 1144 (127)
URS1H 13 48 176 (46)

The estimated number of real binding sites compared with the numbers present in SCPD.
Two methods are used to produce the estimates: the bootstrapping method (Storey,
2002) and our model-based method that chooses the number of sites that insures that
the theoretical statistical power of the scan is an upper bound on the empirical power.
For our model-based method, we report b̂(0.5).

motifs, the estimated number of sites undergoes a phase transition
at high q-values. Up to some value of Q, the no-loss estimate tends
upwards on a slight slope. However, when we use the loss model,
the estimate remains much flatter throughout the first two-thirds of
the plot. We also observe that, for all motifs, the estimated number
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Fig. 3. Effect of different values of Q on the model-based estimate of the
number of real sites for the ABF1 motif. The curves show our model-based
estimates, b̂(Q), of the number of real binding sites for the ABF1 motif, as a
function of Q Equation (11). The model-based estimates are based on scans
using the Monkey algorithm, and two different values of the theoretical loss
rate parameter, corresponding to 0% and 50% loss in any lineage.

of sites at a q-value threshold of 0.5 is stable across a considerable
range of q-values (data not shown). To produce a final estimate of
the number of real binding sites, shown in Table 3, we found the
minimum number of real binding sites for which the theoretical loss
model dominated the empirical results up to a q-value of Q=0.5.
The flatness of the plot using the site loss model demonstrates that
the theoretical data fit the empirical data best using an approximately
constant estimate of the number of binding sites, indicating that it
is a better model of binding site evolution.

4 CONCLUSION
We have demonstrated that measuring the accuracy of binding site
predictors using collections of known sites may be dangerously
misleading because such collections may be missing ‘weak’ sites,
which are exactly the type of sites needed to discriminate among
predictors. When we abandon the gold standard and consider the
number of statistically significant sites predicted, using column-
shuffled ‘random’motifs to measure significance, the PMM scanners
perform much better than the PWM.

Due to the assumptions embedded in the development of any null
model, we cannot be certain that the relative performance statistics
reported in this work are a perfect reflection of the prediction on the
true set of binding sites. Nevertheless, the observation that all PMMs
perform similarly and with statistically significant improvement over
the PWM suggests that the results are not an aberration. Among the
three scanning algorithms that we test, the MONKEY algorithm has
the highest accuracy for predicting yeast TFBSs.

We also introduce a novel theoretical model of binding site
evolution that includes loss-of-site events. This model provides a
better fit to the observed empirical performance than our original
theoretical model of PMM statistical power (Hawkins and Bailey,
2008).

Statistical algorithms for estimating the proportion of samples
that do not belong to the null distribution are of immense
importance in data mining. However, our experiments with the
bootstrapping procedure suggest that this method is unreliable for

small values of π1. We implement an alternative approach to
estimating the number of binding sites that makes use of an explicit
theoretical model of the expected performance of the predictor. The
results we produce using this procedure conform to our expectations
and appear to be a reasonable estimate of the number of true binding
sites within the yeast genome, and are in most cases several multiples
of the number of known sites listed in the SCPD.
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