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Theanalysis of a shotgunproteomics experiment results in a list of peptide-spectrummatches
(PSMs) in which each fragmentation spectrum has been matched to a peptide in a database.
Subsequently, most protein inference algorithms rank peptides according to the best-scoring
PSM for each peptide. However, there is disagreement in the scientific literature on the best
method to assess the statistical significance of the resulting peptide identifications. Here, we
use a previously described calibration protocol to evaluate the accuracy of three different
peptide-level statistical confidence estimation procedures: the classical Fisher's method, and
two complementary procedures that estimate significance, respectively, before and after
selecting the top-scoring PSM for each spectrum. Our experiments show that the latter
method, which is employed by MaxQuant and Percolator, produces the most accurate,
well-calibrated results.
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1. Introduction

In a typical shotgun proteomics experiment, a database search
procedure assigns to each of the tens of thousands of observed
fragmentation spectra a peptide from a given database [1–3].
The resulting peptide-spectrum matches (PSMs) are then
ranked by a match quality score that, ideally, places the cor-
rectly matched spectra near the top of the ranked list. Because
many spectra are incorrectly matched, however, a key chal-
lenge in this setting is the assignment of accurate statistical
confidence estimates to the resulting identified spectra [4]. Such
estimates are essential for setting appropriate score thresholds
to control the error rates and for the downstream interpretation
of the results.

The confidence assigned to a PSM may be reported using
various measures, but all of them rely fundamentally on the
notion of a p value. Roughly speaking, the p value assigned to a
match between spectrum S and peptide P with score x is the
probability that we would observe a score greater than or equal
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to x, assuming that P is not actually responsible for generating S.
Statisticians refer to the situation that we are not interested in –
in this case, that peptide P did not generate spectrum S – as the
null hypothesis. Thus, a small p value indicates high confidence,
because it is extremely unlikely that we would observe such a
high score from data generated under the null hypothesis.

Before conclusions can be drawn from the results, the
p values must be corrected for multiple testing, because
thousands of spectra are matched to the thousands of peptides
in the database. This correction can be done using a false
discovery rate (FDR) analysis [5–7], which estimates the
expected fraction of false positives among the identifications
accepted by a given score threshold x, i.e., identifications with
scores greater than or equal to x. To describe the confidence of a
specific identification, the q value is defined as theminimal FDR
required to accept the identification, after having considered all
possible thresholds. For PSMs, the confidence is routinely
estimated using one of several different approaches, including
target-decoy analysis [8,9], parametric curve fitting procedures
n. Tel.: +46 73707 8690; fax: +46 85537 8481.
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[10,11], maximum likelihood methods [12] or exact dynamic
programming methods [13].

In this work, we focus on methods for assigning statistical
confidence estimates to peptides, rather than to PSMs. Al-
though the definition of a unique peptide can vary, for example
depending on how alternative post-translational modifications
are considered, this study deals with any reduction of PSMs to
peptides. Regardless of the peptide definition, peptide confi-
dence estimates are interesting for two reasons. First, in
peptidomics [14], the peptides themselves are the entity of
interest and the need for peptide-level confidence estimates is
obvious. Second, even in experiments in which proteins are of
primary interest, many existing protein confidence estimation
procedures require accurate peptide-level confidence estimates
as an intermediate step. Such procedures include commonly
used algorithms such as ProteinProphet [15], MaxQuant [16] and
Fido [17]. It should be noted, however, that protein confidence is
sometimes estimated directly from PSMs [18,19].

A priori, it may not be immediately obvious that confidence
estimates assigned to PSMs cannot be transferred directly to
peptides. To see that such an approach is problematic, consider
an example inwhich 1000 PSMs are deemed significant with an
FDR of 0.01. This set of selected PSMs should contain approx-
imately 99% correct matches and 1% incorrect matches [6,7].
To produce a list of unique peptides, it is tempting to take the
list of confident PSMs, make a corresponding list of all the
peptides therein, and then claim that 99% of these peptides
were correctly identified. This claim, however, is likely to be
incorrect. The reason is illustrated in Fig. 1 and demonstrated
below. The essence of the problem is that a truly present
peptide will be matched by a higher number of PSMs, on
average, than an absent peptide. This asymmetry arises
because the incorrect PSMs are distributed across the entire
peptide database, whereas the correct PSMs are distributed
across only the set of present peptides. As a consequence, the
peptide-level FDR is often higher than for the corresponding set
of PSMs.

Given that PSM-level statistical confidence estimates cannot
be used as peptide-level confidence estimates, we need a
Fig. 1 – The false discovery rate increases when we move
from PSMs to peptides. The figure illustrates how the FDR
associated with a collection of 20 PSMs might double when
we consider FDR calculated at the peptide-level for the same
spectra.
reliable method to convert from one to the other. An intuitive
approach could be to combine the evidence from many PSMs
mapping to the same peptide to produce a single confidence
estimate for the given peptide. However, previous studies
have pointed out that multiple PSMs cannot be considered
independent evidence of the peptide's presence in the mixture
[15]. Due to this dependence between spectra that map to the
same peptide, many procedures weed out redundant PSMs,
discarding all but the highest scoring PSM for each peptide.
Indeed, to our knowledge, this principle is used by all fully
probabilistic protein level inference methods described in the
literature [20,21,16,22,23].

However, once the redundant PSMs have been eliminated,
the literature is split between two different ways to assign
confidence measures to the remaining PSMs, the so called
peptide-level statistics. Some authors suggest that one should
use the PSM-level statistics of the remaining peptides [24,15].
We will refer to this procedure as Estimate then Weed-Out
(ETWO). Other authors suggest that one should first weed out
the redundant PSMs and then calculate peptide-level measures
using target-decoy analysis. We refer to this procedure as
Weed-Out Then Estimate (WOTE).WOTE is employed for instance
in MaxQuant [16] and Percolator [21].

In this work, we systematically evaluate the statistical
calibration of ETWO and WOTE. We apply a previously de-
scribed calibration protocol [25] to three datasets using three
different scoring functions. We demonstrate that WOTE yields
better calibrated statistics than ETWO in each of our analyses,
an effect that becomes quite pronounced when using multiple
hypothesis corrected statistics, such as FDRs, q values and
posterior error probabilities (PEPs) of the unique peptides.
Furthermore, similar to a negative control, we empirically con-
firm the dependence between multiple PSMs mapping to the
peptide by also testing the calibration of Fisher's method to
combine p values.
2. Methods

2.1. Estimating peptide-level p values

The input to a statistical confidence estimation procedure is a
collection of fragmentation spectra, each of which is associated
with a single target peptide and a single decoy peptide. Each
target or decoy PSM is assigned a score.

We consider three methods for estimating peptide-level p
values. The first procedure, WOTE, proceeds as follows.
Separately for the target and the decoy matches, we identify
peptides that appear multiple times in this list of PSMs, and
from each set of redundant PSMs, we eliminate all but the
highest-scoring PSM. The result is two lists of peptides – targets
and decoys – ranked by score. From here, the procedure is
identical to what has been described previously [26]: we treat
the decoy scores as a null distribution, and we use them to
compute p values for the target scores. Specifically, for an
observed score x associated with a given target PSM, the
corresponding p value is estimated as the fraction of decoys
with scores better than x. Assuming that the score function is
defined such that large scores are better, then the p value of x is



Table 1 – Datasets used for the calibration test of the
p values. Three datasets generated from purified protein
samples were used in this study. The table lists the names
we assign to each dataset, a short description, and howwe
forma database for the expected identifications (the sample
database).

Name Description Sample database

ISB18 mix Ten Orbitrap runs from the
Seattle Proteome Center's
Standard Protein Mix
Database mix 7 [30].

Provided with the data
(110 proteins including
contaminants).

Sigma 49 mix Three replicate LTQ analy-
ses of humanproteins from
the Mass Spectrometry Re-
search Center at Vanderbilt
University [31].

Universal Proteomics
Standard FASTA file
(Sigma Aldrich, 49
proteins).

OMICS 2002 14 runs of control mixture
A reported in OMICS 2002
and obtained from the In-
stitute for Systems Biology
(Seattle, WA, USA) [32].

Provided with the data
(107 proteins).
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estimated as in Eq. (1), where X0 is the set of scores of the decoy
PSMs of interest:

p̂ xð Þ ¼ x0∈X0 : x0 ≥ xf gj j þ 1
X0j j þ 1

: ð1Þ

In this setting, we interpret X0 as the unique decoy peptides
remaining afterwehave removed PSMswith redundant peptide
matches. The addition of 1 to the numerator and denominator
yields a p value estimate with the correct type 1 error rate [27].
The above equation can be roughly understood by reasoning
that the target PSM itself, with score x, is also drawn from the
null distribution when the null hypothesis is true. Subsequent-
ly, the resulting collection of peptide p values can be adjusted
for multiple testing using standardmethods [6,28,29]. Thus, the
output of the procedure is a list of peptides, each associated
with a PEP or a q-value.

The second procedure, ETWO, is similar to WOTE; however,
in this case, we calculate all statistics with respect to PSMs
rather than peptides. Hence, we instead interpretX0 in Eq. (1) as
the set of decoy PSMs before we have removed redundancy.We
also perform all the multiple hypothesis corrections based on
all PSMs. We subsequently use the PSM-level PEPs and q values
as peptide-level statistics.

The third strategy is the classical Fisher's method to
combine independent p values. This approach combines a set
of PSM-level p values into a peptide-level p value, under the
null hypothesis that all PSMs are incorrect. First, p values are
calculated according to Eq. (1) and, just like in the ETWO
method, peptides that appearmultiple times are not filtered out
before the p value calculation; hence, X0 in this case is the set of
all decoy PSMs. This procedure thus yields PSM-level p values.
Subsequently, the p values pi, …, pk of the k PSMs matching a
given peptide are combined into a χ2 test statistic:

χ2 ¼ −2
Xk

i¼1

ln pið Þ: ð2Þ

Assuming that the peptides were identified independently,
this statistic follows a χ2 distribution with 2k degrees of
freedom, thereby allowing us to calculate a p value correspond-
ing to the observed χ2. Finally, the peptide-level p values are
converted to q values, as described above.

2.2. Assessing the calibration of estimated p values

To determine whether the estimated peptide-level p values are
accurate, we employ a previously described semi-labeled
calibration test [25]. This test involves searching spectra derived
fromapurified sample of knownprotein contentwith respect to
a bipartite target database containing a sample partition and an
entrapment partition. The sample partition includes amino acid
sequences of the known proteins and likely contaminants in
the sample. The entrapment partition is larger, and contains
repeatedly shuffled versions of the sample sequences. Consid-
ering only the highest scoring PSM of each spectrum, most
uninterpretable spectra will match to the entrapment se-
quences of the bipartite database. These matches are then
labeled as incorrect, and are used as a null model, while the
other PSMs are discarded. Hence, using an additional decoy
database, p values can be assigned to entrapment PSMs (or
peptides), to obtain a set of null p values. By definition, null p
values follow a uniform distribution; hence, we can test our p
value estimation procedure by examining the distribution of p
values assigned to entrapment PSM. The entrapment partition
differs from a decoy database in the sense that thematches are
not used to estimate error rates; instead, the entrapment
partition serves to “trap” asmany of the uninterpretable spectra
as possible. The decoy databases used here are reversed
versions of the bipartite target databases.

2.3. Datasets

To test the calibration of p values, we used fragmentation
spectra from three different samples of known protein content
[30–32] (Table 1). The sequences of the proteins and the known
contaminants of the sample make up the sample partition
of the bipartite database. Each protein sequence was then
shuffled 25 times to generate an entrapment partition 25 times
the size of the sample partition. This number was chosen to
obtain an entrapment partition sufficiently larger than the
sample partition. The sample and entrapment sequences were
concatenated for each dataset to form the bipartite databases
used in the calibration protocol.

The spectra were searched and scored using Crux version
1.37 [33] insequest-searchmodeandMSGF+ version 8806 [13].
The negative logarithm of the MSGF+ E value was used as the
MSGF+ score. The Crux searches were followed by analysis via
Percolator version 2.03 [21]. Non-enzymatic searcheswere used,
with a 10 ppm precursor mass tolerance for the ISB18 dataset,
and 3 Da for the Sigma 49 and OMICS 2002 datasets. We
calculate the p value as explained above, according to Eq. (1).
The distribution of entrapment p values was evaluated by the
distance, DKS, reported from a Kolmogorov–Smirnov (K–S) test.
The smaller the value of DKS, the closer to uniform the p value
distribution. Finally, quantile–quantile (Q–Q)plotsweremade to
compare the empirical distribution of null p values with a
uniform distribution.



Fig. 2 – The calibration of peptide-level p values from WOTE, ETWO and Fisher's method. Three different datasets of known protein mixtures were scored against a bipartite
target and a reversed decoy database using Crux, MSGF+ and Percolator. Subsequently, p values were estimated using either the SEQUEST's XCorr (left side panels), the
Percolator score (middle panels) or scores from MSGF+ (right side panels). Entrapment peptide p values are plotted relative to an ideal, uniform distribution of p values. The y=x
diagonal is indicated by a black line, and y=2x and y=x /2 are shown by dashed lines. Panels (A), (B) and (C) show results from the ISB18 mix. Panels (D), (E) and (F) represent the
Sigma 49 mix, and panels (G), (H) and (I) represent the OMICS 2002 mix.
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Fig. 3 – Covariation of entrapment peptides' p values. Orbitrap spectra from 10 runs of the ISB18 mix 7 were searched against a
bipartite database. For each of the 10 runs, we collected only the entrapment peptides that had been identified twice. (A) Based
on their Percolator score, we plotted the two PSM-level p values for each identified peptide (Pearson's correlation coefficient=
0.60). Similar covariation was seen for p values estimated using Crux and MSGF+, as well as for the two other standard
datasets. (B) The mean Percolator score of entrapment PSMs as a function of peptide length (number of amino acids in peptide
sequence). The error bars represent one standard deviation.
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In experiments involving complex mixtures from full cell
lysates, a yeast dataset described previously [21] was used.
Here, we searched the data with Crux and Percolator as
described above, but using tryptic searches with any number
of missed cleavages and a 3 Da mass tolerance window.
3. Results

3.1. The WOTE method yields well calibrated peptide-level
p values

When comparing different methods to compute peptide-level p
values, our main concern is that the p values are well calibrated,
meaning that the statistical scores accurately indicate our con-
fidence in the correctness of the peptide identification. There-
fore, as described above, we compare the null distribution of
reported p values to an ideal uniform distribution using a Q–Q
plot, in which a uniform p value distribution lies close to the y=x
diagonal.

We tested the calibration of the peptide-level p values
reported from the WOTE, ETWO and Fisher's methods using
three scoring schemes – the SEQUEST XCorr [34], the MSGF+
score [13] and the Percolator score [21] – on three different
datasets of known protein mixtures. The results are shown in
Fig. 2. Regardless of the scoring scheme or dataset used,
the WOTE and the ETWO method yields entrapment peptide
p values that distribute nearly uniformly. Fisher's method, on
the other hand, clearly produces p values that lie further from
the uniform distribution. The mean Kolmogorov–Smirnov DKS

values of the three scores across the datasets (ISB18mix, Sigma
49 and OMICS, respectively) were 0.014, 0.025, 0.022 for WOTE,
0.028, 0.041, 0.037 for ETWO and 0.047, 0.048, 0.046 for Fisher's
method. Although the figures indicate no large differences
betweenWOTE and ETWO, theDKS values suggest thatWOTE is
better calibrated. The DKS value quantifies the deviance of all
p values from theuniformdistribution, anddoes not emphasize
the importance of small p values, as the log-scaled plot does.
However, the peptides assigned low p values are generally of
more interest than others; thus, the calibration of these p values
is more important.

For independent tests, Fisher's method outputs uniformly
distributed p values under the null hypothesis. Therefore, the
poor empirical calibration of the p values produced by Fisher's
methods is due to dependencies between peptide sequences
and peptide scores. This phenomenon is illustrated in Fig. 3(A),
which shows the correlation between scores assigned to the
same entrapment peptide with respect to two different spectra.
In general, such a dependence is expected for peptides that are
present in the sample, but not for peptides that are absent. This
observed covariation leads us to suspect that peptide sequences
have some inherent sequence property that repeatedly causes
similar scores. This is analogous to spectral covariation, seen
for raw score functions such as XCorr [11,4], but with respect to
thepeptide sequence rather than the spectrum.To testwhether
peptide sequence properties such as peptide length (Fig. 3(B)),
mass or m/z (data not shown) influenced this correlation, we
plotted the Percolator score as a function of these properties;
however, no correlation was observed for these features. One
plausible, alternative explanation for this phenomenon is that
the theoretical fragment masses of the peptide sequence by
chance closely resemble the fragmentation spectrum of a
common modified peptide in the sample, which is not found
in the protein database [15].

3.2. The difference between WOTE and ETWO becomes
more pronounced at the level of multiple-hypothesis corrected
statistics

A striking difference between ETWO and WOTE lies in the sets
to which the multiple-hypothesis correction is applied. With
ETWO, multiple-hypothesis corrected statistics are calculated

image of Fig.�3
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for PSMs, while they are calculated for unique peptides with
WOTE. From a theoretical perspective, it is clear that multiple-
hypothesis corrections should be applied to the set of hypothe-
ses that are tested, and not to another set. For this reason, we
expect that WOTE will give more accurate results because it
performs its multiple hypothesis corrections on the same
level as we report our statistics. To demonstrate this difference,
we applied the WOTE and ETWO methods to two different
datasets (Fig. 4). The left panels illustrate the relationship
between WOTE and ETWO peptide-level q values as a function
of the underlying score, and the right panels show the direct
relationship between the two types of q values. For example, in
panel B, which corresponds to a collection of spectra from a
yeast whole cell lysate, an ETWO-based q value threshold of 1%
corresponds to a WOTE-level q value threshold of 1.35%. In
terms of the number of identifications, ETWO and WOTE
identify 1661 and 1516 unique peptides, respectively, for a 1%
q value threshold.
Fig. 4 – Varying data complexity: Comparison between WOTE an
WOTE and ETWO peptide-level q values as a function of XCorr th
function of PSM-level q values. Panels (A) and (B) correspond to a
derived from a yeast whole cell lysate [21]. Panels (C) and (D) cor
decoy PSMs from the Sigma 49 dataset. All q values were estimat
K–S tests of the similarity between q values from WOTE and ETW
their difference. Similar results were obtained when using the P
Amore pronounced difference between these two types of q
values can be seen for highly purifiedmixtures (panels C andD).
For all datasets we analyzed, the line representing peptide-level
versus PSM-level q values was consistently above y=x, regard-
less of the score and mass tolerance window used. These
results clearly illustrate that the false discovery rate associated
with a fixed score threshold is larger at the peptide-level than at
the PSM-level.

As mentioned previously, the explanation for the higher
false discovery rate on the peptide-level than on the PSM-level
is that the averagenumber of PSMs thatmatchpresent peptides
is higher than the average number of PSMs that match absent
peptides. To illustrate this phenomenon, we made histograms
of the distribution of the ISB18 PSMs matching the sample and
entrapment part of the target database (Fig. 5). From the
histogram we can see the dramatic effect produced by present
peptides amassingmore PSMs than absent peptides. This effect
explains the large deviations in multiple hypothesis corrected
d ETWO peptide-level q values. The left two panels plot the
reshold; the right panels plot peptide-level q values as a
high complexity set of 35,108 target and 35,108 decoy PSMs

respond to a low complexity set of 34,816 target and 34,816
ed using qvality [37] considering their XCorr score. Two-sided
O produced highly significant p values (<10−100), indicating

ercolator score and MSGF+ (data not shown).

image of Fig.�4
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statistics between WOTE and ETWO: q values and false
discovery rates are proportional to the ratios of the areas
under the curve between incorrect and all identifications with
scores over a threshold, fractions that we easily can spot as
different for peptides and PSMs. Similarly, posterior probabili-
ties are proportional to the ratio of the “heights of the curves” of
the incorrect and all identifications, ratios that we again can
spot as different between PSMs and peptides.

To assure that this phenomenon is not an artifact of the low
complexity of the runs, we compared the number of PSMs per
peptide for all peptides identified when matching 35,108 yeast
spectra against a target database and a decoy database. The
distribution in Fig. 6 shows that target peptides are identified by
more PSMs than decoy peptides.
Fig. 6 – The average number of PSMs per peptide is higher for
matches against the target database than against the decoy
database. We scored 35,108 spectra derived from a yeast
lysate against a target and a decoy database. We then
compared the number of PSMs per peptide for peptides
having two or more PSMs per peptide. 30,669 target peptides
and 33,252 decoy peptides had one PSM each.
4. Discussion

Wehave employed a semi-labeled calibration test using known
protein samples to assess three methods for estimating
peptide-level confidence estimates. We found that WOTE and
ETWO are well calibrated in the sense that they produce
p values that are uniform under the null hypothesis. On the
other hand, we find a large discrepancy between the q values
produced by WOTE and ETWO, a discrepancy attributed to the
fact that the multiple hypothesis correction is erroneously
performed on the PSM-level when using ETWO.

Some use of the ETWO method is likely the result of confu-
sion regarding the difference between PSM- and peptide-level
statistics. We would like to emphasize the distinction between
PSMs and unique peptides, as they are composed of two
disparate sets of identifications. Hence, their error rates must
be evaluated separately.

Previous researchhas concluded thatmultiple PSMs involving
the same peptide should not imply increased peptide confidence
Fig. 5 – Entrapment and sample distribution for PSMs and
peptides. Using the ISB18 mix dataset, we divided our
findings into entrapment and sample PSMs, depending on
what sequence in the bipartite database they were matched
to. We further weeded-out redundant PSMs to create a list of
unique peptides, for the entrapment and sample matches.
The histogram, of XCorr bin size 0.075, shows the effect of
the weeding-out procedure for the two groups.
because observed spectra cannot be considered independent
evidence for a single peptide [15]. Bern et al. go further and claim
that the number of PSMs might not differ between present and
absent peptides [22]. In their observation, almost as many decoy
PSMs as target PSMs (22% and 24%) redundantly identify a
peptide. We confirm the non-independence of peptides by
showing the extent to which p values of PSMs to the same
peptide correlate, even for incorrect matches (see Fig. 3(A)). On
the other hand, in contrast to what Bern et al. report, but in
agreementwith Shteynberg et al., we show that peptides that are
present in the sample do obtain more matches than absent
peptides (Figs. 5 and 6). This result indicates that the number of
spectramatched to apeptide is indeedan important indicationof
the peptide confidence. Most likely, this effect did not show up
for Bern et al. because a majority of the PSMs map uniquely to a
peptide; thus, the average number of PSMs per target and decoy
peptide does not clearly differ. However, we look closer at the
redundant PSMs, andwe consequently find that there is indeed a
difference between target and decoy peptides. In fact, this effect
is frequently used for quantifying proteins using spectral
counting [35,36].

Although we have demonstrated that WOTE is the desired
method for estimating peptide level statistical confidence
measures, an apparent drawback of this procedure is its
failure to make use of multiple spectra matching the same
peptide. Based on the above reasoning, the ideal method
would estimate peptide-level statistics using information
from all PSMs, without assuming independence, to improve
the discrimination between present and absent peptides.
This, in turn, would yield more confident protein identifica-
tions. Bern et al. introduce the principle of combining p values
of PSMs mapping to the same peptide sequence, but with
different post-translational modifications. The same idea
could be extended to combine PSMs of peptides identified
with different charge states. Such PSMs are more likely to be

image of Fig.�6
image of Fig.�5
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independent; hence, this method is probably the most
accurate current approach for combining p values of multiple
PSMs.

As stated earlier, the accuracy of the peptide-level confi-
dence estimates influences the reliability of the confidence
estimates for proteins. Given an unbiased and efficient
protein inference algorithm, well calibrated peptide level
statistics from the WOTE procedure are expected to generate
well calibrated protein level statistics. ETWO, on the other
hand, is anti-conservative, and expected to generate more
protein identifications, but with an inflated error rate.
However, it is important to note that although the statistics
of PSMs and peptides might be well calibrated, the subse-
quent protein inference algorithm also risks introducing
biases. For completely reliable proteomics results, protein
inference procedures should therefore be calibrated as well,
an issue not addressed in this study.

Researchers aiming at estimating the statistical confidence
of results from proteomics experiments generally make
assumptions about how to model the data. The target-decoy
analysis, for instance, requires such assumptions. In practice, it
is difficult to know whether these assumptions are reasonable,
without empirically validating the results. Thus, we encourage
users and developers of new procedures for estimating
peptide-level confidence, to test the accuracy of the results, for
instance by using the semi-labeled calibration test.

Well-calibrated p values are a prerequisite, but no guarantee,
for accurate statistics. The largest discrepancy between WOTE
and ETWO is manifested on the level of multiple testing
corrected statistics such as PEPs and q values. Hence, it is less
of an error to use p values generated by ETWO, as Combyne [22]
does, than to use multiple testing corrected posterior probabil-
ities. As a conclusion,multiplehypothesis corrections should be
carried out for the set of hypothesis thatwe are testing.Multiple
hypothesis-corrected statistics cannot easily be transferred
from one set to a subset or superset of the tested hypothesis
without corrections.
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