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’ INTRODUCTION

A shotgun proteomics experiment involves tryptic digestion of
a complex protein mixture and subsequent detection of the
resulting peptides via liquid chromatography coupled with
tandem mass spectrometry (LC�MS/MS). A central step in
the analysis of spectra produced by such an experiment is the
peptide identification. This step is usually achieved by searching
each spectrum against a peptide database. During the search, the
fragmentation spectrum is matched to theoretical spectra derived
from a target database, comprised of peptides from the analyzed
organism. The resulting matches between experimental and
theoretical spectra are denoted peptide-spectrum matches (PSMs),
and a score function assigns a score to each PSM, indicative of the
quality of the match.

A good score function will exhibit two complementary proper-
ties. First, the function should be discriminative, meaning that it
successfully separates correct from incorrect PSMs. In general,
the search engine identifies a single target peptide that best
explains each observed spectrum, a top-scoring PSM. However,
some of these hypotheses are incorrect, often because a given
spectrum does not stem from a peptide in the database. Given a
large set of spectra, a highly discriminative score function will
assign higher scores to correct PSMs than to incorrect PSMs.

Second, the score function should be well calibrated, meaning
that the scores have well-defined and accurate semantics. For

clarity, we distinguish between raw score functions that output
uncalibrated scores and statistical score functions that estimate a
probabilistic measure of the error associated with a PSM.
Examples of raw scores are SEQUEST’s XCorr1 and X!Tandem’s
hyperscore.2 To facilitate interpretation, a statistical score func-
tion is often derived from a given raw score function by
appending a postprocessing step. For example, target-decoy
analysis3 can be used to derive statistical scores for any given
raw score function, or the hypergeometric distributions of hyper-
scores in X!Tandem can be used to estimate statistical scores
such as q values or expectation values (E values). The quality of
the calibration of a statistical score function can be very im-
portant. For example, if a collection of PSMs has an estimated
false discovery rate (FDR) of 5%, and if the FDR estimate is well
calibrated, then no more than approximately 5% of the PSMs in
the collection should be incorrect. A well-calibrated score allows
the researcher to design follow-up experiments with an accurate
estimate of the probability of false positive identifications.
Conversely, a poorly calibrated score may lead to overoptimistic
or conservative conclusions, in the worst case, invalidating an
entire study.

In this study, we focus onmethods for assessing the calibration
of a given statistical score function. The common approach for
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evaluating either the discrimination or the calibration normally
requires spectra derived from samples of known, purified pro-
teins. Such spectra can be matched to a bipartite database, used
specifically for a sample with known protein content. First,
sequences corresponding to the small number of known proteins
in the mixture, along with sequences of known or expected
contaminants, make up what we here refer to as the sample
sequences of the bipartite database. Second, a large number of
entrapment sequences, representing proteins highly unlikely to be
found in the sample, such as those obtained from an evolutio-
narily distant organism or shuffled versions of the sample
sequences, are appended to the database. To avoid confusion
with concatenated target and decoy databases, we want to clarify
that the bipartite databases are not used to estimate error rates for
regular shotgun proteomics experiments of unknown samples.
For those purposes, one might use a decoy database. A bipartite
database is solely used for benchmarking purposes, using samples
of known protein content.

The de facto standard method for performing a calibration
assessment of a score function is what we here refer to as the fully
labeled method. The fully labeled method assigns a label to every
PSM, assuming that all top-scoring matches to the sample
sequences are correct, whereas matches against the entrapment
sequences are incorrect. Using these labels, theoretical error rates
can be calculated and compared to the reported statistical score
whose calibration we want to test. This approach has previously
been used to validate and compare a variety of methods, inclu-
ding several interlab benchmarking studies.4�14 Here, we de-
monstrate that the reported performance—both the discrimina-
tion and the calibration—of a score function evaluated using the
fully labeled method depends strongly on the choice of entrap-
ment database used in the evaluation. This dependency makes
accurate conclusions from a fully labeled assessment difficult, if
not impossible, to draw.

We then suggest an alternative method for evaluating the
calibration of a score function using a sample of known protein
composition. The approach, which we refer to as the semilabeled
method, relies on the observation that, for the purposes of
assessing calibration, it is sufficient to have an accurate model
of the scores associated with incorrect PSMs. This observation is
beneficial because the digestion of a small set of known proteins
generates a limited set of peptides and hence a relatively low
number of fragmentation spectra that stem from actual peptides

in the sample. Furthermore, because many of these spectra
correctly match the sample sequences of the bipartite database,
correct PSMs are weeded out. The remaining entrapment PSMs
correspond either to spectra with incorrectly assigned charge
states, spectra derived from unanticipated (contaminant) pro-
teins, or spectra that do not originate from a peptide at all. They
also contain some PSMs of true peptide spectra that are simply
incorrectly matched to the entrapment sequences.

We argue that these “unexplained” entrapment PSMs provide
a relatively unbiased null model. Hence, a set of entrapment
PSMs serves as a powerful method to assess the calibration of a
score function. We demonstrate that this method can detect
statistical biases of scores during the development of novel score
functions. Finally, we determine the calibration of some com-
monly used score functions, including SEQUEST’s XCorr
coupled with target-decoy analysis, X!Tandem’s E values and
MS-GFDB p values.

’MATERIAL AND METHODS

Experimental Spectra
Fragmentation spectra were obtained from the The Standard

Protein Mix Database of the Seattle Proteome Center.15 In the
remainder of this article, we refer to this standard protein mixture
as the ISB18 mix. The Orbitrap spectra used here were taken
from runs 2�10 of mixture 7 of the ISB18 mix.

Composition of Protein Sequence Databases
Bipartite sequence databases were assembled as described in

Klimek et al.15 The first part of the database—the sample
partition—consists of the ISB18 mix protein sequences and a
list of contaminants. The remainder of the database consists of
entrapment sequences, either from Haemophilus influenzae pro-
teins or from shuffled versions of the sequences of the standard
protein mixture with contaminants. The standard protein mix-
ture sequences yielded ∼4000 tryptic peptides. As in Klimek
et al., the number of tryptic peptides in the entrapment database
was set to approximately 45 000 in each case, which required the
sample sequences to be shuffled repeatedly in the case of shuffled
entrapment sequences.

Some of the examined statistical scoring systems required
decoy sequences.3 In these cases, decoy databases were gener-
ated by reversing the full bipartite target databases, both the
sample and the entrapment sequences.

Chart 1. Algorithm for Searching the Bipartite Database using Spectra of Known Protein Samplesa
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Peptide Matching and Scoring
All database searches were conducted using monoisotopic

masses with a ( 50 ppm mass tolerance window on tryptic
peptides in the database. Nontryptic searches were carried out for
searches that were followed by postprocessing using
Percolator.16 To perform SEQUEST-like searches, RAW format
files of the ISB18 mix spectra were converted to the ms2 file
format using MakeMS217 and searched with Crux 1.22 in the
sequest-search mode.18 Target and decoy searches were done
separately. When target-decoy competition was performed, the
competition was carried out after the search by comparing the
scores of the top-scoring target and decoy PSMs for each
spectrum.

MS-GFDB searches were run using version 2010092119 on
the mzXML files available directly from The Standard Protein
Mix Database.15 X!Tandem2 was obtained from the Trans-
Proteomic Pipeline (TPP 4.3.1).20 The mzXML files of The
Standard Protein Mix Database were used directly, without
conversion.

To rescore PSMs after database searching, we used Percolator
1.14.16 In experiments based on past versions, Percolator 1.03
was used.

Calculations of Score Function p Values
In this article, we consider three statistical score functions,

each of which produces a p value, defined as the probability that
an incorrect top-scoring PSM would score as well or better than
the observed PSM by chance.

The first method for generating p values uses target-decoy
analysis to postprocess the scores produced by the raw score
function XCorr. For separate target-decoy searches, all top-
scoring target and decoy PSMs were considered, calculating
the p value for a target PSM with score x as (rþ1)/(nþ1),21

where r is the number of decoy PSMs scoring gx, and n is total
number of decoy PSMs. For competitive target-decoy searches, p
values were calculated similarly, but only considering the top-
scoring target or decoy PSM for each spectrum.

The MS-GFDB method directly reports spectral probabilities,
that is, the probability that a spurious peptide would score as well
or better against the same spectrum as a given peptide. These
probabilities were converted to p values as previously described
by Gupta et al.22 Accordingly, we use the �Sid�ak correction23 to
calculate the p value, p = 1 � (1�Ps)

N, associated with the
spectral probability Ps, where N is the number of tested peptides
(which corresponds to the number of amino acids in the searched
database for the method MS-GFDB).

X!Tandem’s E values were converted to p values first by
division by the number of candidate peptides, N, considered for
each spectrum, followed by the �Sid�ak correction described above
using N as the number of candidate peptides.

Calibration Test
To assess the calibration of a given score function f( 3 ),

we perform a search on a bipartite database, with a sample
and an entrapment partition, to obtain a single PSM for each
spectrum, along with a corresponding p value. The p values of
the PSMs associated with entrapment peptides represent an
unbiased collection of null p values. This procedure is outlined
in Chart 1.

A collection of null p values are by definition uniformly
distributed. Therefore, to qualitatively measure the uniformity
of a given set of null p values, we plot quantile�quantile (Q�Q
plots), with a uniform distribution over the interval [0,1] on the

x-axis and the reported p value distribution on the y-axis. If the p
values are well calibrated, then the resulting points should lie
close to the line y = x. We use logarithmic axes on the Q�Q plot
because we are primarily interested in the calibration of the left
tail of the p value distribution.

As a quantitative measurement of the uniformity of a set of p
values, we employ a two-sample Kolmogorov�Smirnov (K�S)
test between the p values and a uniform distribution over [0,1].
Both these samples contain the same number of values. The test
calculates the maximum difference, a D value, between the two
samples’ cumulative frequencies. A large value of D implies that
the two sample distributions are dissimilar.

’RESULTS

Results of a Fully Labeled Analysis Depend on the Composi-
tion of the Entrapment Database

To demonstrate that the traditional, fully labeled method for
assessing the performance of a score function is problematic, we
searched a set of spectra against two different protein databases.
A SEQUEST search was carried out using Crux on Orbitrap
spectra from the ISB18 mix. First, we used a bipartite database
containing the sample sequences of the ISB18 mix and entrap-
ment sequences of H. influenzae. Second, we replaced the
entrapment sequences with shuffled versions of the sample
sequences. Figure 1 shows that replacing the entrapment data-
base dramatically affects the number of matches to the (fixed)
sample database. For example, allowing for 10 H. influenzae
entrapment PSMs means that we accept 1487 sample PSMs. On
the other hand, allowing for 10 shuffled entrapment PSMs, we
only accept 1120 sample PSMs. We have observed the same
effect for all other score functions used in this article (data not
shown).

The above experiment shows that using PSMs from a standard
mixture as a fully labeled set is problematic because the outcome

Figure 1. The fully labeled method's dependency on entrapment
sequences. Spectra derived from a known protein mixture were scored
against bipartite databases consisting of the known sample sequences
and two different compositions of entrapment sequences. From the
resulting PSMs, we plotted the number of sample PSMs accepted for
increasing numbers of entrapment PSMs, considering their XCorr score.
The two different entrapment versions of the database had the same
number of peptides, and sequences were either H. influenzae or shuffled
versions of the sample proteins.
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can be very sensitive to random variations in the entrapment
sequences. Here, we have kept the size of the two entrapment
databases equal, whereas in practice, different database sizes
would introduce additional variation to the results. We fear that,
with this protocol to evaluate PSMs of known protein samples,
entrapment databases could be tailored to generate results for
almost any purpose. An alternative approach for testing the
performance of a given score function is thus desirable.

Alternative Use of Known Protein Mixtures
Although we cannot use the conventional, fully labeled

approach to assess the discriminative capabilities of a score
function, we propose an alternative assessment protocol that
also makes use of shotgun proteomics data derived from a known
sample and searched against a bipartite target databases. Our
proposed semilabeled method relies on the observation that the
partition of the bipartite database into sample and entrapment
sequences is effective at identifying many correct PSMs. The
remaining spectra, representing molecules not found in the
sample, are likely to match the much larger entrapment portion
of the database. Thus, when applied to samples of known
mixtures, entrapment sequences serve as a robust trap for
spurious matches in the database.

Importantly, and perhaps counterintuitively, the distribution
of scores of the entrapment PSMs are not very sensitive to the
composition of the entrapment database. Using the same sets of
PSMs as for Figure 1, we compared the XCorr scores obtained
from the two different groups of entrapment PSMs. Figure 2
shows aQ�Qplot of these XCorr scores, obtained from searches
through the two different databases, a H. influenzae entrapment
database, and a shuffled entrapment database. A straight line
represents a situation where both sets of scores are distributed
identically. Interestingly, although some deviation is seen, the
graph shows that the two entrapment databases yield highly
similar score distribution. Given that the entrapment PSMs

comprise a robust sample of incorrect matches, we may use
them to evaluate any given score function that outputs a
statistical score defined by the behavior of random incorrect
PSMs.

Many statistical scores are defined with respect to the score
distribution produced by random incorrect PSMs. Our proposed
method can evaluate the calibration of any score function that
reports such statistical scores, including E values and p values. For
consistency throughout this article, we consistently use the p
value, which estimates the probability that an incorrect top-
scoring PSM would obtain the observed score or higher. This
definition implies that the calibration of p values produced by a
score function can be evaluated using only the matches to the
entrapment sequences, because these matches represent incor-
rect PSMs. By definition, accurate p values of incorrect PSMs
must follow a uniform distribution between 0 and 1; therefore,
the calibration of a score function can be tested directly by
investigating the uniformity of the p values reported for entrap-
ment PSMs, using either a quantile-quantile plot or a K�S test
(see Material and Methods). In contrast, the p values of correct
PSMs do not necessarily follow a predictable distribution and
therefore are excluded from the calibration test.

A K�S test derives the maximum distance, D, between the
cumulative frequencies of two samples, relating to their similarity
(or dissimilarity). More precisely, for each value, x, found among
any of the two samples, we evaluate the proportion of each
sample with values less than or equal to x. Naturally, two identical
samples will have equal such proportions for every x. If the
sample distributions are different, however, theD value is defined
as the largest difference between the two proportions, using all
possible thresholds of x. Thus, a D value of 0.1 means that there
exists a value of x below which, for example, the first sample has
50% of its values and the other sample has only 40% of its values.
Applying this test to our proposed semilabeled method of
reported entrapment PSM p values, D = 0.1 means that for some
score threshold of x, 10% of the entrapment PSMs score too well,
or too poorly, compared to the ideal p value distribution. This
calibration value allows us to easily estimate the implications of a
worst case scenario, in which the x generating the maximum
difference, D, is also used as our threshold value to separate
correct from incorrect PSMs. Given that a score function,
calibrated to a D value of, say, 0.01, is used to score 30 000
incorrect PSMs, we risk that 0.01� 30 000 = 300 incorrect PSMs
score too well (or too poorly) in comparison with the ideal p
value distribution. Distinguishing between these two cases—p
values that are too high or too low—can been done by examining
the Q�Q plot.

Demonstration of Biased Features
A case in which our semilabeled method for evaluating score

function calibration would have been very useful occurred during
the development of early versions of Percolator.16 Percolator is a
machine learning algorithm that collects a variety of properties
(called features) of target and decoy PSMs and uses a support
vector machine classifier to discriminate between correct and
incorrect PSMs. In addition to the features employed in recent
versions, early releases of Percolator used three so-called intraset
features that used information about other PSMs in the given
data set to describe the PSM at hand. At first glance, these
features seemed to improve Percolator’s ability to discriminate
between correct and incorrect PSMs, leading to an increase in the
number of target PSMs accepted with respect to a fixed statistical

Figure 2. Similarity between PSMs obtained from two different en-
trapment databases. The XCorr scores of entrapment PSMs obtained
using either a H. influenzae entrapment database or a shuffled entrap-
ment database were compared in a Q�Q plot. The filled circles
represent the quantiles of the two groups of entrapment XCorr scores,
D value = 0.023. The black line represents the x = y diagonal
corresponding to perfect identity between the quantiles of the two
groups. Both entrapment databases matched nearly 30 000 spectra.
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score threshold. However, the intraset features turned out to be
biased in the sense that they led Percolator to systematically
assign higher scores to target PSMs than to decoy PSMs. The
apparent improvement in discriminative performance was thus a
result of biased scoring, rather than a result of better separation
between incorrect and correct matches. To avoid this bias, the
intraset features were removed from the algorithm. In general,
deceptive statistical scores may lead to incorrect conclusions and
make comparisons between studies impossible.

Using entrapment PSMs of spectra from known protein
samples, biases like this one can be easily identified. Figure 3A
shows how a Q�Q plot quickly exposes the bias of each
individual intraset feature (denoted pepSite, numProt and
numPep), and Figure 3B shows how the distribution of reported
p values of Percolator with intraset features differs from a uniform
distribution. Plotted in the same figure is Percolator without
intraset features, reporting p values that are considerably more
uniformly distributed. Clearly, this type of evaluation would have
been beneficial in the early development of Percolator, because
biased features would have been identified immediately.

This example provides two important lessons. First, judging from
only the theory behind a feature (or any other method), biases can be
difficult to predict or detect. From only the description of the intraset
features of early Percolator, the developers did not recognize the bias.
Consequently, we recommend using the semilabeled method to
evaluate the calibration of any novel score function. Second, the
Percolator example shows us one of the main problems with poor
calibration: biasedmethods often appear to give very significant results.
In reality, however, the apparently strongperformance is an artifact of a
biased score function. This is a very important point, because such
statistical scores can result in costly, misleading conclusions.

Investigation of the Calibration of Some Commonly Used
Statistical Scores

To emphasize the range of peptide identification methods to
which our proposed calibration test is applicable, we analyzed the

calibration of a few well-known score functions. Here, we used
the entrapment PSMs of nine runs of ISB18 mix Orbitrap
spectra, and we summarized the calibration results in Table 1.
The table shows results using two types of entrapment databases
also used to generate Figure 1. Our suggested use of data from
known protein samples evaluates the calibration without con-
siderable database composition sensitivity, as seen for the tradi-
tional approach. Additionally, Figure 4 shows Q�Q plots of
p values reported from target-decoy analyses, X!Tandem and
MS-GFDB.

The K�S test indicates that both X!Tandem and MS-GFDB
with �Sid�ak corrections produce poorly calibrated scores. For both
methods, the K�S maximum distance D values are considerably
higher than any of the two approaches to target-decoy analysis
using raw XCorr scores. HighD values indicate that the observed
p value distribution is not close to uniform. D values of around
0.7, as for X!Tandem, implies that up to 70% of all incorrect
identifications score above or below the threshold erroneously, as
compared to the ideal p value distribution. The Q-Q plot in
Figure 4B provides further evidence of this poor calibration. The
plot also shows that the p values produced by X!Tandem are too
conservative (too high), whereas the p values fromMS-GFDB are
anticonservative (too low). Conservative p values underestimate
the significance of PSMs, increasing the risk that truly correct
peptide identifications are missed. Anticonservative p values, on
the other hand, overestimate the significance of a match. This is
highly undesirable because accepted PSMs will be incorrect to a
larger extent than specified.

’DISCUSSION

In this paper, we propose an alternative use of known protein
mixtures to evaluate the calibration of PSM score functions for
shotgun proteomics. We have used a procedure where negative
findings—entrapment PSMs—are treated as a robust represen-
tation of incorrect matches. In our scheme, the statistical scores

Figure 3. Biased features of early versions of Percolator. We scored Orbitrap spectra of nine runs of the ISB18mix against a bipartite target database
containing shuffled entrapment proteins. A decoy search was made against a reversed decoy database. (A) Empirical p values for the entrapment
PSMs were calculated using only the individual intraset feature values normally given as an input to the Percolator 1.03 algorithm. A Q�Q plot was
drawn with these p values against hypothetical p values of an ideal, unbiased scenario. (B) Scores reported from Percolator 1.03 were used to
calculate empirical p values for the entrapment PSMs with the intraset features activated. Percolator 1.14 calculates empirical p values without using
the intraset features. We plot the reported p values against hypothetical, perfectly uniform p values. The solid line corresponds to y = x; dashed lines
y = 2x and y = x/2.
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of entrapment PSMs are compared to theoretical, ideally dis-
tributed null scores. If these two samples are unlikely to come
from the same distribution, then the score function is assumed to
be poorly calibrated.

We have demonstrated that it can be hard to obtain a
representative measure of the discriminative capabilities of a
score function using samples of known protein content, because
correct and incorrect PSMs are more easily singled out under
some conditions than under others. Instead, we propose an
alternative method to assess the discrimination. Once we have
assured that the calibration of our method is accurate, we can
safely measure the discriminative performance of our score
function on any data set. A well-calibrated score can be trusted
to examine how many identifications we obtain at any threshold
defined in terms of our statistical score. This procedure enables
us to measure our score function’s discriminative performance
directly for the conditions we are interested in.

Throughout the study, we have used statistical score functions
that produce p values. Under the null model, p values follow a
uniform distribution, which is easily compared to the empirical
distribution of entrapment PSM scores. However, our proposed
semilabeled method works for any statistical score that is defined

in terms of the behavior of incorrect PSMs (a null hypothesis).
For example, the calibration of X!Tandem could be evaluated
using its reported E values directly, without prior conversion to p
values. In those cases, the ideal null distribution of E values would
replace the uniform null distribution of p values. Our scheme thus
requires the score function to report statistical scores with a
known null model distribution. Regardless of the statistical score
used to test the calibration, in order to avoid misinterpretations,
we want to emphasize that the entrapment null model concerns
only top-scoring PSMs. Consequently, the reported statistical
score must be defined in terms of top-scoring PSMs as well. This
is the reason behind the �Sid�ak correction explained in “Materials
and Methods”. Ideally, p values should be reported from all
statistical score functions. Assuming that other statistical scores
reported from the same score function contain the same bias, this
would enable a straightforward evaluation of the calibration.

To examine the extent of similarity between entrapment and
ideal null p values, we have used the K�S statisticD. As explained
earlier, D represents the maximum difference between two
cumulative frequencies. This value can be interpreted as the
proportion of incorrect PSMs that we risk erroneously placing
either above or below a specified threshold score. The K�S test,

Table 1. K�S Test Evaluations of the Calibration of Different Score Functionsa

method shuffled entrapment K�S D value H. influenzae entrapment K�S D value

Separate target-decoy analysis, XCorr 0.028 0.028

Target-decoy competition, XCorr 0.011 0.013

Percolator 1.14, without intraset features 0.026 0.035

Percolator 1.03, with intraset features 0.087 0.116

X!Tandem 0.747 0.738

MS-GFDB 0.210 0.225
aHere, we report theD values from K�S tests performed on nearly 30 000 entrapment PSMs from the concatenated runs of ISB18mix Orbitrap spectra
searched through two different bipartite databases. In the first experiment, we used a shuffled entrapment database; in the second, we used an entrapment
database of H. influenzae sequences.

Figure 4. Examples of score function calibrations. Orbitrap spectra from nine runs of the ISB18 mix were scored by a few commonly used score
functions. A bipartite database of known sample sequences and entrapment sequences made up of the shuffled sample sequences was used. For each
score function, we plotted reported p values vs a ranked list from 0 to 1 representing ideally distributed p values. The solid line indicates the y = x diagonal,
dashed lines y = 2x and y = x/2. (A) Separate and competitive target-decoy analyses (TDA) were performed based on SEQUEST’s XCorr and a reversed
decoy database. All p values were calculated as described earlier.21 (B) X!Tandem’s E values and MS-GFDB’s spectral probabilities were converted to
p values using a �Sid�ak correction as described under Material and Methods.
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as it is most commonly used, calculates a goodness-of-fit p value
which we have not used here. Such p values represent the
probability that two samples are drawn from the same distribu-
tion. However, this measure depends on the number of spectra
we score. Due to the large number of entrapment PSMs, even
small differences between the samples will result in a seemingly
significant goodness-of-fit p value. On the other hand, the large
number of PSMs grants a D value highly invariant to varying
sample sizes. Thus, it represents a robust measure of the sample
similarity. Additionally, as described above, the D value helps
interpreting the implication of the calibration directly.

As mentioned earlier, the purpose of the bipartite database is
to efficiently separate between correct and incorrect PSMs. Thus,
the size of the entrapment partition is preferably many times
larger than the size of the sample partition of a bipartite database.
However, an entrapment database infinitely larger than the
sample partition is likely to capture all top-scoring PSMs, making
it equivalent to a normal decoy database. The ideal proportion of
sample and entrapment sequences, for the purpose of creating
the optimal null model, thus remains to be elucidated. In this
study, we have, somewhat arbitrarily, used the size of the H.
influenzae database, as in ref 15, for the entrapment databases.
Furthermore, how to preferably set a K�S statistic D value
threshold for acceptable level of score function calibration has
not yet been examined.

Compared to previous methods, our proposed semilabeled
method to assess score function calibration helps overcome some
computational problems relating to database searching. On the
other hand, our method does not make up for low sample
complexity and other experimental drawbacks of using samples
of known protein mixtures. Hence, a low K�S statistic D value is
a necessary but not sufficient requirement for a score function.
On the other hand, it is a necessary requirement that few score
functions live up to.
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