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ABSTRACT
One key element in understanding the molecular machin-
ery of the cell is to understand the meaning, or function,
of each protein encoded in the genome. A very success-
ful means of inferring the function of a previously unanno-
tated protein is via sequence similarity with one or more
proteins whose functions are already known. Currently, one
of the most powerful such homology detection methods is
the SVM-Fisher method of Jaakkola, Diekhans and Haussler
(ISMB 2000). This method combines a generative, profile
hidden Markov model (HMM) with a discriminative classifi-
cation algorithm known as a support vector machine (SVM).
The current work presents an alternative method for SVM-
based protein classification. The method, SVM-pairwise,
uses a pairwise sequence similarity algorithm such as Smith-
Waterman in place of the HMM in the SVM-Fisher method.
The resulting algorithm, when tested on its ability to rec-
ognize previously unseen families from the SCOP database,
yields significantly better remote protein homology detec-
tion than SVM-Fisher, profile HMMs and PSI-BLAST.
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1. INTRODUCTION
Protein homology detection is a core problem in computa-
tional biology. Detecting subtle sequence similarities among
proteins is useful because sequence similarity typically im-
plies homology, which in turn may imply functional simi-
larity. The discovery of a statistically significant similarity
between two proteins is frequently used, therefore, to justify
inferring a common functional role for the two proteins.

Over the past 25 years, researchers have developed a bat-
tery of successively more powerful methods for detecting
protein sequence similarities. This development can be bro-
ken into four stages. Early methods looked for pairwise
similarities between proteins. Among such algorithms, the
Smith-Waterman dynamic programming algorithm [24] is
among the most accurate, whereas heuristic algorithms such
as BLAST [1] and FASTA [22] trade reduced accuracy for
improved efficiency. In the second stage, further accuracy
was achieved by collecting aggregate statistics from a set
of similar sequences and comparing the resulting statistics
to a single, unlabeled protein of interest. Profiles [10] and
hidden Markov models (HMMs) [18, 4] are two methods
for representing these aggregate statistics. These family-
based methods allow the comptutational biologist to infer
nearly three times as many homologies as a simple pair-
wise alignment algorithm [21]. In stage three, additional
accuracy was gleaned by leveraging the information in large
databases of unlabeled protein sequences. Iterative methods
such as PSI-BLAST [2] and SAM-T98 [17] improve upon
profile-based methods by iteratively collecting homologous
sequences from a large database and incorporating the re-
sulting statistics into a central model. All of the resulting
statistics, however, are generated from positive examples,
i.e., from sequences that are known or posited to be evo-
lutionarily related to one another. In stage four, additional
accuracy was gained by modeling the difference between pos-
itive and negative examples. Because the homology task
requires discriminating between related and unrelated se-
quences, explicitly modeling the difference between these
two sets of sequences yields an extremely powerful method.
The SVM-Fisher method [15, 16], which couples an itera-
tive HMM training scheme with a discriminative algorithm
known as a support vector machine (SVM) [26, 8], is cur-
rently the most accurate known method for detecting remote
protein homologies.

This paper presents an SVM-based protein classification



method that uses a pairwise sequence similarity algorithm
in place of the HMM of the SVM-Fisher method. Both
the SVM-Fisher method and the new method, called SVM-
pairwise, consist of two steps: converting a given set of pro-
teins into fixed-length vectors, and training an SVM from
the vectorized proteins. The two methods differ only in the
vectorization step. In the SVM-Fisher method, a protein’s
vector representation is its gradient with respect to a pro-
file hidden Markov model; in the SVM-pairwise method, the
vector is a list of pairwise sequence similarity scores.

The pairwise score representation of a protein offers three
primary advantages over the profile HMM gradient repre-
sentation. First, the pairwise score representation is sim-
pler, since it dispenses with the profile HMM topology
and parameterization, including training via expectation-
maximization. Second, pairwise scoring does not require a
multiple alignment of the training set sequences. For dis-
tantly related protein sequences, a profile alignment may
not be possible, if for example the sequences contain shuf-
fled domains. Thus, a collection of pairwise alignments al-
lows for the detection of motif- or domain-sized similarities,
even when the entire model cannot be easily aligned.

The third advantage of the pairwise score representation is
its use of a negative training set. A profile HMM is trained
solely on a collection of positive examples — sequences that
are known (or at least believed) to be homologous to one
another. The SVM adds to this model the ability to learn
from negative examples as well, by discriminating between
the two classes. In the SVM-pairwise method, this discrimi-
native advantage is extended throughout the algorithm. The
vector space defined by the pairwise scores includes many di-
mensions (i.e., sequence similarity scores) that are unrelated
to the positive training set. These dimensions, if they con-
tain significant similarity scores, can provide important ev-
idence against a protein belonging to the positive class. For
example, if a query protein is somewhat similar to sequences
in the positive class but very similar to several proteins in
the negative class, then the slight similarities to the positive
class can safely be ignored. In the absence of these negative
examples, the classification of such a sequence would remain
in doubt.

The following section describes in more detail the two pro-
tein vectorization methods. This section is followed by an
experimental comparison of seven protein homology detec-
tion methods. The methods include the SVM-Fisher [15]
and SVM-pairwise methods, two BLAST-based algorithms
(PSI-BLAST [2] and Family Pairwise Search [FPS] [12]), a
profile HMM method (SAM [18]), and two variants of the
SVM-pairwise algorithm (called SVM-pairwise+ and KNN-
pairwise). We measure the ability of each algorithm to dis-
cover previously unseen families from the SCOP database
[20], using as training sets all other members of the fam-
ily’s superfamily. The experiments induce a complete rank-
ing of methods, in the following order of performance (least
sensitive to most sensitive): FPS, SAM, PSI-BLAST, KNN-
pairwise, SVM-Fisher, SVM-pairwise+, SVM-pairwise. Thus,
for this set of data, the algorithm described here produces
the most accurate means of detecting remote homologs among
these seven methods.
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Figure 1: Schematic diagram of the protein vec-
torization step in the SVM-Fisher (top) and SVM-
pairwise (bottom) algorithms.

2. ALGORITHM
The SVM algorithm, which provides the framework of the
SVM-Fisher and SVM-pairwise methods, is suprisingly sim-
ple. The algorithm addresses the general problem of learning
to discriminate between positive and negative members of
a given class of n-dimensional vectors. The algorithm oper-
ates by mapping the given training set into a possibly high-
dimensional feature space and attempting to locate in that
space a plane that separates the positive from the negative
examples. Having found such a plane, the SVM can then
predict the classification of an unlabeled example by map-
ping it into the feature space and asking on which side of the
separating plane the example lies. Much of the SVM’s power
comes from its criterion for selecting a separating plane when
many candidates planes exist: the SVM chooses the plane
that maintains a maximum margin from any point in the
training set. Statistical learning theory suggests that, for
some classes of well-behaved data, the choice of the maxi-
mum margin hyperplane will lead to maximal generalization
when predicting the classification of previously unseen ex-
amples [26]. The SVM algorithm can also be extended to
cope with noise in the training set and with multiple classes
[8].

One important requirement of the SVM is that the input be
a collection of fixed-length vectors. Proteins, of course, are
variable-length sequences of amino acids and hence cannot
be directly input to the standard SVM. In the SVM-Fisher
method, the HMM provides the necessary means of con-
verting proteins into fixed-length vectors. First, the HMM is
trained using the positive members of the training set. Then
the gradient vector of any sequence — positive, negative or
unlabeled — can be computed with respect to the trained
model. Each component of the gradient vector corresponds
to one parameter of the HMM. The vector summarizes how
different the given sequence is from a typical member of the
given protein family. An SVM trained on a collection of pos-
itively and negatively labeled protein gradient vectors learns
to classify proteins extremely well.

In the current work, we would like to accomplish a similar



Method Train from
SVM-pairwise Positives and negatives
SVM-Fisher Positives and negatives
PSI-BLAST Positives only
SAM Positives only
FPS Positives only
KNN-pairwise Positives and negatives
SVM-pairwise+ Positives and negatives

Table 2: Seven protein homology detection methods

conversion of a protein from an amino acid sequence into
a fixed-length numeric vector. A straightforward method is
suggested by the Family Pairwise Search (FPS) algorithm
[12, 3]. FPS extends a pairwise sequence comparison al-
gorithm such as Smith-Waterman or BLAST to carry out
sequence-versus-family comparisons by combining multiple
pairwise comparison scores. BLAST-based FPS is efficient
and has been shown to perform competitively with HMM
methods [12]. In place of an explicit model of the protein
family, FPS uses the members of the family. This implicit
model provides an easy way to vectorize a given protein:
simply store in the vector the pairwise similarity scores with
respect to each member of the training set. As in the SVM-
Fisher method, the vectorized proteins can then be fed into
an SVM. We call this algorithm SVM-pairwise. The differ-
ence between the two algorithms is illustrated in Figure 1.

3. METHODS
The experiments reported here compare the performance of
seven algorithms: SVM-pairwise, SVM-Fisher, PSI-BLAST,
SAM, FPS, and two simplified versions of SVM-pairwise
called SVM-pairwise+ and KNN-pairwise (see Table 2). We
assess the recognition performance of each algorithm by test-
ing its ability to classify protein domains into superfamilies
in the Structural Classification of Proteins (SCOP) [20] ver-
sion 1.53. Sequences were selected using the Astral database
(astral.stanford.edu [6]), removing similar sequences using
an E-value threshold of 10−25. This procedure resulted in
4352 distinct sequences, grouped into families and super-
families. For each family, the protein domains within the
family are considered positive test examples, and the pro-
tein domains outside the family but within the same super-
family are taken as positive training examples. The data
set yields 54 families containing at least 10 family members
(positive test) and 5 superfamily members outside of the
family (positive train). Negative examples are taken from
outside of the positive sequences’ fold, and are randomly
split into train and test sets in the same ratio as the posi-
tive examples. Details about the various families are listed
in Table 1, and the complete data set is available at www.
cs.columbia.edu/compbio/svm-pairwise. This experimental
setup is similar to that used by Jaakkola et al. [15], except
for one important difference: in the current experiments,
the positive training sets do not include additional protein
sequences extracted from a large, unlabeled database. As
such, the recognition tasks performed here are more diffi-
cult than those in Jaakkola et al. In principle, any of the
seven methods described here could be applied in an itera-
tive framework using an auxiliary database.

The vectorization step of SVM-pairwise uses the Smith-
Waterman algorithm as implemented on the BioXLP hard-
ware accelerator (www.cgen.com). The feature vector cor-
responding to protein X is FX = fx1, fx2, . . . , fxn, where n

is the total number of proteins in the training set, and fxi is
the E-value of the Smith-Waterman score between sequence
X and the ith training set sequence. The default parame-
ters are used: gap opening penalty and extension penalties
of 11 and 1, respectively, and the BLOSUM 62 matrix.

The SVM implementation employs the optimization algo-
rithm described in [16], and the software is available at www.
cs.columbia.edu/compbio/svm. At the heart of the SVM is
a kernel function that acts as a similarity score between pairs
of input vectors. The base SVM kernel is normalized so that
each vector has length 1 in the feature space; i.e.,

K(X, Y ) =
X · Y√

(X · X)(Y · Y )
. (1)

This kernel K(·, ·) is then transformed into a radial basis

kernel K̂(·, ·), as follows:

K̂(X, Y ) = e
−

K(X,X)−2K(X,Y )+K(Y,Y )

2σ2 + 1, (2)

where the width σ is the median Euclidean distance (in fea-
ture space) from any positive training example to the near-
est negative example. The constant 1 is added to the kernel
in order to translate the data away from the origin. This
translation is necessary because the SVM optimization al-
gorithm we employ requires that the separating hyperplane
pass through the origin. An asymmetric soft margin is im-
plemented by adding to the diagonal of the kernel matrix a
value 0.02∗ρ, where ρ is the fraction of training set sequences
that have the same label as the current sequence (see [7] for
details). The output of the SVM is a discriminant score that
is used to rank the members of the test set. The same SVM
parameters are used for the SVM-Fisher and SVM-pairwise
tests.

Hidden Markov models are trained using the Sequence
Alignment and Modeling (SAM) toolkit (www.soe.ucsc.
edu/research/compbio/sam.html) [18]. Models are built
from unaligned positive training set sequences using the
local scoring option (“-SW 2”). Following [16], we
use a 9-component Dirichlet mixture prior developed by
Kevin Karplus (byst-4.5-0-3.9comp at www.soe.ucsc.edu/
research/compbio/dirichlets). Once a model is obtained,
it is straightforward to compare the test sequences to the
model by using hmmscore (also with the local scoring op-
tion). The resulting E-values are used to rank the test set
sequences.

The SVM-Fisher method uses the same, trained HMMs dur-
ing the vectorization step. As in the Baum-Welch training
algorithm for HMMs, the forward and backward matrices
are combined to yield a count of observations for each pa-
rameter in the HMM. As shown in [16], the counts can be

converted into components of a gradient vector Ũ via the
following equation:

Ũij =
Ej(i)

ej(i)
−

∑

k

Ej(k), (3)

where Ej(i) is the number of times that amino acid i is



Positive set Negative set Positive set Negative set

ID Train Test Train Test ID Train Test Train Test

1.27.1.1 12 6 2890 1444 2.9.1.4 21 10 2928 1393

1.27.1.2 10 8 2408 1926 3.1.8.1 19 8 3002 1263

1.36.1.2 29 7 3477 839 3.1.8.3 17 10 2686 1579

1.36.1.5 10 26 1199 3117 3.2.1.2 37 16 3002 1297

1.4.1.1 26 23 2256 1994 3.2.1.3 44 9 3569 730

1.4.1.2 41 8 3557 693 3.2.1.4 46 7 3732 567

1.4.1.3 40 9 3470 780 3.2.1.5 46 7 3732 567

1.41.1.2 36 6 3692 615 3.2.1.6 48 5 3894 405

1.41.1.5 17 25 1744 2563 3.2.1.7 48 5 3894 405

1.45.1.2 33 6 3650 663 3.3.1.2 22 7 3280 1043

2.1.1.1 90 31 3102 1068 3.3.1.5 13 16 1938 2385

2.1.1.2 99 22 3412 758 3.32.1.1 42 9 3542 759

2.1.1.3 113 8 3895 275 3.32.1.11 46 5 3880 421

2.1.1.4 88 33 3033 1137 3.32.1.13 43 8 3627 674

2.1.1.5 94 27 3240 930 3.32.1.8 40 11 3374 927

2.28.1.1 18 44 1246 3044 3.42.1.1 29 10 3208 1105

2.28.1.3 56 6 3875 415 3.42.1.5 26 13 2876 1437

2.38.4.1 30 5 3682 613 3.42.1.8 34 5 3761 552

2.38.4.3 24 11 2946 1349 7.3.10.1 11 95 423 3653

2.38.4.5 26 9 3191 1104 7.3.5.2 12 9 2330 1746

2.44.1.2 11 140 307 3894 7.3.6.1 33 9 3203 873

2.5.1.1 13 11 2345 1983 7.3.6.2 16 26 1553 2523

2.5.1.3 14 10 2525 1803 7.3.6.4 37 5 3591 485

2.52.1.2 12 5 3060 1275 7.39.1.2 20 7 3204 1121

2.56.1.2 11 8 2509 1824 7.39.1.3 13 14 2083 2242

2.9.1.2 17 14 2370 1951 7.41.5.1 10 9 2241 2016

2.9.1.3 26 5 3625 696 7.41.5.2 10 9 2241 2016

Table 1: SCOP families included in the experiments. For each family, the numbers of sequences in the
positive and negative training and test sets are listed.

observed in state j, and ej(i) is the emission probability
for amino acid i in state j. Although these gradients can
be computed for every HMM parameter, the SVM-Fisher
method uses only the gradient components that correspond
to emission probabilities in the match states. Furthermore,
a more compact gradient vector can be derived using a mix-
ture decomposition of the emission probabilities. The mix-
ture gradient calculation, analogous to Equation 3, is as
follows:

Ũ`j =
20∑

i=1

Ej(i)

[
θi`

ej(i)
− 1

]
, (4)

where θi` corresponds to the ith amino acid in the `th Dirich-
let distribution. These experiments employ the same 9-
component Dirichlet mixture mentioned above. For a profile
HMM containing m match states, the resulting vector con-
tains 9m components. These vectors are then used as input
to an SVM, as described above.

For comparison, we also include in the experiments the
PSI-BLAST algorithm [2], which is probably the most
widely-used protein homology detection algorithm. It is not
straightforward to compare PSI-BLAST, which requires as
input a single sequence, with methods such as HMMER and
SVM-Fisher, which take multiple input sequences. We ad-
dress this problem by randomly selecting a positive training
set sequence to serve as the initial query. PSI-BLAST is
run for one iteration on a database consisting only of the re-
maining positive training set sequences. An extremely high
E-value threshold is applied so that all of the training set
sequences are included in the resulting profile. This profile
is then used for one additional iteration, this time using the
test set as a database. The resulting E-values are used to
rank the test set sequences. Note that PSI-BLAST is not
run on the test set for multiple iterations: this restriction al-

lows a fair comparison with the other, non-iterative methods
included in the study.

Family Pairwise Seach [12, 3] is another family-based protein
homology detection method that is based upon the BLAST
algorithm. We include in the study a simple form of FPS,
called FPS-minp. This method simply ranks each test set
sequence according to the minimum of the BLAST p-values
with respect to the positive training set.

Finally, we test two variants of the SVM-pairwise algorithm.
First, in order to evaluate the benefit provided by the nega-
tive elements in the pairwise score vector, we tested a version
of SVM-pairwise in which the negative training set is not
used during the creation of the score vectors. In this method,
called SVM-pairwise+, the negative examples are still used
during the training of the SVM. Second, in order to evalu-
ate the utility of the SVM in the SVM-pairwise algorithm,
we include a method, KNN-pairwise, that replaces the SVM
with a simpler discriminative classifier, the k-nearest neigh-
bor algorithm. The algorithm takes as input the same fea-
ture vector as the SVM does in SVM-pairwise. However,
rather than classifying a query protein by orienting it with
respect to a separating plane, KNN locates the k training
set proteins that are nearest to the query protein (using Eu-
clidean distances between vectors). We use a kernel version
of k-nearest neighbor, with the same kernel function as in
the SVM. The predicted classification is simply the majority
classification among these k neighbors. For this study, we
use k = 3. Sequences are ranked according to the number
of distance-weighted votes for the positive class.

Each of the above seven methods produces as output a rank-
ing of the test set sequences. To measure the quality of this
ranking, we use two different scores: receiver operating char-



acteristic (ROC) scores and the median rate of false posi-
tives (RFP). The ROC score is the normalized area under a
curve that plots true positives as a function of false positives
for varying classification thresholds [11]. A perfect classifier
that puts all the positives at the top of the ranked list will
receive an ROC score of 1, and for these data, a random
classifier will receive an ROC score very close to 0. The
median RFP score is the fraction of negative test sequences
that score as high or better than the median-scoring posi-
tive sequence. RFP scores were used by Jaakkola et al. in
evaluating the Fisher-SVM method.

4. RESULTS
The results of the experiments are summarized in Figure 2.
The two graphs rank the seven homology detection methods
according to ROC and median RFP scores. In each graph,
a higher curve corresponds to more accurate homology de-
tection performance. Using either performance measure, the
SVM-pairwise method performs significantly better than the
other six methods. We assess the statistical significance of
differences among methods using a two-tailed signed rank
test [14, 23]. The resulting p-values are conservatively ad-
justed using a Bonferroni correction for multiple compar-
isons. As shown in Table 3, nearly all of the differences ap-
parent in Figures 2 are statistically significant at a threshold
of 0.05. The resulting induced performance ranking of meth-
ods is SVM-pairwise, SVM-pairwise+, SVM-Fisher, KNN-
pairwise, PSI-BLAST, SAM, FPS. Only the differences be-
tween PSI-BLAST and SAM and between SVM-pairwise
and SVM-pairwise+ are not statistically significant.

Many of these results agree with previous assessments. For
example, the relative performance of SVM-Fisher and SAM
agrees with the results given in [15], as does the relatively
poor performance of the FPS algorithm on this task. This
latter result is probably due to the difficulty of the recogni-
tion task. A previous assessment [12], which found FPS to
be competitive with profile HMMs, tested both algorithms
on much less remote homologies. The FPS algorithm can be
improved by using Smith-Waterman p-values, rather than
BLAST, and by computing p-values for sequence-to-family
comparisons [3]. However, we do not expect these improve-
ments to make the algorithm competitive with the best al-
gorithms in this experiment.

One surprise in Figure 2 is the relative ranking of SAM
and PSI-BLAST: in previous work, SAM significantly out-
performs PSI-BLAST [21]. This difference may have sev-
eral explanations. First, we may have improperly used the
SAM software, setting parameters differently than an expert
would. In order to reduce this possibility, we repeated the
experiment above using CLUSTALW [25] to align the se-
quences and HMMER [9] to build models and score them.
The resulting ROC and median RFP scores are very similar
to the scores produced by SAM (data not shown): the two
sets of scores are not statistically significantly different from
one another nor from PSI-BLAST scores. Second, the bene-
fit of using SAM may be more improved in the context of an
iterated search, as was used in [21]. A third explanation for
the improvement in PSI-BLAST’s performance is just that:
the PSI-BLAST algorithm has been improved considerably
in the last several years, and it may now perform as well as
SAM, at least in this experimental paradigm.
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Figure 3: Family-by-family comparison of Fisher-
SVM and SVM-pairwise Each point on the graph
corresponds to one of the SCOP superfamilies listed
in Table 1. The axes are ROC scores achieved by
the two primary methods compared in this study:
SVM-Fisher and SVM-pairwise.

The SVM-pairwise+ algorithm performs almost as well as
the SVM-pairwise algorithm. This result implies that the
power of SVM-pairwise does not lie entirely in the use of
the negative training set during vectorization. Given the
large size of the negative training set, the SVM-pairwise+

is considerably faster than SVM-pairwise and therefore pro-
vides a quite powerful, efficient alternative.

The placement of the KNN-pairwise algorithm above PSI-
BLAST and below SVM-Fisher is significant in several re-
spects. On the one hand, this result shows that the pairwise
similarity score representation brings considerable power
to the method, resulting in a state-of-the-art classification
method using only a very simple classification algorithm.
On the other hand, the result also shows the utility of the
SVM algorithm, since both SVM-based methods perform
better than the KNN-based method. It would certainly be
possible to improve our k-nearest neighbor implementation,
using for example a generalization such as Parzen windows
[5]. We have no reason to suspect, however, that such an
improvement would yield better performance than the SVM-
pairwise method.

The most significant result from our experiments is the top-
ranking performance of the SVM-pairwise method. This re-
sult is further illustrated in Figure 3, which shows a family-
by-family comparison of the 54 ROC scores computed for
each method. The SVM-pairwise method scores higher than
the SVM-Fisher method on nearly every family. The one
outlier is family 2.44.1.2, which has a relatively small train-
ing set. Family-by-family results from each of the seven
methods are available at www.cs.columbia.edu/compbio/
svm-pairwise.

5. DISCUSSION
We have shown that the SVM-pairwise method yields sig-
nificantly improved remote homology detection relative to
a number of existing, state-of-the-art algorithms. Like the
SVM-Fisher algorithm, SVM-pairwise exploits a negative
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Figure 2: Relative performance of the seven homology detection methods Each graph plots the total number
of families for which a given method exceeds a score threshold. The top graph uses ROC scores, and the
bottom graph uses median RFP scores. Each series corresponds to one of the protein homology detection
methods shown in Table 2.



SVM- SVM- KNN- PSI- SAM FPS
pairwise+ Fisher pairwise BLAST

SVM-pairwise — 7.0e-08 9.6e-09 4.6e-09 9.1e-09 4.6e-09
SVM-pairwise+ 1.9e-03 1.7e-07 1.2e-08 7.3e-09 3.5e-09
SVM-Fisher 2.5e-05 3.3e-08 1.4e-05 4.6e-09
KNN-pairwise 2.3e-07 2.2e-03 9.1e-09
PSI-BLAST — 1.1e-06
SAM 8.7e-06

Table 3: Statistical significance of differences between pairs of homology detection methods. Each entry in
the table is the p-value given by a two-tailed signed rank test comparing paired ROC scores from two methods
for each of the 54 families. The p-values have been (conservatively) adjusted for multiple comparisons using
a Bonferonni adjustment. An entry in the table indicates that the method listed in the current row performs
significantly better than the method listed in the current column. A “—” indicates that the p-value is greater
than 0.05. The statistics for median RFP scores are similar.

training set to yield more accurate predictions. Unlike SVM-
Fisher, SVM-pairwise extends this discriminative compo-
nent into the vectorization step. The inclusion of negative
examples in the vectorization step adds a small degree of
power to the algorithm. A more important difference, how-
ever, lies in the method by which proteins are converted to
vector form. The vector of pairwise similarity scores relaxes
the requirement for a multiple alignment of the training set
sequences. We hypothesize that this difference explains the
excellent performance of this algorithm.

One significant characteristic of any homology detection al-
gorithm is its computational efficiency. In this respect,
the SVM-pairwise algorithm is not significantly better than
SVM-Fisher. Both algorithms include an SVM optimiza-
tion, which is roughly O(n2), where n is the number of
training set examples. The vectorization step of SVM-
Fisher requires training a profile HMM and computing the
gradient vectors. The gradient computation dominates,
with a running time of O(nmp), where m is the length of
the longest training set sequence, and p is the number of
HMM parameters. In contrast, the vectorization step of
SVM-pairwise involves computing n2 pairwise scores. Using
Smith-Waterman, each computation is O(m2), yielding a to-
tal running time of O(n2m2). Thus, assuming that m ≈ p,
the SVM-pairwise vectorization takes approximately n times
as long as the SVM-Fisher vectorization.

There are several ways to speed up the SVM-pairwise vec-
torization. Most obviously, it should be possible to carry
out the vectorization using a linear time approximation of
Smith-Waterman, such as BLAST. This modification would
immediately remove a factor of m from the running time, al-
though the change would presumably decrease the accuracy
of the algorithm. A second approach would be to use an ex-
plicit “vectorization set” of proteins for creating the feature
vectors. In the current implementation, SVM-pairwise com-
pares each training and test set sequence to every sequence
in the training set. There is no reason, however, that the
columns of the vector matrix must correspond to the train-
ing set sequences. A relatively small collection of widely
distributed sequences (or even a library of profile HMMs)
might provide a powerful, concise vector signature of any
given protein.

A different approach for combining pairwise similarity scores

with an SVM is to build the similarity score directly into the
SVM. Several authors have derived kernel functions that al-
low direct comparison of strings [27, 13, 19]. These methods
are appealing for protein homology detection because they
obviate the need for an explicit vectorization step. A direct
comparison of these methods with SVM-pairwise will be the
subject of future research.

Acknowledgments: We thank Mark Diekhans for providing ac-

cess to detailed results from their prior work as well as software

for computing Fisher gradient vectors. We also thank Timothy

Bailey for helpful discussion, and Darrin Lewis for his implemen-

tation of the k-nearest neighbor algorithm. This work was sup-

ported by an Award in Bioinformatics from the PhRMA Foun-

dation, and by National Science Foundation grants DBI-0078523

and ISI-0093302. The BioXLP resource was provided by the Na-

tional Biomedical Computation Research at the San Diego Su-

percomputer Center. NBCR is funded by the National Center

for Research Resources (P41 RR08605-07).

6. REFERENCES
[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and

D. J. Lipman. A basic local alignment search tool.
Journal of Molecular Biology, 215:403–410, 1990.

[2] S. F. Altschul, T. L. Madden, A. A. Schaffer,
J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman.
Gapped BLAST and PSI-BLAST: A new generation
of protein database search programs. Nucleic Acids

Research, 25:3389–3402, 1997.

[3] T. L. Bailey and W. N. Grundy. Classifying proteins
by family using the product of correlated p-values. In
S. Istrail, P. Pevzner, and M. Waterman, editors,
Proceedings of the Third Annual International

Conference on Computational Molecular Biology,
pages 10–14. ACM, April 1999.

[4] P. Baldi, Y. Chauvin, T. Hunkapiller, and M. A.
McClure. Hidden Markov models of biological primary
sequence information. Proceedings of the National

Academy of Sciences of the United States of America,
91(3):1059–1063, 1994.

[5] C. Bishop. Neural Networks for Pattern Recognition.
Oxford UP, Oxford, UK, 1995.



[6] S. E. Brenner, P. Koehl, and M. Levitt. The ASTRAL
compendium for sequence and structure analysis.
Nucleic Acids Research, 28:254–256, 2000.

[7] M. P. S. Brown, W. N. Grundy, D. Lin, N. Cristianini,
C. Sugnet, T. S. Furey, Jr. M. Ares, and D. Haussler.
Knowledge-based analysis of microarray gene
expression data using support vector machines.
Proceedings of the National Academy of Sciences of

the United States of America, 97(1):262–267, 2000.

[8] N. Cristianini and J. Shawe-Taylor. An Introduction to

Support Vector Machines. Cambridge UP, 2000.

[9] S. R. Eddy. Multiple alignment using hidden Markov
models. In C. Rawlings, editor, Proceedings of the

Third International Conference on Intelligent Systems

for Molecular Biology, pages 114–120. AAAI Press,
1995.
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