
2008 HHMI Investigator Competition: Eligibility Responses

First Name: William 
Last Name: Noble

Doctoral Degree: Ph.D.

Primary Institution with academic appointment: University of Washington

Institution has full-time tenure-track faculty appointment: YES
    Applicant is: Tenured

Academic Title: Associate Professor

First faculty appointment as an assistant professor or equivalent rank: 7/1999

Is lead investigator on one national peer-reviewed grant: YES
    Grant Information: NIH
R01
EB007057
Machine learning analysis of tandem mass spectra
3/1/07--2/28/11

Has agreed with all of HHMI's conditions: YES



2008 HHMI Investigator Competition: Contact Info

First Name: William 
Last Name: Noble
Middle Name: Stafford
Primary Phone: 206 543-8930 (Office)
Alternate Phone: 206 355-5596 (Cell)
E-mail Address: noble@gs.washington.edu
Advanced Degree: Ph.D.
Position Title: Associate Professor

Institutional Mailing Address:
University of Washington
Genome Sciences
Box 355065
Foege Building, S220B
1705 NE Pacific St.
Seattle, Washington 98195
United States

Research Focus: Machine learning techniques for application to problems in molecular biology
Research Keywords: Bioinformatics, Machine learning, Mass spectrometry, Motif discovery,
Protein-protein interaction prediction, Gene function prediction, Analysis of heterogeneous data, Support
vector machines, 

Scientific Disciplines:
Primary: Computational biology
Secondary: N/A



BIOGRAPHICAL SKETCH

NAME POSITION TITLE
William Stafford Noble Associate Professor
(formerly William Noble Grundy)

EDUCATION/TRAINING
INSTITUTION AND LOCATION DEGREE YEAR(S) FIELD OF STUDY

Stanford University BS 1991 Symbolic Systems
University of California, San Diego MS 1996 Computer Science
University of California, San Diego PhD 1998 Computer Science &

Cognitive Science
University of California, Santa Cruz Postdoc 1999 Computational Biology

Professional positions
2006– Associate Professor, Department of Genome Sciences, University of Washington
2006– Adjunct Associate Professor, Department of Computer Science and Engineering, University of

Washington
2006– Adjunct Associate Professor of Medicine, University of Washington
2005–06 Adjunct Assistant Professor of Medicine, University of Washington
2002–06 Assistant Professor, Department of Genome Sciences, University of Washington
2002–06 Adjunct Assistant Professor, Department of Computer Science and Engineering, University of

Washington
2000–02 Pharmaceutical Research and Manufacturers of America Foundation Faculty Development Award

in Bioinformatics.
1999–02 Assistant Professor, Department of Computer Science, Columbia University, with joint appointment

at the Columbia Genome Center.

Professional Activities, honors and awards
2001–05 Research Fellow, Alfred P. Sloan Foundation.
2001–06 National Science Foundation CAREER Award.
1998–99 Fellow, Alfred P. Sloan Foundation and U.S. Department of Energy Postdoctoral Fellowships in

Computational Molecular Biology
1994–97 Fellow, National Defense Science and Engineering Graduate Fellowship Program.
1991 Phi Beta Kappa, Stanford University.
1987 David Starr Jordan Scholar, Stanford University.
1987 National Merit Scholar.

Program committee member, AAAI 1998, ISMB 2002–2007, BIOKDD 2002, KDD 2000, 2003, COLT 2003, RE-
COMB 2004, 2007, ICML 2004, ECCB 2005, GIW 2005-2007, RECOMB computational protemics satellite 2007,
BIRD 2007.
Scienti�c consultant, Rigel Pharmaceuticals, Inc., South San Francisco, CA, 1999–2001.
Member, Scienti�c Advisory Board, X-Mine, Inc., Hayward, CA, 2000–2002.
Panelist, National Science Foundation review panel on Information Technology Research at the intersection of
biology and informatics, April 18-19, 2001.
Panelist, National Institutes of Health Special Bioinformatics Study Section, March 12, 2003, June 30, 2004 and
March 17–18, 2005.
Panelist, National Institues of Health Biodata Management and Analysis study section, January 29–30, 2007.
Member, Public Affairs and Policies Committee, International Society for Computational Biology, 2003–present.
Guest co-editor, Special issue on Machine Learning for Bioinformatics, IEEE Transactions on Computational
Biology and Bioinformatics, 2004.
Member, Scienti�c Advisory Board, Bioinformatics of Mammalian Gene Expression project, Canada's Michael
Smith Genome Centre, Vancouver, BC, Canada, 2004–present.
Editorial board member, Journal of Bioinformatics and Computational Biology, 2004–present.
Editorial board member, IEEE Transactions on Computational Biology and Bioinformatics, 2005–present.



Co-chair, Workshop on Computational Biology and the Analysis of Heterogeneous Data, Nineteenth Annual
Conference on Neural Information Processing Systems, Whistler, BC, Dec. 9–10, 2005.
Member, Internal Advisory Board, Center for Functional Genomics and HCV-Associated Liver Disease, University
of Washington, Seattle, WA, 2006–present.
Member, Scienti�c Advisory Board, National Center for Systems Biology, Institute for Systems Biology, Seattle,
WA, 2006–present.
Panelist, National Cancer Institute special emphasis panel on “Advance proteomic platforms and computation
science for the NCI clinical proteomic technologies initiative,” June 26-27, 2006.
Co-chair, Workshop on Computational Biology, Twentieth Annual Conference on Neural Information Processing
Systems, Whistler, BC, Dec. 8–9, 2006.
Area chair, Bioinformatics and Kernel Methods, Twenty-�rst Annual Conference on Neural Information Processing
Systems, Whistler, BC, Dec 3–8, 2007.
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43. GRG Lanckriet, T De Bie, N Cristianini, MI Jordan and WS Noble. “A statistical framework for genomic data
fusion.” Bioinformatics. 20(16):2626-2635, 2004.
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C. Research support

Ongoing Research Support

R01 RR021692 (Noble) 8/1/05–6/30/09 1.8 calendar
NIH/NCRR $219,713
The MEME suite of motif-based sequence analysis tools.
This project supports, maintains and develops the MEME software suite of motif analysis software. This is a
joint project with Tim Bailey at the University of Queensland, Australia. This proposal received a percentile
ranking of 0.6%.
Role: PI

R01 EB007057 (Noble) 3/1/07–2/28/11 2.4 calendar
NIH $285,876
Machine learning analysis of tandem mass spectra
This project applies techniques and tools from the �eld of machine learning to the analysis of mass spec-
trometry data. The primary aim is to produce software that increases the sensitivity and speci�city of protein
identi�cations from complex mixtures.
Role: PI

R33 HG003070 (Noble) 9/1/04–8/31/07 1.8 calendar
NIH/NHGRI $385,569
Detecting relations among heterogeneous genomic datasets.
The long-term objective of this work is to provide a coherent computational framework for integrating and
drawing inferences from a collection of genome-wide measurements. This project includes subcontracts at
three other institutions.
Role: PI

U01 HG003161 (G Stamatoyannopoulos) 9/30/03-7/31/07 1.2 calendar
NIH/NHGRI $17,100 (subaward)
Identi�cation of Functional DNA Elements by HSqPCR
This is an ENCODE project, aimed at detecting DNaseI hypersensitive sites in vivo using a high-throughput
screen.
Role: Co-investigator

R01 GM071923 (J Stamatoyannopoulos) 9/1/04–8/31/09 1.2 calendar
NIH/NIGMS $93,665 (subaward)
Computational discovery of cis-regulatory sequences
This project uses quantitative chromatin pro�ling to identify cis-regulatory elements in a high-throughput fash-
ion. This proposal received a percentile ranking of 2.2%.
Role: Co-investigator

P41 RR11823 (Davis) 9/1/04–8/31/11 1.2 calendar
NIH/NCRR $83,964 (subproject)
Comprehensive biology: Exploiting the yeast genome.
The mission of the YRC is to facilitate the identi�cation and characterization of protein complexes in the yeast
Saccharomyces cerevisiae.
Role: Co-investigator



R01 GM074257 (Leslie) 5/1/05–4/30/10 1.2 calendar
NIH/NCRR $31,004 (subcontract)
Recognizing protein folds with discriminative learning
This project develops discriminative methods for classifying proteins into structural families based upon their
amino acid sequences.
Role: Co-investigator

P42 ES004696 (Checkoway) 5/1/06–3/31/11 0.48 calendar
NIH $7,100 (subaward)
Gene/Environment intteractions in Parkinson's disease
The major goal of this project is to investigate associations of Parkinson's disease risk with environmental
factors.
Role: Co-investigator



Major Achievements

My research develops machine learning approaches and applies them to fundamental prob-
lems in biology, including recognizing remote protein homologies, inferring gene function and
protein-protein interactions from heterogeneous data sets, predicting characteristics of local
chromatin structure, and assigning peptides to tandem mass spectra.

� The RankProp algorithm exploits the global structure of the protein similarity net-
work to identify remote protein homologies. This algorithm is very fast, dramatically
outperforms the widely used PSI-BLAST algorithm and is in regular use via the UCSC
Gene Sorter.

� The correct assignment of functional annotations to genes requires methods that con-
sider diverse types of genomic and proteomic data. Our statistical framework combines
semide�nite programming and the support vector machine (SVM) algorithm to solve
this problem. We applied and extended these methods to assign gene function and to
predict protein-protein interactions in yeast, mouse, worm and human.

� In the human genome, regions of local chromatin disruption can be identi�ed by DNaseI
hypersensitivity assays. We used the SVM to demonstrate the existence of DNA se-
quence patterns that correspond to these hypersensitive sites and to predict the loca-
tions of new sites. These predictions were subsequently validated by our collaborators
via qPCR and Southern blot analyses.

� Machine learning dramatically improves the ability to correctly interpret tandem mass
spectra. A semi-supervised learning method, the Percolator algorithm, more than
doubles the number of spectra identi�ed at a �xed false discovery rate, compared with
state-of-the-art methods. Our collaborators now use Percolator on a daily basis, and
we are preparing to disseminate the software more broadly.



Research statement

The trend in biology toward the development and application of high-throughput, genome-
and proteome-wide assays necessitates an increased reliance upon computational techniques
to organize and understand the results of biological experiments. Without appropriate com-
putational tools, biologists cannot hope to fully understand, for example, a complete genome
sequence or a library of microarray expression pro�les. My research focuses on the devel-
opment and application of methods for interpreting complex biological data sets. These
methods may be used, for example, to uncover distant structural and functional relation-
ships among protein sequences, to identify transcription factor binding site motifs, to classify
cancerous tissues on the basis of microarray mRNA expression pro�les, to predict properties
of local chromatin structure from a given DNA sequence, and to accurately map tandem
mass spectra to their corresponding peptides.

The goals of my research program are to develop and apply powerful new computational
methods to gain insights into the molecular machinery of the cell. In selecting research areas
to focus on, I am drawn to research problems in which I can solve fundamental problems in
biology while also pushing the state of the art in machine learning.

Pattern recognition in diverse and heterogeneous genomic and proteomic data
sets

Genome sciences is, in many ways, a data-driven enterprise because available technologies
de�ne the types of questions that we can ask. Each assay|DNA sequencing, mRNA expres-
sion microarrays, the yeast two-hybrid screen|provides one view of the molecular activity
within the cell. An ongoing theme in my research is the integration of heterogeneous data
sets, with the aim of providing a uni�ed interpretation of the underlying phenomenon. We
focus, in particular, on inferring gene function and on predicting protein-protein interac-
tions. For example, to determine whether a given target pair of proteins interact, we take
into account direct experimental evidence in the form of a yeast two-hybrid assay or tandem
a�nity puri�cation followed by mass spectrometry. In addition, we consider as evidence the
sequence similarity between the target pair of proteins and one or more pairs of proteins
that are known to interact with one another, the similarity of the target proteins' mRNA
expression pro�les or chip-ChIP expression pro�les, and evidence of cellular colocalization.
We have developed a statistical inference framework that considers all of these sources of
evidence, taking into account dependencies among them and weighting each type of evidence
according to its relevance and its trustworthiness.

Much of my research program relies on a class of methods, developed recently in machine
learning, known as kernel methods [43]. An algorithm is a kernel method if it relies on
a particular type of function (the kernel function) to de�ne similarities between pairs of
objects. For these algorithms, a data set of N objects can be su�ciently represented using
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an N -by-N matrix of kernel values. The kernel matrix thereby provides a mechanism for
representing diverse data types using a common formalism.

In collaboration with a variety of research groups, we have demonstrated the broad applica-
bility of kernel methods to problems in genomics and proteomics, focusing on a particular
kernel method known as the support vector machine (SVM) [6]. The SVM is a kernel-
based classi�cation algorithm that boasts strong theoretical underpinnings [47] as well as
state-of-the-art performance in a variety of bioinformatics applications [30]. We have shown
that

� SVMs can successfully classify yeast genes into functional categories on the basis of
microarray expression pro�les [7] or motif patterns within promoter sequences [35, 48].

� SVMs can discriminate with high accuracy among subtypes of soft tissue sarcoma on
the basis of microarray expression pro�les [45, 44]. Our SVM classi�er provided strong
evidence for several previously described histological subtypes, and suggested that a
subset of one controversial subtype exhibits a consistent genomic signature.

� A series of SVM-based methods can recognize protein folds and remote homologs [28,
26, 27, 49]. Our early work in this area set the baseline against which much subsequent
work was compared, including many SVM-based classi�ers that derive from our work
[4, 23, 8, 11, 33, 34, 40, 42]. Our recent work continues to provide the best known
performance on this task [19, 29].

� SVMs have been applied to a variety of applications within the �eld of tandem mass
spectrometry, including re-ranking peptide-spectrum matches produced by a database
search algorithm [1, 20] and discriminating between 2+ and 3+ charged spectra [21].

� SVMs can draw inferences from heterogeneous genomic and proteomic data sets. We
�rst demonstrated how to infer gene function from a combination of microarray expres-
sion pro�les and phylogenetic pro�les [36], and we subsequently described a statistical
framework for learning relative weights for each data set with respect to a given in-
ference task [25, 24] (see �gure, top). Recently, we used this framework to predict
protein-protein interactions [5] and protein co-complex relationships [39] from hetero-
geneous data sets.

The SVM is now one of the most popular methods for the analysis of biological data sets:
Pubmed includes 204 papers published within the last 12 months whose abstracts contain
the phrase \support vector machine," and 691 such papers in the last �ve years. Nature

Biotechnology recently invited me to write a primer on SVMs [31]. My research bears con-
siderable responsibility for the SVM's popularity, because I have repeatedly demonstrated
the power and exibility of this algorithm in new bioinformatics domains.
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In the future, we will focus on methods that combine the inference power of the SVM
with the probabilistic framework of Bayesian networks to infer gene function and protein-
protein interactions. A Bayesian network is a formal graphical representation of a joint
probability distribution over a collection of random variables. For example, we are using
Bayesian network models to calibrate and combine the results of a large collection of SVMs
with respect to the Gene Ontology (GO). The GO consists of three directed acyclic graphs,
in which each node represents a particular term describing cellular localization, molecular
function or biological process or pathway. In our hybrid model, each node in the GO is
populated by a collection of SVMs, one per kernel. The probability model is responsible
for calibrating the SVM outputs, weighting them with respect to one another, and ensuring
that the predictions with respect to a particular gene respect the constraints of the GO
network topology. Adding a Bayesian network to the SVM has several important advantages,
including allowing a principled method for handling missing data, providing a complementary
means of encoding prior knowledge, and providing a model that gives explanations for its
predictions.

In addition to improving our analytical methods, we will expand our methods to handle
new types of biological data, as well as to make predictions on functional elements other
than protein-coding genes. We are developing new kernels to represent known and predicted
protein structures, as well as a kernel derived from a dynamic Bayesian network that de-
scribes transmembrane protein topology. We will build predictive models that incorporate
the diverse functional data being generated by the ENCODE consortium [12], of which my
group is a member. The data sets include DNaseI hypersensitivity, methylation, origins of
replication, replication timing, transcription factor binding sites, promoters, protein-coding
genes, histone modi�cations, and phylogenetic conservation. A unique aspect of the EN-
CODE data is that they are collected from a common set of cell lines. Using these data, we
will characterize protein function with respect to these cell lines. Furthermore, ENCODE
aims to identify all functional genomic elements, including protein-coding as well as non-
protein-coding genes, plus various classes of cis-regulatory elements. Hence, we will also
expand our predictive models to assign functional labels and to identify interactions among
other types of genomic functional elements.

The relationships among chromatin, primary DNA sequence and gene regulation

DNA in the nucleus of the cell is bound in a complex and dynamic molecular structure
known as chromatin. Over the past several years, my research group has investigated the
relationships among the primary DNA sequence, nucleosomes, cis-regulatory factors and
higher-order chromatin structure. Initially, we focused on local disruptions of chromatin
structure known as DNaseI hypersensitive sites (DHSs), because these sites are a prereq-
uisite for any type of cis-regulatory activity, including enhancers, silencers, insulators, and
boundary elements. We demonstrated that DHSs exhibit a distinct sequence signature,
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which can be used to predict with high accuracy hypersensitive locations in the human
genome [32]. We used these signatures to predict novel hypersensitive sites, which were
then validated via qPCR and Southern blot analysis by our collaborators in the lab of John
Stamatoyannopoulos. More recently, we demonstrated that the converse phenomenon, well-
positioned nucleosomes, can be predicted with high accuracy [37]. We also collaborated with
several research groups in the development of high-throughput assays for interrogating local
chromatin structure in the human genome [41, 10].

Our work on chromatin structure has been carried out within the context of the ENCODE
consortium [12]. With the Stamatoyannopoulos lab, we led the analysis performed within
the chromatin and replication subgroup of ENCODE, developing tools to integrate data on
DNaseI sensitivity, replication timing, histone modi�cations, bulk RNA transcription, and
regulatory factor binding region density. We also combined wavelet analyses and hidden
Markov models [9] to simultaneously visualize and segment multiple genomic data sets at a
variety of scales. Using these tools, our analyses led to the following conclusions, which are
reported in the forthcoming ENCODE paper [13], as well as in a companion paper [46]:

� Chromatin accessibility and histone modi�cation patterns are highly predictive of both
the presence and activity of transcription start sites.

� Distal DNaseI hypersensitive sites have characteristic histone modi�cation patterns
that reliably distinguish them from promoters; some of these distal sites show marks
consistent with insulator function.

� DNA replication timing is correlated with chromatin structure.

� Larger-scale relationships between chromatin accessibility and histone modi�cations
are dominated by sub-regions in which higher average DNaseI sensitivity is accompa-
nied by high levels of H3K4me2, H3K4me3 and H3ac modi�cations (see �gure, bottom).

� At smaller scales (< 2 kb), DNaseI hypersensitive sites and peaks in histone acetylation
are not strongly correlated. This conclusion is surprising given the widely accepted
notion that histone acetylation has a central role in mediating chromatin accessibility
by disrupting higher-order chromatin folding.

� Histone modi�cations, DNaseI sensitivity, replication, transcript density and protein
factor binding are organized systematically across the genome into \active" domains,
generally corresponding to domains with high levels of H3ac and RNA transcription,
low levels of H3K27me3 marks, and early replication timing, and \repressed" domains
with low H3ac and RNA, high H3K27me3, and late replication (see �gure, center right)
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In the future, my research in this area will follow three complementary threads. First, we
will develop and apply algorithms for characterizing the motif composition of DHSs. My
PhD research focused on algorithms for identifying and searching with protein and DNA
sequence motifs [17, 15, 16, 3], and I have continued to work in this area, developing new
statistical methods for searching for cis-regulatory modules [2] and for quantifying similarity
between motifs [18]. We recently used our methods to identify a yeast transcription factor
(Hcm1) that �lls the S phase gap in the transcriptional circuitry of the cell [38]. We expect
DHSs to be signi�cantly enriched for transcription factor binding sites; therefore, we will
search our growing library of DHSs, using known motifs as well as de novo motif discovery
algorithms and taking into account the observed degree of evolutionary conservation. Using a
new oligonucleotide tiling array assay, our collaborators have performed genome-wide assays
in 12 di�erent cell lines, and this data set will continue to grow. In any single tissue,
only a small portion of observed DHSs are constitutively active. Hence, we are particularly
interested in segregating the DHSs according to their tissue speci�city, and according to the
mRNA expression pro�les of their proximal genes, thereby identifying motifs that are tissue-
or condition-speci�c.

Second, we will develop methods that classify DHSs according to their function. DHSs may
perform a variety of cis-regulatory roles, as enhancers, silencers, insulators, boundary ele-
ments, etc. We showed that the pattern of histone modi�cations around a given DHS can
be used to predict, with high accuracy, whether the DHS is proximal to or distal from a
transcription start site. This method has the potential to uncover previously unrecognized
transcription start sites in the human genome. These results also suggest that, by exploiting
complementary information such as patterns of evolutionary conservation, histone modi-
�cations and transcription factor binding data from chip-ChIP experiments, an automated
classi�cation algorithm such as the SVM will be able to further distinguish among functional
classes of DHSs.

Third, we will continue to investigate the large-scale properties of chromatin structure. We
will develop more sophisticated probabilistic models designed speci�cally to segment DNaseI
sensitivity data, and we will further explore the patterns of local and regional correlation
among sensitivity to cleavage by DNaseI or micrococcal nuclease and patterns of histone
modi�cations.

Analysis of mass spectrometry data

Mass spectrometry promises to enable scientists to identify and quantify the entire com-
plement of molecules that comprise a complex biological sample. In biomedicine, mass
spectrometry is commonly used in a high-throughput fashion to identify proteins in a mix-
ture. However, the primary bottleneck in this type of experiment is computational. Existing
algorithms for interpreting mass spectra are slow and fail to identify a large proportion of
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the given spectra.

My research group focuses on the peptide identi�cation problem. Given a fragmentation
mass spectrum and the sequence of the proteome from which it was derived, the task is to
identify the particular peptide that generated the observed spectrum. Initially, we showed
how to use an SVM classi�er to post-process the output of an existing database search
algorithm, discriminating between correct and incorrect peptide-spectrum matches (PSMs)
[1]. More recently, we demonstrated

� how to speed up the database search procedure by predicting the charge state of an
observed spectrum [21],

� how to search against a database of previously identi�ed spectra [14], and

� how to exploit chromatographic retention time to eliminate a large proportion of false
positive PSMs [22].

We maintain and support software packages that implement these algorithms, and these
software are currently used by a variety of academic and commercial research groups.

One signi�cant challenge in applying machine learning to mass spectra is the variability
of the data due to di�erent types of samples (e.g., soluble versus membrane proteins), en-
zyme speci�city, modi�ed versus unmodi�ed peptides, mass spectrometer type, database
size, instrument calibration, etc. Recently, we successfully addressed this problem by ap-
plying a technique known as semi-supervised learning to the classi�cation of PSMs [20]. In
semi-supervised learning, the training set consists of two subsets of examples, one subset
with labels and one without. In this application, we search a given set of spectra against
two databases, the real (\target") database and a shu�ed (\decoy") version of the same
database. PSMs against the decoy database can be con�dently labeled as incorrect identi-
�cations, but PSMs against the target database are comprised of a mixture of correct and
incorrect identi�cations. We designed an iterative, semi-supervised algorithm in which the
inner loop is an SVM classi�er. The algorithm, called Percolator, can be applied to any given
mass spectrometry data set, learning model parameters that are appropriate for those data.
Relative to a state-of-the-art fully supervised machine learning method, this semi-supervised
approach more than doubles the number of correctly identi�ed peptides for some data sets
(see �gure, center left). Because the manuscript describing Percolator is under review, we
have distributed the software only to our collaborators, Michael MacCoss and Christine Wu.
They use the software routinely in their labs, consistently obtaining large increases in peptide
identi�cations.

We are currently developing a Bayesian network that models the fragmentation of the pep-
tide within the mass spectrometer. This model captures a variety of known characteristics
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of the peptide fragmentation process, including for example, the tendency of the peptide
backbone to cleave preferentially near some types of amino acids. The goal of this work
is to improve our ability to predict, from the peptide sequence, the heights of individual
peaks within the corresponding mass spectrum. The model parameters can provide insight
into fragmentation biochemistry, and the model itself can be used to increase the accuracy
of peptide identi�cation algorithms and to pre-select the highest peaks in a spectrum for
monitoring in a targeted proteomics experiment.

In the future, we to extend our models using techniques borrowed from the �elds of speech
recognition and natural language processing. Lattice models, which are used in these �elds to
represent the grammar of a natural language, can naturally encode the relationships among
common peptides and proteins. Currently, a mass spectrometrist identi�es proteins in a
complex mixture by �rst mapping individual spectra to their respective peptides, and then
inferring the protein identities from the collection of identi�ed spectra. Lattice models will
enable us to perform protein identi�cation in a single, e�cient procedure. Furthermore,
well established methods exist for allowing minor violations of a pre-speci�ed grammar.
Using these techniques will allow us to perform de novo protein identi�cation, in which the
algorithm can identify proteins that are not members of the given protein database. This
ability is critical to identify polymorphisms and post-translational modi�cations.
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Figure captions
Top: Predicting yeast gene function from heterogeneous data. The height of each
bar is proportional to the cross-validated receiver operating characteristic score for prediction
of the given class of yeast genes. The �gure compares the performance of a previously
published Markov random �eld method (MRF) and our SVM-based method. In every case,
the SVM signi�cantly outperforms the MRF. [25].

Center left: Comparison of mass spectrum peptide identi�cation methods. The
�gure plots the number of spectra identi�ed, as a function of false discovery rate, for two
data sets and two analysis methods. For typical data, digested with the standard enzyme
trypsin, Percolator method improves the identi�cation rate by 27% at a 1% false discovery
rate. When we switch to a non-standard enzyme, elastase, Percolator yields more than twice
as many identi�cations. [20]

Center right: Concordance of multiple data types for an illustrative ENCODE
region (ENM005). The tracks labeled \Active" and \Repressed" are derived from a si-
multaneous HMM segmentation of eight data types: replication time (TR50), bulk RNA
transcription (RNA), histone modi�cations H3K27me3 and H3ac, DHS density and regula-
tory factor binding region density (RFBR). [13]

Bottom: Wavelet correlations of histone marks and DNaseI sensitivity. The
relationship between histone modi�cation H3K4me2 and DNaseI sensitivity is shown for
ENCODE region ENm013. The top two curves are colored with the strength of the local
correlation at the 4-kb scale. Below, the same data are represented as a wavelet correlation.
The y axis shows the di�ering scales decomposed by the wavelet analysis from large to small
scale (in kb); the color at each point in the heatmap represents the level of correlation at
the given scale, measured in a 20 kb window centered at the given position. [13]
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WN Grundy, TL Bailey, CP Elkan and ME Baker. \Meta-MEME: Motif-based hidden
Markov models of protein families." Computer Applications in the Biosciences. 13(4):397-
406, 1997.

This article describes an initial version of the Meta-MEME software toolkit, which was one
of the primary products of my dissertation research. Meta-MEME builds motif-based models
of DNA and protein sequences. These models can be used to produce multiple alignments
of protein or DNA sequences, to search for remote protein homologs and to search for novel
cis-regulatory modules (CRMs). In 1997, we did not have a collection of well-annotated
CRMs that was large enough to validate our models; therefore, in this article, we focus on
modeling proteins.

Meta-MEME uses hidden Markov models (HMMs), which became popular for computational
biology applications in the mid-1990s. An HMM captures, within a probabilistically rigorous
framework, the properties of a given collection of related DNA or protein sequences, including
position-speci�c probabilities of mutations, insertions and deletions.

Relative to previous types of HMMs, Meta-MEME models are smaller, focusing on the
pattern of biologically signi�cant motifs that characterize a protein family. These motifs may
be identi�ed in any fashion. In this work, we use the MEME motif discovery algorithm. This
paper demonstrates that building models with fewer parameters is bene�cial, particularly
when searching for remote protein homologies.

In addition to being technically innovative, Meta-MEME is practically useful. The software
is described in textbooks (e.g., Figure 2 is reproduced in the popular textbook by David
Mount), has been commercially licensed and continues to be widely used. I currently have
NIH R01 funding (with Tim Bailey as co-PI) to continue to maintain and improve MEME
and Meta-MEME.



DC Anderson, W Li, DG Payan and WS Noble. \A new algorithm for the evaluation of
shotgun peptide sequencing in proteomics: support vector machine classi�cation of peptide
MS/MS spectra and SEQUEST scores" Journal of Proteome Research. 2(2):137{146, 2003.

In the analysis of complex biological samples using shotgun mass spectrometry, the primary
computational challenge is to identify the peptide corresponding to each observed fragmenta-
tion spectrum. This identi�cation is typically performed by searching the observed spectrum
against a database of theoretical spectra and selecting the closest matching pair.

This paper describes one of the �rst attempts to use machine learning to improve the rate of
successful protein identi�cations. A database search program such as SEQUEST or Mascot
produces as output a collection of peptide-spectrum matches (PSMs), one per spectrum.
The majority of these PSMs represent incorrect matches because the true peptide is not
in the given database due to polymorphisms or post-translational modi�cations, the search
procedure incorrectly identi�ed the best-matching peptide, or the spectrum was generated
by non-peptide contaminants or by a heterogeneous mixture of peptides. We train a classi�-
cation algorithm known as a support vector machine (SVM) to discriminate between correct
and incorrect PSMs. The input to the classi�er is a vector of 13 scores, representing various
characteristics of the PSM. To train and evaluate the method, we use cross-validation on a
gold standard derived from a mixture of puri�ed proteins. We measure our method's abil-
ity to rank correct PSMs above incorrect PSMs, and we show that the SVM dramatically
outperforms two other methods|the score function used by SEQUEST and a probabilistic
score function called QScore.

To our knowledge, this is the second published application of machine learning to the analysis
of shotgun mass spectrometry data. The �rst was published while our manuscript was in
press, and describes a method (PeptideProphet) that is similar to ours but uses a di�erent
classi�cation algorithm (linear discriminant analysis rather than the SVM) and a smaller
feature space (four dimensions rather than 13). Both of these papers contine to be widely
cited (ours was cited 23 times in 2006{2007), and the general idea of using machine learning
methods for mass spectrometry analysis is now gaining in popularity. I recently received
NIH R01 funding to continue this line of work.



GRG Lanckriet, T De Bie, N Cristianini, MI Jordan and WS Noble. \A statistical frame-
work for genomic data fusion." Bioinformatics. 20(16):2626-2635, 2004.

One of the core problems in bioinformatics is reconciling the various views of the cell that are
provided by di�erent types of high-throughput assays. In this paper, we describe a framework
for representing and reasonining about heterogeneous data sets, and we demonstrate how the
framework can be used to infer gene function from a data set consisting of protein sequences,
hydrophobicity pro�les, protein-protein interaction data, and gene expression data.

This work demonstrates how to use the support vector machine (SVM) algorithm to classify
heterogeneous genomic data. The work also describes a method, using semide�nite program-
ming, to simultaneously learn the parameters of the SVM classi�er as well as the relative
weights of the input kernels. Thus, for example, the method learns to assign a large weight to
microarray gene expression data when classifying yeast ribosomal proteins, whereas a larger
weight is assigned to the protein sequence when classifying membrane versus non-membrane
proteins.

In a separate paper, we compared the performance of our method to that of a state-of-the-
art Markov random �eld method. Across 12 diverse functional classes of yeast genes, our
approach signi�cantly outperforms the MRF. We have subsequently applied a variant of this
SVM-based framework to the prediction of gene function in the mouse genome, and to the
prediction of protein-protein interactions in yeast, worm and human.



J Weston, A Elissee�, D Zhou, CS Leslie and WS Noble. \Protein ranking: From local to
global structure in the protein similarity network." Proceedings of the National Academy of

Science. 101(17):6559{6563, 2004.

A strong analogy can be drawn between searching a database of proteins for homologs of a
query protein and searching the World-Wide Web for web pages that are relevant to a given
query word or phrase. The WWW can be represented as a network of pages connected by
hyperlinks, and the protein database can be represented as a network of proteins connected
by edges representing pairwise sequence similarity. The query is a single phrase or a query
protein, and the output is a ranked list of web pages or target proteins.

The power of the Google web search engine derives in large part from its ranking algorithm,
PageRank, which captures global properties of the WWW network topology.

In this paper, we describe the RankProp algorithm, which uses a similar insight in the context
of protein database searching. Initially, we de�ne a protein similarity network by using PSI-
BLAST in an all-versus-all fashion. RankProp takes this network as input, with one node
designated as the query. RankProp performs a di�usion operation on the network, pumping
activation scores outward from the query and ranking the target proteins with respect to the
amount of activation score that they receive during the di�usion. The algorithm produces
rankings that improve dramatically with respect to the initial PSI-BLAST rankings, when
evaluated using a gold standard derived from proteins of known structure. Although the
all-versus-all PSI-BLAST computation is expensive, this operation can be performed once
and the results stored. RankProp itself is e�cient, requiring approximately one minute for
a database of 100,000 proteins.

RankProp has been implemented and made available via the UCSC Gene Sorter, and we are
currently developing a stand-alone RankProp web server



WS Noble, S Kuehn, R Thurman, R Humbert, JC Wallace, M Yu, M Hawrylycz and JA
Stamatoyannopoulos. \Predicting the in vivo signature of human gene regulatory sequences."
Bioinformatics (Proceedings of the Intelligent Systems for Molecular Biology Conference).
21(Suppl 1):i338{i343, 2005.

In the nucleus of the living cell, DNA is packaged into a complex molecular structure known
as chromatin. When regulatory proteins bind to the DNA strand, the chromatin experiences
local disruptions, or openings. DNaseI is an endonuclease that cleaves DNA non-speci�cally
and that can be used to identify these sites using Southern blot, qPCR or microarray-based
assays. Canonically, a DNaseI hypersensitive site (DHS) is �250 bp in length, and DNaseI
hypersensitivity is considered a prerequisite for any type of regulatory activity, including
promoters, enhancers, silencers, boundary elements, etc.

In this work, we demonstrate that DNaseI hypersensitive sites can be reliably identi�ed in
the human genome using a purely computational assay. The method employs a supervised
classi�cation algorithm known as a support vector machine (SVM) to learn to discriminate
between DHS and non-DHS sequences. In a cross-validated test, the accuracy of the re-
sulting classi�er is 85%. We also performed prospective validation on 146 sites with SVM
probabilities > 80%. After qPCR and Southern blot analyses, we found 74% of the predicted
sites to be hypersensitive, compared with 5.3% in a randomly selected sample of sites.

This work suggests that nucleosome positioning relative to hypersensitive sites is at least
partially determined by the DNA sequence. In addition, the SVM classi�er itself is useful in
the search for regulatory motifs and to increase the throughput of targeted assays for DNaseI
hypersensitive sites.
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Abstract

Motivation: Modeling families of related biological sequences
using Hidden Markov models (HMMs), although increasingly
widespread, faces at least one major problem: because of the
complexity of these mathematical models, they require a
relatively large training set in order to accurately recognize a
given family. For families in which there are few known
sequences, a standard linear HMM contains too many para-
meters to be trained adequately.
Results: This work attempts to solve that problem by gene-
rating smaller HMMs which precisely model only the con-
served regions of the family. These HMMs are constructed
from motif models generated by the EM algorithm using the
MEME software. Because motif-based HMMs have relatively
few parameters, they can be trained using smaller data sets.
Studies of short chain alcohol dehydrogenases and 4Fe-4S
ferredoxins support the claim that motif-based HMMs exhibit
increased sensitivity and selectivity in database searches,
especially when training sets contain few sequences.
Availability: http://www.sdsc.edu/MEME
Contact: bgrundy@cs.ucsd.edu

Introduction

A hidden Markov model describes a series of observations by
a 'hidden' stochastic process. Although introduced relatively
recently to computational molecular biology (Churchill,
1989), HMMs have been in use for speech recognition for
many years (Baker, 1975). In speech recognition, the series of
observations being modeled is a spoken utterance; in com-
putational biology, the series of observations is a biological
sequence. One immediately apparent difference between
these two domains is the amount of available training data.
Training sets for state-of-the-art speech recognition systems
can contain many gigabytes of recorded speech; in contrast,
families of related biological sequences usually consist of
kilobytes or even hundreds of bytes of characters. Even for
speech recognition systems, for which the training set size is
relatively large, researchers attempt to simplify their models
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in order to reduce the number of trainable parameters
(Woodland et al., 1994). When modeling biological sequences,
the need for smaller models is even more pronounced. This
paper addresses that need by developing hidden Markov models
which precisely model only the highly conserved regions of a
family of sequences.

These motif-based HMMs consist primarily of motif models
generated by MEME (Multiple EM for Motif Elicitation)
(Bailey and Elkan, 1995a; Bailey and Elkan, 1995b). Meta-
MEME is a software tool for combining MEME motif models
within a standard linear HMM framework. Because Meta-
MEME operates in an automated fashion, it is particularly
useful for analyzing the increasingly large sequence data-
bases becoming available.

In addition to being trainable from smaller data sets, motif-
based HMMs are well suited for recognizing distant homo-
logies. By modeling the spacer regions between motifs in a
very simple way, these models selectively discard informa-
tion from the training set about the contents of spacer regions.
This discarding of information is beneficial for distantly
related sequences, because distant homologs typically show
conservation only in functionally or structurally important
portions of their sequences. Meta-MEME focuses on these
regions and does not attempt to model the less-conserved,
intermediate regions in detail.

In many ways, Meta-MEME resembles the BLOCKS
method for protein family classification (Henikoff and Heni-
koff, 1994b; Henikoff and Henikoff, 1996). The BLOCK-
MAKER program discovers highly conserved regions of
protein families by combining motifs found by either the
MOTIF algorithm (Smith et al., 1990) or the Gibbs sampling
algorithm (Lawrence et al., 1993). Individual blocks may be
represented as ungapped position-specific scoring matrices,
similar to the motif models created by MEME. However,
MEME is more likely than BLOCKMAKER to split a motif
in two if any of the sequences contains an insertion or deletion,
so MEME motifs tend to be shorter than BLOCKMAKER
blocks. Since motifs (and blocks) are supposed to model
ungapped regions, MEME generally produces more accurate
models. The BLOCKS database (Blocks, 1996) contains, for
each known protein family, an ordered set of blocks along
with the minimum and maximum observed spacings between
the blocks in the training set. The BLIMPS program (Heni-
koff et al., 1995) searches this database using a single sequence
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as a query, thus taking into account the order and spacing of
blocks. Clearly, Meta-MEME and the BLOCKS method
share many features. In general, however, a hidden Markov
model approach is more attractive because of its well-
founded underlying probabilistic theory.

Hidden Markov models

A hidden Markov model is a mathematical framework which
models a series of observations based upon a hypothesized,
underlying but hidden process. The model consists of a set of
states and transitions between these states. Each state emits a
signal based upon a set of emission probabilities and then
stochastically transitions to some other state, based upon a
set of transition probabilities. These two probability distri-
butions, when combined with the initial state distribution,
completely characterize an HMM.

A useful HMM tutorial was written by Rabiner (Rabiner,
1995), and more detailed information is available in (Rabiner
and Juang, 1993). The tutorial describes three basic problems
for HMMs: given an observation sequence and a model, how
do we (1) efficiently compute the probability of the obser-
vation sequence, given the model, (2) choose a corresponding
state sequence which is optimal in some meaningful sense (i.e.,
best 'explains' the observations), and (3) adjust the parameters
of the model to maximize the probability of the sequence,
given the model? In computational biology, an HMM models
a family of related sequences. Thus, Rabiner's three problems
correspond to (1) determining whether a given sequence
belongs to the modeled family, (2) finding an alignment of the
given sequence to the rest of the family, and (3) training the
model based upon known members of the family.

Standard HMMs for molecular biology

Hidden Markov models were first applied to problems in
molecular biology by (Churchill, 1989). (Krogh et al., 1994)
applied HMMs to protein modeling and brought widespread
recognition to the approach. We refer to the linear HMMs
described in that paper as 'standard HMMs'. The structure of
these HMMs attempts to reflect the process of evolution.

Delete

Insert

Match

Fig. 1. Outline of the topology of a standard linear HMM. Emission probability distributions for match and insert states are not shown.

The core of the standard model is a sequence of states,
called 'match states', which represent the canonical sequence
for this family. Each match state corresponds to one position
in the canonical sequence. This series of states is similar to a
profile (Gribskov et al., 1990), since each state contains a
frequency distribution across the entire alphabet. The prob-
abilities that a given state emits each possible base are taken
from this frequency distribution and are called the 'emission
probabilities' for that state.

To model the process of evolution, two additional types of
states—insert and delete states—are included in the HMM.
One delete state lies in parallel with each match state and
allows the match state to be skipped. Since delete states do
not emit characters, aligning a sequence to a delete state
corresponds to the sequence having a deletion at that position.
Insert states with self-loops are juxtaposed between match
states, allowing one or more bases to be inserted between two
match states. These three series of states are connected as
shown in Figure 1. The topology of the model is linear: once a
state has been traversed, it cannot be entered a second time.
Although this type of model may fail to accurately model
genetic copying events, the enforced linearity allows for
efficient training of the models.

Standard HMMs have been most successfully applied to
the task of recognizing families of proteins containing a
relatively large number of known sequences (Krogh et al.,
1994; Baldi et al., 1994; Eddy, 1995). For families for which
fewer known sequences are known, a standard HMM contains
too many parameters to be trained to precision. A standard
HMM of length n using an alphabet of size 20 contains 6
transition probabilities and 19 match state emission prob-
abilities for each of n positions, as well as 19 insert state
emission probabilities, yielding a total of 25n + 19 trainable
parameters. For a short sequence of length 100, such a model
contains 2519 parameters. Many small families of biological
sequences contain less than this number of characters in all
known family members combined.

Small families such as these cannot effectively train a
standard linear HMM because reliable training requires that
the number of samples greatly exceeds the number of free
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parameters. For example, (Krogh et al., 1994) mention a
lower limit of approximately 70 carefully selected training
sequences in order to adequately model the globin family. A
model based upon a smaller data set may overfit the data,
modelling details specific to the training set but not to the
larger protein family. In order to avoid overfitting, standard
HMMs often rely upon a set of Bayesian prior probabilities
(Brown et al., 1995; Sjolander et al., 1996). In this case,
however, with a small training set and a large model, the
trained model may depend upon the prior probabilities more
than it reflects the training sequences. The only effective
means of ensuring that the trained model reflects the charac-
teristics of a particular protein family is to keep the number of
model parameters small.

Searching using HMMs

Having constructed an HMM, the model can be applied to the
task of recognizing a family of biological sequences in a
sequence database. An ideal HMM would pick out all and
only the members of the family from the rest of the database.
This database search can be carried out using existing
software. Two standard HMM packages are freely available,
SAM (Hughey and Krogh, 1996; SAM, 1996) and HMMER
(Eddy, 1995; HMMER, 1996). Although the SAM package
allows for slightly more complicated models, HMMER is
more appropriate for our needs because it includes a variety
of searching algorithms.

The results of HMM searches may be compared using a
modified form of the receiver operating characteristic (ROC),
which we describe in more detail below. We have performed
a series of such searches on two different families, using
varying training set sizes. The data from these searches show
that, for the data sets we investigated, motif-based HMMs
perform as well as standard HMMs for large training set sizes
and significantly outperform standard HMMs for smaller
training sets.

Algorithm

Overview of the algorithm

Meta-MEME is a software tool for creating hidden Markov
models which focus on highly conserved regions, called motifs.
Because of their relatively small size, these motif-based HMMs
address the problems caused by insufficient training data.

Meta-MEME currently uses motif models as generated by
MEME, a tool which uses expectation-maximization to dis-
cover motifs in sets of DNA or protein sequences. Given such
a set of sequences, MEME outputs one or more probabilistic
models of motifs found in the data. The models consist of a
frequency matrix and are therefore similar to a gapless
profile. A parallelized version of MEME running on a

supercomputer is available on the World-Wide Web (Grundy
etal., 1996; ParaMEME, 1996).

MEME motifs provide reliable indicators of family mem-
bership. If trained on a set of related sequences, MEME will
build motif models of the most highly conserved regions in
that data set. For related sequences, these highly conserved
regions represent evidence of the sequences' shared evolu-
tionary history. A candidate sequence which closely matches
the other members of the family in motif regions is much
more likely to be homologous than a candidate for which the
match lies in a region of lower conservation. The motifs
therefore provide a concise signature for the family. Because
MEME can find such signatures, it is a powerful tool for
recognizing families of proteins. Hidden Markov models
provide a framework for combining MEME motifs into an
even more accurate and precise recognition tool.

Meta-MEME extends the MEME software to build
sequence-length models, rather than models of single motifs.
Meta-MEME generates models by first finding a set of motif
models and then combining these models within a linear
HMM framework. The MAST software, as described below,
is used to search a database, finding a schema representing the
canonical order and spacing of motifs within the family.

The motif-based hidden Markov models constructed by
Meta-MEME are a simplified form of the standard HMM (see
Figure 2). The motifs themselves allow neither gaps nor
insertions; thus, each motif is modeled by a sequence of
match states, with transition probabilities of 1.0 between
adjacent states.

The regions between motifs are not modeled very pre-
cisely, since the contents of these spacer regions are not
highly conserved. Each spacer region is modeled using a
single insert state. The transition probabilities into this state
and on the state's self-loop are calculated such that the
expected length of the emission from this state equals the
length of the corresponding spacer region in the canonical
motif occurrence schema. The insert state's emission prob-
ability distribution is set to a uniform distribution, but this
distribution is ignored by the HMMER search tools described
below. In effect, then, each spacer region is modeled by a
single length parameter. A model of length n containing m
motifs therefore contains \9n match state emission prob-
abilities and m + 1 transition probabilities, for a total of
\9n + m+ 1 trainable parameters. In practice, this number
will be much smaller than the corresponding number for
standard HMMs, since motif-based HMMs contain far fewer
match states.

The length of the spacer region is not highly constrained by
the model. An insert state gives an exponentially decaying
distribution of spacer lengths. For spacers of any appreciable
length, that distribution is very flat. Thus, the model should be
fairly resilient to insertions or deletions within the spacer
regions.

399



W.N.Grundy el al.

Motif 1 Motif 2
Fig. 2. A small motif-based HMM. Only the darker nodes and transitions are used in the model; the gray background nodes would appear in a standard HMM but
are unreachable in this HMM. Note that this is a simplified example; real motifs generated by MEME are longer.

MEME parameters

One of Meta-MEME's primary goals is to operate in a
completely unsupervised fashion. While it might be possible
and even desirable in many cases to build expert human
knowledge into the model of a particular family, the increas-
ing quantity of sequence data available precludes such an
approach in general. We have therefore run MEME using its
default parameters, as specified on the ParaMEME web site.
Specifically, we use the ZOOPS motif occurrence model,
which stands for 'zero or one occurrence per sequence'. Note
that, although the resulting model is tuned to find motifs
which appear no more than once in each sequence, it may still
find repeated motifs. We use Dirichlet mixtures for prior
probabilities, modified by the megaprior heuristic (Bailey and
Gribskov, 1996). The minimum width of a motif is specified
as 12 (although the motifs returned may be shorter than this,
due to a shortening heuristic in MEME), and the maximum
width is 55.

Selecting motifs: a majority heuristic

In order for Meta-MEME to build multi-motif models from
MEME output in an unsupervised way, the program must
decide automatically how many motifs to use. To do so,
Meta-MEME uses a simple heuristic. As MEME generates
successive motifs for a data set, it first finds the highly
significant motifs and then begins to model motifs which are
conserved in only a subset of the given sequences. In effect,
MEME finds motifs representing subfamilies of the given
family. Since such subfamily motifs are not useful for
characterizing the entire family, they should not be included
in the Meta-MEME model. Models generated by Meta-
MEME, therefore, only incorporate those motifs for which
the motif occurs in the majority of the training sequences, up
to a maximum of six motifs.

Finding the canonical motif occurrence schema

Once the motif models have been generated by MEME and
selected according to the majority occurrence heuristic, they
must be combined into a single model. In order to use the
standard HMM framework, the motifs must be arranged in a
linear fashion. Ideally, the order and spacing of motifs should
reflect the canonical order and spacing of motifs in the family.
The Motif Annotation and Search Tool (MAST) (Bailey and
Gribskov, 1997) is part of the MEME software distribution
(MEME, 1996). MAST searches a database for motif occur-
rences and assigns a score to each sequence based upon the
sequence's most likely match to each of the given motifs. The
sequences from the database with statistically significant
matches to the given set of motifs are returned as part of the
MAST output. For each such sequence, MAST produces a
motif occurrence schema which shows the motif occurrences
with p-values less than 0.0001, as well as the lengths of the
spaces between occurrences. Meta-MEME searches this out-
put for the highest-scoring sequence containing significant
matches to each of the motifs selected for use in the HMM.
The motif occurrence schema associated with this sequence is
then used as the canonical schema.

Calculating spacer state transition probabilities

The transition probabilities for insert states between motifs
must be calculated such that the expected spacer lengths
correspond to the values in the canonical motif occurrence
schema. Consider an HMM state for which the incoming
transition probability is x, the outgoing transition probability
is 1 — JC, and the probability of a self-loop is x. Let n be the
number of times the node is visited. Then the expected
number of visits, /*, to such a node is, by definition,

/* = -x)x" (1)
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Training set

Meta-MEME

c

Sequence
database

1
Motif
models MAST > -

Canonical
schema

Motif-based
HMM

)

Fig. 3. A schematic diagram of Meta-MEME. The primary inputs are a set of sequences and a sequence database. The program produces a linear HMM of the
given family in ASCII HMMER format.

At first there are two possibilities: visit the node with prob-
ability x, or skip it with probability 1 — x. Skipping the node
gives a spacer of length 0, while visiting it gives a spacer
length 1 plus the expected remaining path length, v. So we
have

= (l — JC)0 (2)

Because of the Markov property, regardless of the path length
so far, if we reach this node again then the expected path
length from it is simply p. So we have

P=x(l+n) (3)

Solving for x yields

(4)

This equation is used to calculate transition probabilities for
spacer states.

A schematic diagram of Meta-MEME is shown in Figure 3.
Given a set of motif models and the canonical sequences, the
program mhmm calculates the appropriate spacer state tran-
sition probabilities and writes out a linear, motif-based HMM
in HMMER format.

Results

Data sets

We first applied Meta-MEME to a group of dehydrogenases
that includes mammalian 11/3-hydroxysteroid and 17/3-
hydroxysteroid dehydrogenase and their homologs in the
short chain alcohol dehydrogenase family. We chose this data
set because it is large and phylogenetically diverse (Persson et
al., 1991; Baker, 1994; 1996), providing a good test of the
sensitivity and selectivity of Meta-MEME on a protein family
of biological interest.

The thirty-eight sequences used in the training set are listed
in Appendix A. Pairwise alignments of almost all of these
sequences are less than 30% identical after using gaps and
insertions to maximize identities. Many sequences are less
than 20% identical after use of gaps and insertions. These
thirty-eight sequences represent a small portion of the
approximately 650 known dehydrogenases in genpept release
95 (GenBank, 1996).

We also applied Meta-MEME to a set of 4Fe-4S ferre-
doxins. The family members are listed in Appendix B. These
159 sequences comprise all known 4Fe-4S ferredoxins in
SWISSPROT release 33 (Bairoch, 1994). Family members
were selected using PROSITE 13.1 (Bairoch, 1992). Ten
additional members were added to the family, based upon
ROC analysis and sequence comparisons. The SWISSPROT
identifiers for all 159 sequences, as well as the justifications
for including the ten additional sequences, are given in
Appendix B. Nested training sets were selected at random
from all 159 sequences, without regard to sequence similarity.

Creating standard linear HMMs

The standard linear HMMs used for comparison with Meta-
MEME were constructed using the default settings of the
HMMER program hmmt, version 1.8. The training algorithm
begins with a uniform model with length equal to the average
length of sequences in the training set. The model is trained
via expectation-maximization, using a simulated annealing
protocol to avoid local optima. The initial Boltzmann tem-
perature is 5.0, with a temperature decrease of 5% at each
iteration.

Smith/Waterman search

Numerous algorithms exist for searching a database using a
hidden Markov model. HMMER offers four such programs,
which vary in the way they match sequences against models.
The first, hmmsw, performs a local Smith/Waterman search
for matches of a partial sequence to a partial model; hmms
matches a complete model against complete sequences;
hmmls matches a complete model against one or more partial
sequences; and hmmfs matches fragments of a model to
multiple non-overlapping partial sequences. Informal experi-
ments with these programs yielded consistently better results
using hmmsw.

In the best case, a database search with an HMM would
return sequence scores which ranked all of the family
members above all of the non-family members. However,
all of the HMMER programs suffered from intermediate-
scoring sequence fragments. When a sequence fragment
exists in the database, it will match only a portion of the
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model, giving a relatively low score. Then, even though the
fragment is a member of the family, it may be ranked among
the non-family members.

Because sequence fragments are a deficiency of the data-
base rather than of the search method, and because many
fragments are redundant with the whole sequences included
in the database, we opted to filter such fragments from the
database. Rather than use a fixed threshold for all models, we
calculated from the canonical motif signature the minimum
length of a sequence containing two motifs and two spacers.
All sequences in the database shorter than this value are
filtered out. The filtered database is then used for both the
Meta-MEME search and the standard HMM search.

Comparing search results: ROC^o

We compare search results using a modified form of the
receiver operating characteristic. The ROC curve plots true
positives as a function of true negatives using a continuously
varying decision threshold. The area under this curve, the
ROC value, combines measures of a search's selectivity and
sensitivity into a single value. Unfortunately, for large data-
base searches, the number of negatives far exceeds the
number of positives, so ROC values must be computed to a
high degree of precision. A similar statistic, ROC50 (Gribskov
and Robinson, 1996), provides a wider spread of values.
ROC50 is the area under the ROC curve plotted until 50 false
positives are found. This value has the advantages of being
easier to compute, of requiring less storage space, and of
corresponding to the typical biologist's willingness to sift
through only approximately fifty false positives. ROC50

scores are normalized to range from 0.0 to 1.0, with 1.0
corresponding to the most sensitive and selective search.

Short-chain alcohol dehydrogenases

Figure 4(a) shows that Meta-MEME outperforms standard

linear HMMs for most subsets of the dehydrogenase training
set, with the most striking difference between the two methods
appearing for smaller data sets. Each series in the figure
represents the average of ten successions of training and
testing runs, using randomly selected, nested subsets of the
38-sequence training set. Error bars represent standard error.
For each subset of sequences, a standard and a motif-based
HMM were built and were used to search genpept 95. Not
only does Meta-MEME consistently score better than the
standard linear HMMs, the motif-based HMMs appear to be
more robust across different random subsets, as evidenced by
the relative smoothness of the Meta-MEME curve.

Figure 5 shows an 'alignment' of four different motif-
based HMMs, built from nested subsets of the dehydrogenase
training set. These motifs illustrate the biological basis for the
sensitivity of Meta-MEME. Motifs 1 and 2 are part of the
nucleotide cofactor binding site (Branden and Tooze, 1991;
Wierenga et al., 1985; Wierenga et a/., 1986); motif 3 is part
of the catalytic site. A protein sequence that had, for example,
motifs 1 and 3 interchanged would not have the same 3D
structure and could not function as a steroid dehydrogenase.
By scoring protein similarity and dissimilarity on the basis of
motif order and spacing, Meta-MEME effectively models
spatial information in the 3D structure of the canonical
dehydrogenase. This information differentiates homologs from
unrelated proteins which contain isolated fragments resemb-
ling sequences in the training set. Comparison of protein 3D
structures is the most sensitive method for determining
homology (Chothia and Lesk, 1986). This explains Meta-
MEME's excellent ability to recognize alcohol dehydrogen-
ase homologs as seen in Figure 4(a).

The motifs discovered using smaller training sets corre-
spond strongly to the original motifs found using the largest
training set. In the figure, motifs are numbered consecutively
according to the order in which they were discovered. Any
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Fig. 4. Comparison of Meta-MEME and standard linear HMMs in recognizing (a) short chain alcohol dehydrogenases and (b) 4Fe-4S ferredoxins. Each point
represents an average of ten separate runs, except for the ferredoxin runs using 16-sequence training sets, for which only three runs completed (see the discussion
below). Error bars represent standard error.
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38 sequences: 9-[2]-64-[l]-12-[<5]-17-[4]-9-[3]-73
LVTGAASGIG

VDVLVNNAG* EDWDRVIxVNLTGVF*-
YSASKAAVxGLTRSLALELAPxGIRVNWAPG

-GRIVNVSSVAG-

16 sequences: 5-[2]-61-[l]-42-[4]-12-[3a]-S-[3b]-33-[5]-13
* * * * LVTGASRGIG****

DVLVNNAG* * * *

YSASKAALxGLTRSLALE IRVNAVAPGFVxTDM-
ASDEASYIT * * * * * * * * * *

8 sequences: ll-[2]-6S-[l]-64-[3a]-22-[3b]-26-[7]-28
TGASSGIG

DVLVNNAG**
YAASKAAL PGxIxTDM-

EEIA *

4 sequences: 13-[l]-18-[6]-37-f3a]-22-[3b]-41

-GRIVNVSS-
-FL

-IPIGRMGQP

DALINNAG-
YxMSKAAL

-VFHINWGPIR-
--PGWVxTDM

Fig. 5. Comparison of four motif-based HMMs built from a nested series of random subsets of the 38-sequence dehydrogenase training set. The canonical
schema for each model is shown, with the lengths of spacers alternating with motif numbers in brackets. In the models, motifs are represented by their consensus
sequence. Hyphens ('-') represent the expected length of spacers generated by insert nodes, and asterisks ('*') are gaps inserted into this diagram in order to align
the models.

motif from one training set which overlaps with a motif from
a previous training set is assigned the same number as the
first. Using the largest training set, MEME finds five motifs
which appear in more than half of the training set. The third of
these motifs, however, is very long (32 residues); in subse-
quent analyses using smaller data sets, motif 3 gets split into
two halves (marked 3a and 3b). Furthermore, motif 5, which
was discarded because of the majority occurrence heuristic in
the 38-sequence analysis, is found and included in the HMM
based upon sixteen sequences. Motif 6 is lost when the
training set is reduced from thirty-eight to sixteen sequences
but is recovered when the training set size reaches 4
sequences. Motifs 4 and 5 are lost between sixteen and
eight sequences, and motif 2 is lost when four sequences are
used. Only one new motif (marked 7) is introduced in the
smaller training sets; other candidates are discarded because
of the majority occurrence heuristic.

The order and spacing of the motifs within the different
models is also conserved. In all four models, the order of
motifs is identical. Furthermore, spaces between motifs are
consistent across the four models. In the figure, hyphens
represent spacer states in the model, whereas asterisks
represent 'gaps', which were inserted into the figure in
order to align the motifs. Very few asterisks were required in
order to generate a perfect alignment. Only the last model,
based upon four training sequences, contains a significant
missing portion.

The motif-based HMMs are considerably smaller than their
standard HMM counterparts. For the dehydrogenase family,
the average model from Meta-MEME contains 58 states; the

standard models average 264 states. Assuming six motifs per
model, the average Meta-MEME model therefore contains
(19 * 58) + 6 + 1 = 1109 trainable parameters. The standard
HMM, by contrast, averages 25 * 264 = 6600 parameters.
The standard model is therefore 6.0 times as large as the
motif-based model.

4Fe-4S ferredoxins

A similar set of experiments was conducted using the 4Fe-4S
ferredoxin data set. In addition to using a different, consider-
ably smaller family, the ferredoxin searches were carried out
on a different database, SWISSPROT 33 instead of genpept
95. Nonetheless, Meta-MEME again consistently outper-
forms the standard HMMs, as shown in Figure 4(b). The
degree of separation between the two series is even greater
than for the dehydrogenases. The standard HMMs of the
ferredoxin family are on average 5.1 times as large as the
average motif-based HMM.

Although Meta-MEME outperforms standard HMMs, both
methods perform more poorly for ferredoxin data sets of size
16 than for smaller, 8- or 4-sequence data sets. This anomaly
results from the interaction of two of the heuristics described
above. For many of the 16-sequence data sets, the majority
occurrence heuristic selected a relatively large number of
motifs. Unfortunately, it was often impossible for MAST to
locate a single sequence containing all of these motifs. Con-
sequently, a canonical motif occurrence schema was found
for only three of the runs. As a result, neither Meta-MEME
nor HMMER completed the other runs, since the filtering of the
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database depends upon the canonical schema. This adverse
interaction of heuristics only occurred with the ferredoxin
data set and only with training sets of size 16. A variant of our
heuristics would overcome this problem; however, our
emphasis in this work is to demonstrate the general utility
of motif-based HMMs. Rather than fine-tuning heuristics,
future work will replace these heuristics by, for example,
completely connecting the motifs and learning the occurrence
schema from the given data.

Discussion

Results from Meta-MEME are encouraging. As expected,
motif-based HMMs discriminate better than their standard
linear counterparts for the two protein families we investi-
gated, yet due to their small size, motif-based HMMs require
fewer training sequences in order to be trained to precision.
Furthermore, since HMM search algorithms are generally
linear in the size of the model, motif-based HMMs can search
a database 5-6 times faster than a standard model. By focus-
ing its models on highly conserved regions of the training set,
Meta-MEME effectively ignores noisy portions of the data,
thereby allowing the software to recognize distant homologs.
Finally, because Meta-MEME operates in an unsupervised
fashion, the software is appropriate for the analysis of large
databases, where domain-specific expert knowledge may not
be available for every family.

Meta-MEME's performance may be affected by biases
in the training set. In the experiments reported here, the
dehydrogenase training set was hand-selected so as to fairly
uniformly represent a particular protein family. However, in
the ferredoxin experiments, randomly selected training sets
containing several closely related sequences may have biased
some of the trained ferredoxin models. These biases would
explain the relatively large standard error bars in Figure 4(b).
Such biases could have been reduced by first removing highly
similar sequences using a program such as PURGE (Neuwald
and Green, 1994). In addition to reducing training set bias,
this approach reduces the amount of computation required
during training. Several researchers have shown that weight-
ing schemes, which attempt to compensate for bias in the
training set by assigning weights to individual sequences,
may significantly improve the performance of database search-
ing algorithms (Henikoff and Henikoff, 1994a; Altschul et
al., 1989; Sibbald and Argos, 1990; Thompson et al., 1994).
(Eddy et al., 1995) have developed a maximum discrimi-
nation training algorithm for hidden Markov models which
addresses the same problem. Use of such methods may also
provide a means of improving Meta-MEME's performance.

We hope to improve Meta-MEME's models in several
ways. First, we will use them as initialization for standard
HMM training. This method will allow the motif-based
HMMs to be tuned more precisely tot the training set. Second,

we plan to improve the modeling of spacer regions. A
standard HMM insert state gives an exponential distribution
of gap lengths, which is not biologically realistic. In order to
model spacer lengths more realistically, we will include at
each insert state an explicit probability distribution for its
output length. In addition, we will investigate improved
methods for choosing the number of motifs to include in each
model.

Eventually, we hope that motif-based HMMs can address
another problem faced by linear HMMs: their inability to
adequately model sequence families containing large-scale
copying of domains. The linearity of motif-based HMMs may
be removed if the motif models are completely connected to
one another. Because the total number of motifs is small, such
a model may still be trained effectively. This generalized
HMM will allow a sequence to possess occurrences of the
motifs in any order. For each pair of motifs, the HMM will
learn the probability of the second motif following the first
motif directly. If, as is typical, one ordering of the motifs is
most common, the trained HMM will assign a higher prob-
ability to a sequence that has the motifs in this order.
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Appendix A. Short-chain alcohol dehydrogenases

2BHD_STREX 20-Beta-Hydroxysteroid Dehydrogenase
3BHD_COMTE 3-Beta-Hydroxysteroid Dehydrogenase
ACT3_STRCO Putative Ketoacyl Reductase
ADH_DROME Alcohol Dehydrogenase
AP27_MOUSE Adipocyte P27 Protein (AP27)
BA72_EUBSP 7-Alpha-Hydroxysteroid Dehydrogenase
BDH_HUMAN D-Beta-Hydroxybutyrate Dehydrogenase Precursor
BEND_ACICA Cis-1,2-Dihydroxy-3.4-Cyclohexadiene-1 -Carboxylate

Dehydrogenase
BPHB_PSEPS Biphenyl-2,3-Dihydro-2,3-Diol Dehydrogenase
BUDC_KLETE Acetoin(Diacetyl) Reductase
CSGA_MYXXA C-Factor
DHB2_HUMAN Estradiol 17 Beta-Dehydrogenase 2
DHB3_HUMAN Estradiol 17 Beta-Dehydrogenase 3
DHCA_HUMAN Carbonyl Reductase (NADPH)
DHES_HUMAN Estradiol 17 Beta-Dehydrogenase
DHGB_BACME Glucose 1-Dehydrogenase B
DHII_HUMAN Corticosteroid 11-Beta-Dehydrogenase
DHMA_FLAS1 N-Acylmannosamine 1-Dehydrogenase
ENTA_ECOLI 2,3-Dihydro-2,3-Dihydroxybenzoate Dehydrogenase
FABG_ECOLI 3-Oxoacyl-[Acyl-Carrier Protein] Reductase
FABI_ECOLI EnoyHAcyl-Carrier-Proteinj Reductase (NADH)
FIXR_BRAJA Fixr Protein
FVTI_HUMAN Follicular Variant Translation Protein 1 Precursor

(FVT-1)
GUTD_ECOLI Sorbitol-6-Phosphate 2-Dehydrogenase
HDE_CANTR Hydratase-Dehydrogenase-Epimerase (HDE)
HDHA_ECOLI 7-Alpha-Hydroxysteroid Dehydrogenase
HMTR_LEIMA H Region Methotrexate Resistance Protein
LIGD_PSEPA C Alpha-Dehydrogenase
MASI_AGRRA Agropine Synthesis Reductase
NODG_RHIME Nodulation Protein G (Host-Specificity Of Nodulation

Protein C)
PCR_PEA Protochorophyllide Reductase Precursor
PGDH_HUMAN I5-Hydroxyprostaglandin Dehydrogenase (NAD(+))
PHBB_ZOORA Acetoacetyl-Coa Reductase
RFBB_NEIGO Dtdp-Glucose 4,6-Dehydratase
RIDH_KLEAE Ribitol 2-Dehydrogenase
YINL_LISMO Hypothetical 26.8 Kd Protein In lnla 5'region (ORFA)
YRTP_BACSU Hypothetical 25.3 Kd Protein In Rtp 5'region (ORF238)
YURA_MYXXA Hypothetical Protein In Uraa 5'region (Fragment)

SWISSPROT identifiers and descriptions for the 38 steroid dehydrogenase
training set.
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Appendix B. 4Fe-4S ferredoxins

FERLAZOVI
FER_STRGR
FER_CLOBU
FER_CLOTM
FER_BUTME
FER_METBA
FER1_DESVM
FDXN_RHILT
FER_SULAC
FER3_RHOCA
FER_THELI
FIXX_RHILT
PSAC_MAIZE
PSACJTOBAC
PSAC_FRED1
PSAX_SYNY3
FRDB_PROVU
FIXG_RHIME
DMSB_ECOL1
FDXH_HAEIN
GLPC_ECOLI
PHSB_SALTY
NAPF_HAEIN
YGL5_BACST
DHSB_SCHPO
MBHT_ECOLI
NUIC_ORYSA
NUIM_BOV1N
YJJW_ECOLI
NARH_ECOLI
FER_METTE
DHSB_CHOCR

FER2_RHOCA
FER_PSEPU
FER_CLOPA
FER_CLOTS
FER_CHLLT
FER_METTL
FER_ENTHI
FERN_RHIME
FER1_RHOPA
FER_CLOTH
FER_THEMA
PSAC_ANTSP
PSAC_MARPO
PSAC_WHEAT
PSAC_SYNEN
DHSB_BACSU
YFRA_PROVU
RDXA_RHOSH
DMSB_HAEIN
FDHBJVOLSU
GLPC_HAEIN
PSRB_WOLSU
NAPG_ECOLI
YJES_ECOLI
DHSB_HUMAN
PHFLCLOPA
NUIC_TOBAC
NUIM_RHOCA
FERLDESAF
NARY_ECOLI
PSAC_ODOSI
DHSB_CYACA

FER2_RHORU
FER_PSEST
FER_CLOPE
FER_MEGEL
FERl.CHLLI
FER_THEAC
FERX_ANASP
FERN_BRAJA
FERN_AZOVI
FER_DESGI
FIXX_RHILP
PSAC_CHLRE
PSAC_PEA
PSAC_CYAPA
PSAC_SYNP2
DHSB_ECOLI
FRDB_WOLSU
PHFL_DESVH
YFFE_ECOLI
HMC2_DESVH
HYCB_ECOLI
NRFC.ECOLI
NAPG_HAEIN
YA43_HAEIN
DHSB_RAT
ASRC_SALTY
NUICJWHEAT
NQO9_PARDE
FIXX_AZOCA
NIFJ_ANASP
YEIA_ECOLI
NARH_BACSU

FER_MYCSM
FERJTHETH
FER_CLOSP
FER_PEPAS
FER2_CHLLI
FER2_DESDN
FERN_AZOCH
FERI_RHOCA
FER3_ANAVA
FERIJ5ESDN
FIXX_RHILE
PSAC_CUCSA
PSAC_PINTH
PSAC_ANASP
PSAC_SYNP6
FRDB_ECOLI
FDHB_METFO
PHFL_DESVO
FDNH_ECOLI
HMC6_DESVH
HYCF_ECOL1
NRFC_HAEIN
NAPH_ECOLI
DHSB_USTMA
DHSB_DROME
NUIC_MAIZE
NUIC_PLEBO
NUOLECOLI
FIXX_BRAJA
NIFJ_KLEPN
FER_BACTH
YWJF_BACSU

FER_SACER
FER_CLOAC
FER_CLOST
FER1_RHORU
FER_CHRVI
FER3_DESAF
FERV_AZOV1
FER_AL1AC
FER3_PLEBO
FER2_DESVM
FIXX_RHIME
PSAC_EUGGR
PSAC_SPIOL
PSAC_ANAVA
PSAC_SYNY3
FRDB_HAE1N
FRHG_METTH
COOF_RHORU
FDOH_ECOLI
ASRA_SALTY
HYDN_ECOLI
NAPF_ECOLI
NAPH_HAEIN
DHSB_YEAST
DHSB_ARATH
NUIC_MARPO
NU1C_SYNY3
DCMA_METSO
ISPI-TRYBB
YAAT_ECOLI
FER_BACST

SWISSPROT numbers for the 159 4Fe-4S ferredoxins.
Ten of the sequences above are not included in the PROSITE 13.1 listing for this family. DHSB_CHOCR, DHSB_CYACA, FER_METTE, and PSAC_ODOSI
are included here based on homology to PROSITE annotated families in this group, and ROC analysis. ISP1_TRYBB, excluded from this group by PROSITE,
appears to be closely related to NADH oxidoreductases in this group as shown by ROC and sequence comparisons (NQQ9, NUIM, NUOI, HYCF, NUIC).
NARH_BACSU, NARH_ECOLI and NARY_ECOL1, while showing lower ROC, have excellent 4Fe-4S sequences highly similar to those in DMSB, PHSB,
FDNH, HYCB, etc. YEIA_ECOLI is a possible type III ferredoxin and has a very strong ROC. YWJF_BACSU is included in the positives because of high ROC,
significant similarity to glycerol-3-phosphate dehydrogenase subunits (GLPC) which are ferredoxins, and clear presence of two appropriate 4Fe-4S binding
sequences.
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Shotgun tandem mass spectrometry-based peptide sequencing using programs such as SEQUEST
allows high-throughput identification of peptides, which in turn allows the identification of corresponding
proteins. We have applied a machine learning algorithm, called the support vector machine, to
discriminate between correctly and incorrectly identified peptides using SEQUEST output. Each peptide
was characterized by SEQUEST-calculated features such as delta Cn and Xcorr, measurements such
as precursor ion current and mass, and additional calculated parameters such as the fraction of matched
MS/MS peaks. The trained SVM classifier performed significantly better than previous cutoff-based
methods at separating positive from negative peptides. Positive and negative peptides were more readily
distinguished in training set data acquired on a QTOF, compared to an ion trap mass spectrometer.
The use of 13 features, including four new parameters, significantly improved the separation between
positive and negative peptides. Use of the support vector machine and these additional parameters
resulted in a more accurate interpretation of peptide MS/MS spectra and is an important step toward
automated interpretation of peptide tandem mass spectrometry data in proteomics.

Keywords: shotgun peptide sequencing • SEQUEST • support vector machine • machine learning • mass
spectrometry • capillary LC/MS/MS • proteomics

Introduction

The separation and sequencing by capillary HPLC-tandem
mass spectrometry of femtomole (or below) peptide levels is
the basis for the high-throughput identification of proteins
present in cell or tissue samples. The technique has broad
applicability: applications include the identification of peptides
binding individual MHC proteins of defined haplotype,1 the
identification of a peptide recognized by melanoma-specific
human CTL cell lines,2 the identification of individual protein
complexes,3-4 the large scale analysis of the yeast proteome,5

the identification in yeast of interacting proteins for a large
number of tagged protein baits,6-7 the identification of proteins
in urine,8 and the definition of proteins of the nucleolus.9

The analysis of peptide collision-induced dissociation spectra
to give information on a peptide’s sequence was developed by
Hunt and co-workers10-14 and Biemann.15 To identify proteins
from mass spectrometry data, protein database searches
initially used peptide fragments16 or sequence tags,17 and
included sequenced genomes18 and more sophisticated search
techniques.19-22 Yates and co-workers developed correlations
of peptide tandem mass spectrometry data and sequences from
protein databases,23-25 incorporated these in the program

SEQUEST, and coupled this software with capillary LC/MS/
MS data and database searches to identify proteins26 and
protein complexes.27 Due to its early implementation, avail-
ability and the widespread use of ion trap, triple quadrupole,
and quadrupole time-of-flight mass spectrometers that gener-
ate compatible data, SEQUEST is one of the most commonly
used programs.

The use of database search programs introduces questions
about how to interpret their output. SEQUEST outputs for each
spectrum one or more peptides from the given database whose
theoretical spectra closely match the given spectrum. Associ-
ated with each match is a collection of statistics. Initially, the
difference between normalized cross-correlation functions
(delta Cn) for the first and second ranked results from a search
of a relatively small database was used to indicate a correctly
selected peptide sequence.23,25 Additional criteria were subse-
quently added, including the cross-correlation score between
the observed peptide fragment mass spectrum and the theo-
retically predicted one (Xcorr), followed by a manual examina-
tion of the MS/MS spectra.27 More stringent criteria combined
the use of Xcorr cutoffs, delta Cn, and the correspondence of
peptide sequences with those expected for cleavage with the
enzymes used for proteolysis.5,28

Recently, Moore et al. described a probabilistic algorithm
called Qscore,29 for evaluating SEQUEST database search
results. In contrast to previous heuristic techniques, Qscore is
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based upon a probability model which includes the expected
number of matches from a given database, the effective
database size, a correction for indistinguishable peptides, and
a measurement of match quality. The algorithm performs well
in distinguishing between true and false matches from SE-
QUEST outputs.

The approach described here addresses a similar problem
using a different approach. Rather than building an algorithm
by hand, we use a machine learning algorithm, called the
support vector machine (SVM), to learn to distinguish between
correctly and incorrectly identified peptides. The support vector
machine (SVM)30-32 is a supervised learning algorithm, useful
for recognizing subtle patterns in complex data sets. The
algorithm has been applied in domains as diverse as text
categorization, image recognition, hand-written digit recogni-
tion32 and in various bioinformatics domains, including protein
remote homology detection,33 protein fold recognition,34 and
microarray gene expression analysis.35-36 The SVM is funda-
mentally a binary classifier: given two classes of data, the SVM
learns to distinguish between them and to predict the clas-
sification of previously unseen examples. In the application
described here, the algorithm is trained from a labeled collec-
tion of SEQUEST outputs, where the labels indicate whether
the peptide represents a correct or incorrect identification. The
SVM then learns to distinguish between peptides that were
correctly and incorrectly identified by SEQUEST.

The SVM algorithm is surprisingly simple. It treats each
training example as a point in a high-dimensional space and
searches for a hyperplane that separates the positive from the
negative examples. As such, the SVM is closely related to the
perceptron algorithm,37 with three important differences. First,
motivated by statistical learning theory,31 the SVM searches for
a hyperplane that separates the two classes with the largest
margin; the SVM finds a hyperplane that maximizes the
minimum perpendicular distance to any training example.
Choosing the maximum margin hyperplane reduces the chance
that the SVM will overfit the training data. Second, for data
sets that are not separable by a simple hyperplane, the SVM
uses a mathematical trick, known as the kernel trick, to operate
implicitly in a higher-dimensional space. By increasing the
dimensionality of the space in which the points reside, the SVM
can learn complex decision boundaries between the two given
classes. Finally, for data sets that contain some mislabeled
examples, the SVM incorporates a soft margin. The SVM may
find a decision boundary that nearly, but not perfectly,
separates the two given classes. A few outlier examples are
allowed to fall on the wrong side of the decision boundary.

Here, we use tryptic digests of mixtures of known protein
standards, purified proteins, or of a variety of affinity extracts
by specific antibodies or other binding proteins, to generate
LC/MS/MS data using ion trap or quadrupole time-of-flight
(QTOF) mass spectrometers. Peptides are classified as positive
examples (derived from proteins known or expected to be in
the samples) or negative examples (peptides not expected to
be in the samples). Each example in the training set is
characterized by a vector of features, including observed data
(peptide mass, precursor ion intensity) and SEQUEST-calcu-
lated statistics (such as the parameters Xcorr, delta Cn, Sp, and
RSp). These labeled vectors are then used to train an SVM to
distinguish between positive and negative examples.

Our experiments show that the trained SVM, when tested
on its ability to classify previously unseen examples, exhibits
high sensitivity and specificity. We illustrate the learning

procedure using two differently sized databases, as well as using
data generated on ion trap and QTOF mass spectrometers. The
SVM yields significantly fewer false positive and false negative
peptides than any of the cutoffs previously proposed and gives
a cleaner separation of positive and negative peptides than
Qscore-based single peptide analysis. The trained SVM is an
accurate, high-throughput technique for the examination of
SEQUEST results, which will enable the processing of large
amounts of data generated from examinations of complex
mixtures of proteins.

Experimental Section

Peptide Samples. Tryptic digest test mixtures containing 500
pmol of reduced, iodoacetic acid-alkylated hen egg white
lysozyme, horse myoglobin, and horse cytochrome c, bovine
serum albumin, and bovine carbonic anhydrase were pur-
chased from Michrom Bioresources (Auburn CA). These stan-
dards were mixed so that individual test samples contained
from 5 to 80 fmol of each of the five proteins, with 2-fold
differences in each concentration. Affinity extracts of cultured
human Jurkat cells were prepared using antibodies specific for
individual antigens, and were carried out as described.38

Individual baits or antigens and the source of the antibodies
used for the affinity extractions included heat shock protein
90 (MA3-010 antibody, Affinity BioReagents, Golden CO),
RbAp48 (13D10 antibody, Upstate Biotechnology, Lake Placid,
NY), the synthetic C-terminal p21cip1/waf1 peptide biotin-
GSGSGSGSGSKRRQTSMTDFYHSKRRLIFS-acid, the fusion pro-
tein glutathione S-transferase-S5a (AFFINITI Research Products
Ltd., Exeter, U.K.), and green fluorescent protein (rabbit poly-
clonal antibody, Molecular Probes, Eugene OR).

Mass Spectrometry and Database Searches. Ion trap mass
spectrometry utilized a Finnigan LCQ (ThermoFinnigan, San
Jose CA) and an LC Packings (San Francisco CA) Ultimate
capillary hplc and custom packed 75 micron internal diameter
capillary C18 reversed phase columns for sample injection and
chromatography, as described.38 Quadrupole time-of-flight
mass spectrometry was carried out using a Micromass QTOF-1
mass spectrometer coupled to an LC Packings capillary hplc
as above. Peptides were eluted using a 1% acetonitrile/min.
gradient. Database searches utilized either the nonredundant
human protein database of March 15, 2002, or the nonredun-
dant protein database of March 6, 2002. Both were downloaded
from the National Center for Biotechnology Information (http://
www.ncbi.nlm.nih.gov). Proteins from the human immunode-
ficiency virus were removed from the nonredundant human
protein database before use. The version of SEQUEST (Ther-
moFinnigan, San Jose, CA) used for database searches was
SEQUEST 2.0 that was distributed with Sequest Browser.
Tryptic cleavages at only lys or arg and up to two missed
internal cleavage sites in a peptide were allowed. The maximal
allowed uncertainty in the precursor ion mass was 1.5 m/z.
SEQUEST searches allowed optional met oxidation and cys
carboxamidomethylation because cysteines were derivatized in
this fashion after protein thermal denaturation and reduction.
Peptides with masses from 700 to 3500 m/z and precursor
charge states of +1, +2, and +3 were allowed. A few peptides
analyzed on the QTOF-1 were present as +4 ions and were left
in the appropriate positive or negative category. For spectra
collected on the LCQ, the minimum total ion current required
for precursor ion fragmentation was 1.0 × 105, the minimum
number of ions was 25, and IonQuest filtering was turned off.
Single precursor ion scans from 350 to 1800 m/z were followed
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by 6 MS/MS scans from 50 to twice the precursor ion m/z, up
to a limit of 1800 Da. Dynamic exclusion was turned on for a
duration of 1 min. A collision energy on the LCQ of 30 was
used for all fragment ion spectra. For the QTOF-1, a precursor
charge-dependent and peptide mass-dependent collision en-
ergy was used, ranging from 16 to 55 ev for +1 ions of 388-
2000 Da, 22-65 ev for +2 ions of 400-2000 Da, 16-50 ev for
+3 ions between 435 and 2000 Da, and 19-36 ev for +4 ions
between 547 and 2000 Da. For database searches using nonhu-
man protein test samples, sequences for the nonhuman
proteins were added to the nonredundant human protein
database.

Positive and Negative Peptides. Positive peptides were
selected by several criteria. One was tryptic peptides from five
known proteins in tryptic digest standards. A second was
peptides from proteins expected to be present in affinity
extracts because they are derived from the antibody or affinity
reagent used in the extraction, from the known antigen for the
antibody, from known interacting partners of the antigen, or
are autolytic fragments of trypsin. A third category includes
peptides from extracted proteins thought to be present due to
the identification of at least two peptides from that protein with
SEQUEST scores that meet stringent criteria.5,28 This includes
common contaminating proteins such as myosin, heat shock
proteins, defined cytokeratins, and may include proteins not
previously demonstrated to interact with a particular bait.
Tryptic digests from isolated protein standards were injected
at different levels between 5 and 1000 fmol to include SEQUEST
scores from peptides with strong as well as weak signals.

Negative peptides were selected from tryptic digests of
known protein standards, in which these peptides were as-
signed by SEQUEST to proteins other than the injected protein
or its human homolog. A second category of negative peptides
included peptides selected from lower scoring peptide matches
(i.e., from incorrect proteins) to MS/MS data from peptides
from a known standard protein.

Construction of Training Sets. Training sets were con-
structed using data collected and analyzed under three different
conditions: data collected using an ion trap mass spectrometer
and analyzed using the nonredundant human and full nonre-
dundant databases, and data collected on a QTOF mass
spectrometer analyzed using the nonredundant human data-
base. All three sets included nine experimentally measured and
SEQUEST-calculated parameters:23-25 MS/MS spectrum total
ion current, peptide charge, peptide precursor ion mass, the
difference in observed and theoretical precursor ion masses
for the best-fit peptide, the SEQUEST variables Xcorr (cross-
correlation score of the observed to the theoretical MS/MS
spectrum for a peptide sequence), delta Cn (the magnitude of
the difference in normalized cross-correlation parameter values
for the first and second hits found by SEQUEST), Sp (the
preliminary score for a peptide after correlation analysis to the
predicted fragment ion values), RSp (the final correlation score
rank), and the percent of predicted y and b ions matched in
the MS/MS spectrum.

A training set representing ion trap data and a SEQUEST
nonredundant human database search was constructed con-
taining 696 positive peptides, including 338 unique peptides
representing 47 different proteins. Multiple copies of some
individual peptides were obtained from independent runs using
from 5 fmol to 1 pmol of individual standard proteins, resulting
in peptides with a large dynamic range in signal-to-noise. There
were a total of 465 negative peptides, of which, 435 were

unique; 30 negatives were generated using peptides that were
second or lower choices below a top ranked positive peptide.
Initial support vector machine calculations incorrectly assigned
negative labels to a number of positive peptides. Upon
examination, in a number of cases the top ranked peptide from
a SEQUEST database search, for a given precursor ion and MS/
MS spectrum, was instead from a different protein. SEQUEST
had selected a lower ranked peptide from the protein of interest
and incorrectly listed it as being top ranked. As a result of this
round of SVM calculations, all gi or accession numbers for
positive peptides were verified as corresponding to the protein
identified, and a number of positive peptides with relatively
low scores were individually blasted against the nonredundant
database to check the identity of their source protein.

A second training set representing ion trap data and a
SEQUEST search using the full nonredundant database was
constructed. It contained 497 positive peptides assigned to 280
unique sequences from 33 different proteins. It also contained
479 negative peptides assigned to 460 different peptide se-
quences; 67 negatives were generated using peptides that were
second or lower choices below a top ranked postive peptide.
This database had approximately 8 times as many sequences
as the nonredundant human protein database, and may be
useful for finding protein homologues from other organisms
when the human protein sequence is not in a database (for
analyses using human cells) or for analysis of nonhuman
samples. The most significant outliers from initial SVM analyses
were examined to uncover errors in SEQUEST-peptide se-
quence assignment or errors in data handling.

A third training set representing QTOF data and a SEQUEST
search using the nonredundant human database was also
constructed. It contained 1017 positive and 532 negative
peptides analyzed on a quadrupole time-of-flight mass spec-
trometer. This training set was created for comparison with
the two previous training sets since data for these peptides was
collected on a different instrument. The positive peptides were
derived from 45 different proteins, and represented 493 unique
sequences. The negatives contained MS/MS spectra assigned
to 335 different sequences. Seventy additional negative peptides
were derived by selecting lower choices than the top ranked
peptide, when the top ranked peptide was correctly assigned
to a known protein from a standard peptide map. As before,
initial support vector machine analysis was used to uncover
mistakes in data entry or incorrect assignments of sequences
to proteins by SEQUEST, by analysis of individual false positives
and false negatives.

Four New Parameters used to Evaluate SEQUEST Output.
The basic parameters used to evaluate SEQUEST output
included experimentally measured or calculated parameters
such as precursor ion mass, precursor ion current, or peptide
charge. They also included those calculated using SEQUEST:
mass difference between observed and calculated precursor
ions for the best fit sequence, Xcorr, delta Cn, Sp, RSp, and %
y and b ions matched. Four additional parameters were
measured or calculated. These included a count of the number
of peaks in the MS/MS spectrum, and the fraction of these
peaks matched by predicted peptide fragments. An MS/MS
peak for ion trap data was defined as having over 103 counts,
and for QTOF-1 data as having over 1 count. In a noisy MS/
MS spectrum, the fraction of matched peaks should be low,
for both positive and negative peptides. In other MS/MS spectra
it should be lower for negative than for positive peptides. A
third parameter is the fraction of the MS/MS spectrum total
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ion current that is in matched peptide fragments. For a good
match, this fraction should be high, and for a poor match it
should be low. A fourth parameter is the sequence similarity
between the top peptide choice and second ranked choice.
When delta Cn is low, this parameter is intended to mark these
peptides for further examination. When the value of this
parameter is close to 1 (high sequence similarity) and other
scores are good, the individual peptides (and consequently
proteins) identified are examined to see if they are similar. If
so, then the identification may be useful. If the sequences are
different, a unique peptide/protein is not defined by the
combined scores.

Support Vector Machine Calculations. The SEQUEST output
data is summarized in a (number of peptides) by (9 or 13
parameter) matrix, in which each row contains a vector
consisting of the SEQUEST output parameters associated with
a particular protein. These data are then normalized in two
ways. First, to give equal importance to each of the features,
the columns of the matrix are normalized by dividing each
entry by the column sum. This operation ensures that the total
for each column is 1.0. Second, each 9- or 13-element vector
is converted to unit length by dividing each vector component
by the Euclidean length of the vector. This operation projects
the data onto a unit sphere in the 9- or 13-dimensional space
defined by the data. Note that this latter normalization can be
performed in the feature space, by defining a normalized kernel
K′ in terms of the original kernel K

The kernelized normalization has the advantage of implicitly
operating in the higher-dimensional kernel space.

Support vector machines are trained using a simple opti-
mization algorithm33. A software implementation in ANSI C is
freely available at http://microarray.cpmc.columbia.edu/gist.
The output of the SVM optimization is a set of weights, one
per peptide in the training set. The magnitude of each weight
reflects the importance of that peptide in defining the separat-
ing hyperplane found by the optimization: peptides with zero
weights are correctly classified and far from the hyperplane;
peptides with small weights are correctly classified and close
to the hyperplane; peptides with large weights are incorrectly
classified by the hyperplane, as described next. The SVM
weights, together with the original training set, can be used to
predict the classification of a previously unseen peptide vector.

In most classification tasks, the positive and negative class
labels assigned to the training set are not 100% correct.
Therefore, the SVM employs a soft margin, which allows some
of the training examples to fall on the “wrong” side of the
separating hyperplane. An SVM soft margin may be imple-
mented in several ways. We employ a 2-norm soft margin,
which charges each misclassified example with a penalty term
that increases quadratically according to the example’s per-
pendicular distance from the hyperplane. To account for
differences in the number of positive and negative examples,
errors in the positive class (for which we have fewer examples)
are charged more heavily than examples in the negative class.
The asymmetric 2-norm soft margin is implemented by adding
a constant to the diagonal entries in the kernel matrix.32 The
diagonal factor added to K(X,X) is 0.2* (nX/n), where nX is the
number of training examples in the same class as example X,
and n is the total number of training examples.35

To test the generalization performance of the algorithm, the
SVM is trained and tested using leave-one-out cross-validation.

Figure 1. The support vector machine learns to recognize high-quality peptide matches. The figure illustrates how an SVM learns to
discriminate between true and false peptide matches (listed as positives and negatives). Peptide data is obtained from LC/MS/MS
experiments analyzed by SEQUEST. A training set consists of a collection of individual peptide matches, each characterized by a
vector of statistics (as described in the text) and a binary classification (true or false match) provided by manual inspection of the
training set. The SVM learning algorithm finds a decision boundary that separates the true matches from the false matches. This
decision boundary can then be used by the SVM prediction algorithm to determine the classification of previously unseen peptides.
The prediction produced by the SVM is a binary classification, along with a discriminant value that can be used to estimate the SVM’s
confidence in its prediction. Analysis of training sets using single or pairwise feature analysis can indicate which individual or pairwise
features contribute the most to separation of positive and negative peptides in 9- or 13-feature space. Comparison of training sets
obtained using different mass spectrometers or databases estimates the contribution of these variables to the separation of positive
and negative peptides, and thus to accurate peptide and protein identification.

K′(X,Y) )
K(X,Y)

x(K(X,X) K(Y,Y))

research articles Anderson et al.

D Journal of Proteome Research



In this paradigm, a single example is removed from the matrix,
and the SVM is trained on the remaining examples. The
resulting classifier is applied to the held-out example, and the
predicted classification is compared to the true classification.
The held-out example is counted as a true positive, false
positive, true negative, or false negative, depending upon the
agreement between the true and predicted class. This leave-
one-out procedure is repeated for every example in the data
set.

Evaluation of Results. A straightforward method for evaluat-
ing the quality of the predictions made by the SVM is to
compare the classifications assigned by the SVM to the clas-
sifications assigned a priori. Disagreements between the two
are counted either as false positives or false negatives. Predic-
tion quality can be measured more precisely using the receiver
operating characteristic (ROC) curve. Rather than depending
upon a particular classification threshold, the ROC curve
integrates information about the complete ranking of examples
created by the SVM. The ROC curve plots, for varying clas-
sification thresholds, the number of true positives as a function
of the number of false positives. The area under this curve,
normalized to range from 0 to 1, is called the ROC score. A
perfect classifier will rank all of the positive examples above
negative examples, yielding an ROC score of 1. A random
classifier will produce an approximately diagonal curve, yielding
a score close to 0.5.

Results and Discussion

SVM Provides Good Discrimination Performance on Three
Different Data Sets. Support vector machine calculations were
run on all three datasets, and the results compared (Table 1).
For the dataset derived from ion trap mass spectrometry and
a SEQUEST search of the nonredundant human protein
database, there were 48 false positives, 117 false negatives, 579
true positives, 417 true negative peptides, and a ROC score of
0.929. Of the initial training set peptides, 14.2% were false
positives or negatives. For the dataset derived from ion trap
mass spectrometry and a SEQUEST search of the full nonre-
dundant human protein database, there were 62 false positives,
81 false negatives, and a ROC score of 0.920. Of these peptides,
14.7% were false positives or negatives. For QTOF mass
spectrometry data, searched using the nonredundant human
database, calculations found 27 false positive and 81 false
negative peptides. The ROC score for this analysis was 0.981;
7.0% of these peptides were false positives or negatives.

ROC plots for the 3 datasets examined with 9 parameters
are shown in Figure 2A. Use of the full nonredundant protein
database, containing approximately 8-fold more sequences, still
allows a good separation between positive and negative pep-
tides, but the ROC scores are slightly lower than for the smaller
nonredundant human database. Using the same nonredundant
human database for comparison, data collected on a quadru-

pole time-of-flight mass spectrometer is more readily separated
by the SVM into positives and negatives than data collected
on this ion trap.

To understand the errors made by the SVM, we looked in
detail at each of the false positives and negatives. Many of the
errors made by the SVM correspond to examples with noisy
MS/MS spectra or poor fragementation of precursor ions. For
the ion trap nonredundant human protein database training
set, 7 of the 25 top false positive peptides had noisy MS/MS
spectra and another 5 had poor fragmentation, with much of
the ion current in a few major peaks. Nine of the top 25 false
negatives had noisy MS/MS spectra, whereas 13 had poor
fragmentation. For the ion trap-full nonredundant protein
database training set, 6 of the top 22 false positives had noisy
MS/MS spectra and an additional spectrum had poor frag-
mentation of the precursor ion. Seven of the top 24 false
negatives had noisy MS/MS spectra, and 7 had poor precursor
ion fragmentation. For the QTOF data, 4 of the top 20 false
positive peptides had low signal-to-noise MS/MS spectra and
an additional 4 fragmented poorly. Eight of the top 23 false
negatives fragmented poorly, and 4 had noisy MS/MS spectra.
A lower information content could make it difficult to match
the correct peptide sequence for peptides with poor MS/MS
fragmentation or noisy MS/MS spectra.

For each of the three training sets, some of the false positives
or false negatives that did not have noisy MS/MS spectra, or
poorly fragmenting precursor ions, matched the predicted MS/
MS spectrum from the best-fit peptide fairly well. It is possible
that some of the false positives were contaminants of the
known proteins used as standards, and thus were true positives.
Some of the false negatives had poor SEQUEST scores, and the
SVM had trouble recognizing them as positive peptides. Overall
the these peptides seem to represent a core of peptides that
are currently difficult to correctly assign with the parameters
used.

Using Four Additional Parameters Improves the SVM’s
Performance. Based upon the initial analyses described above,
we computed four additional parameters that we hypothesized
would help the SVM recognize noisy or otherwise difficult
examples. These parameters were tested in the analysis of the
three training sets. The use of the number of peaks in an MS/
MS spectrum, and the fraction of those peaks matched by
fragments predicted from the best-fit database peptide se-
quence, was intended as an additional measure of the good-
ness-of-fit of a peptide sequence to the data. The fraction of
the total ion current in the MS/MS spectrum matched by
predicted peptide fragments was intended as an additional
measure for the goodness-of-fit of a peptide sequence to the
data, and to weight the fit by the intensity of the matched
fragments. The sequence similarity between the top sequence
and second choice sequence was intended to allow discrimina-
tion, for peptides with low delta Cn values, between dissimilar

Table 1. Analysis of Training Sets Using Different Methodsa

SVM-9 analysis SVM-13 analysis

method

training set

positive,

negative peptides

false positives,

negatives

ROC

scores

false positives,

negatives

ROC

scores

ion trap, NR human 696, 465 48, 117 0.929 44, 100 0.950
ion trap, full NR 497, 479 62, 81 0.920 53, 70 0.939
QTOF, NR human 1017, 532 27, 81 0.981 18, 51 0.988

a The training sets used either the nonredundant human database (NR human) or the full nonredundant database.
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sequences almost equally well-matched to the data, and very
similar sequences matched to the data. In the former case the

top ranked sequence is not useful, whereas in the latter case,
it may be useful if the matched peptides are from similar
proteins.

Training sets were constructed as above for positive and
negative peptides associated now with 13 parameters, the
original 9 and the four additional parameters described above
(Table 1). For the ion trap-nonredundant human protein
database training set with SVM calculations, there were 44 false
positives, 100 false negatives, and the ROC score was improved
to 0.950. This represents a loss of 4 false positives and 17 false
negatives compared to the 9-parameter dataset. 12.4% of the
peptides were false positives or negatives. The addition of these
parameters thus improved the overall performance of the SVM
calcuations.

For SVM calculations on the ion trap full nonredundant
protein database training set, use of the additional 4 parameters
resulted in a reduction of false positives to 53 and the false
negatives to 70. The ROC score was now 0.939; 12.6% of the
peptides were false positives or negatives. Thus, for this training
set, the use of the additional parameters also increased the
separation between the positive and negative peptides.

For SVM calculations on the QTOF-full nonredundant
protein database training set, the total false positive peptides
decreased from 26 to 18, and the false negative peptides
decreased from 81 to 51. The ROC score for this analysis was
0.988; now, only 4.5% of the training set peptides were found
to be false positives or negatives. Thus the best separation of
positives and negatives for any training set was obtained using
QTOF-collected data and 13 parameter analysis. The QTOF data
was collected without internal calibration of each run, and
SEQUEST searches utilized a 1.5 Da window. Thus, the higher
mass accuracy available with internal calibration or more
advanced instruments may further improve the separation of
these positive and negative peptides. The average mass devia-
tion between observed and best-fit peptides for the positive
peptides for QTOF data was 0.40 ( 0.25 Da, compared to an
average mass deviation for ion trap positive peptides of 0.52 (
0.38 Da. Thus, the uncalibrated QTOF data as used here
appears to have a slightly higher mass accuracy than ion trap
data.

For all three datasets, ROC scores increase with the use of
the 4 additional parameters beyond the original 9 parameters.
ROC curves for the 3 datasets examined with 13 parameters
are shown in Figure 2B. For the full nonredundant protein
database, containing ca. 8-fold more sequences, there is still a
good separation between positive and negative peptides, but
the ROC scores are slightly lower than for the smaller nonre-
dundant human database. For the same database, data col-
lected on the QTOF mass spectrometer is more readily sepa-
rated by the SVM into positives and negatives than data
collected on an ion trap. The QTOF ROC scores are noticeably
higher for both 9- and 13-parameter training sets.

For the parameter representing the fraction of MS/MS peaks
matched by predicted peptide fragments, this value was slightly
higher in the ion trap training sets for positive peptides
(0.499 ( 0.120 and 0.512 ( 0.113 for the NR human and full
NR database sets) than for negative peptides (0.410 ( 0.098
and 0.438 ( 0.090 respectively). The difference was more
pronounced for QTOF-1 training set data: 0.632 ( 0.120 for
positive peptides, 0.352 ( 0.139 for negative peptides. For the
parameter representing the average fraction of MS/MS total
ion current matched by predicted peptide fragments, its value
was slightly higher for ion trap positive peptides (0.646 ( 0.163

Figure 2. ROC plots of three different training sets used in SVM
calculations. A. ROC plot of training sets containing nine param-
eters. The normalized true positives are plotted against the
normalized false positives for each training set. The QTOF-
nonredundant human database set is represented in open black
squares, the ion trap-nonredundant human database set in light
gray, and the ion trap-nonredundant human database set in
darker gray. The QTOF training set has the fewest false positives
relative to true positives of any set; the ion trap-full nonredundant
database set, which has about 8 times as many entries as the
ion trap-nonredundant human set, has the most false positives
relative to true positives of any set. Thus, the SVM has the most
success separating true from false positives with the QTOF
dataset, and less success with ion trap data using either the full
nonredundant or nonredundant human databases. B. ROC plot
of training sets containing 13 parameters. The QTOF-nonredun-
dant human database set (open black squares) has the fewest
false positives relative to true positives, the ion trap-nonredun-
dant human database (light gray) is intermediate in this respect,
and the ion trap-full nonredundant database (darker gray) has
the most false positives relative to true positives of any set. Again
the SVM has the most success separating true from false
positives with the QTOF dataset.
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and 0.656 ( 0.156 for the NR human and full NR datasets) than
for negative peptides (0.468 ( 0.153 and 0.520 ( 0.141
respectively). The difference was more pronounced for QTOF-1
data (0.750 ( 0.112 and 0.392 ( 0.182 for positive and negative
peptides). This suggests that the QTOF-1 data may be less noisy
than ion trap data, which is consistent with an examination of
the MS/MS spectra.

Fisher Scores can be used to Understand What Features
are Providing the Most Information. Although the support
vector machine generally produces very accurate predictions,
this accuracy comes at the price of reduced explanatory power.
Unlike a decision tree classifier, the SVM does not explicitly
select a few features that are most relevant to the classification
task at hand. However, we can use a related technique to
analyze the correlations between each feature and the clas-
sification labels associated with each peptide. The Fisher
criterion score (FCS)39 is a simple metric that is closely related
to the Student’s t-test. The score was developed in the context
of linear discriminant analysis, which is closely related to the
SVM methodology. The FCS has been used previously for
feature selection in conjunction with the SVM classification of
microarray data36. For a given pair of distributions A and B,
with means Am and Bm and standard deviations σA and σB, the
FCS is defined as

Here, A and B correspond to the distributions of a given feature
(say, Xcorr) within the positive and negative training sets,
respectively. A high FCS indicates that the distribution of Xcorr
scores associated with positively labeled peptides is markedly
different from the Xcorr scores associated with negatively
labeled peptides. We can compute the FCS for each feature in
our data set, and rank the features to determine which ones
are providing the most information to the SVM.

Unfortunately, SVM results are particularly difficult to explain
because the SVM can operate in a higher-order feature space
defined by the kernel function. In general, it is not possible to
compute Fisher criterion scores of the features in this high-
dimensional space. Indeed, for some functions, such as the
radial basis function, the feature space is of infinite dimension.
However, for a relatively simple kernel function, such as the
quadratic polynomial kernel used here, we can explicitly
calculate the higher-order features and then compute FCS's
for each one.

On the basis of FCS analysis, the most predictive single
feature (Table 2) for all three 9- and 13-parameter training sets
was delta Cn,23 the difference between the normalized cross-
correlation parameters of the first and second ranked peptides.
Xcorr, the raw correlation score of the top peptide sequence
with the observed MS/MS spectrum, was the second most
predictive single feature for all but two training sets. Threshold
values of both of these parameters have been used previously
to separate positive from negative peptides.5,25,27,28 RSp, the
ranking of the preliminary raw score, Sp, the preliminary score
of the top peptide, and % ion match, the percent of predicted
y and b ions for a given sequence that were matched in the
experimental MS/MS spectrum, were also predictive. Two of
the new parameters, fraction of matched MS/MS TIC and
fraction of matched MS/MS peaks, were among the most highly
predictive features, particularly for QTOF data. The least

predictive features were delta mass, the difference between the
observed and predicted masses for individual peptides, and the
precursor ion current for individual peptides. The difference
between observed and predicted precursor ion masses may not
be predictive since this difference is already restricted when
selecting peptides for SEQUEST analysis.

Some Pairs of Features are More Informative than Either
Feature Alone. Combinations of individual features were also
analyzed for their utility separating positive from negative
peptides. Table 3 shows the results of a Fisher criterion score
analysis of the different data sets using pairwise features. Only
discriminant scores of 1.0 or above for at least one training set
were included for illustration purposes. When compared to the
analysis using single features, the analysis of pairs of features
shows that correlations (or perhaps anti-correlations) among
some pairs of features can be much more informative. The
combination of fraction matched MS/MS TIC and delta Cn
receives an FCS of 4.74, much higher than the scores assigned
to either feature alone. The relatively high ranking of pairwise
scores explains why the quadratic kernel function yields good
SVM classification performance.

The most highly predictive combinations included the
fraction of matched MS/MS ion current and the fraction of
matched MS/MS peaks (7 combinations each). Other highly
predictive combinations included delta Cn or Xcorr with other
features. For each of these combinations the predictive value
was higher with data acquired on the QTOF-1. This illustrates
the ability of the SVM to learn the predictive value of combina-
tions of features that might not be obvious a priori. The mass
difference between the observed precursor ion mass and
calculated mass of the best-fit peptide, which was poorly
predictive when analyzed alone (Table 2), was also poorly
predictive in combination with other parameters (data not
shown). Thus, not all parameters were highly predictive alone
or in combination with other parameters. As a result of the
utility of numerous pairwise feature combinations all combina-
tions of features were included in the analysis. Individual
variables that are highly predictive when analyzed in a pairwise
fashion may be relatively independent variables.

The enhanced performance of the SVM with QTOF data
compared to ion trap data appears to be due to better
predictiveness of a number of parameters, including precursor
ion charge measurement. This value was significantly more
predictive for the separation of positives from negatives in

(Am - Bm)2

σA + σB

Table 2. Contribution of Single Features to the Separation of
Positive and Negative Peptides as Reflected by Their Fisher
Criterion Scores

mass spectrometer

database:

ion trap

NR human

ion trap

NR full

QTOF-1

NR human

features 9 or 13 parameters
delta Cn 1.401 1.018 2.861
Xcorr 0.935 0.477 2.444
Sp 0.714 0.604 1.158
MH 0.000 0.000 0.704
charge 0.118 0.102 0.488
RSp 0.273 0.447 0.313
% ion match 0.607 0.447 0.079
dM 0.000 0.014 0.024
TIC 0.016 0.011 0.008

features 13 parameters
fraction matched MSMS TIC 0.632 0.422 2.804
fraction matched MSMS peaks 0.335 0.260 2.314
peak count 0.062 0.018 0.209
seq similarity 0.060 0.130 0.115
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QTOF data than for ion trap data (Table 2). The precursor
charge was also highly predictive in pairwise feature analysis
of QTOF data when combined with five other parameters
(Table 3). One factor in this predictiveness might be the
asymmetrical distribution of +1 charged precursors: 39 were
included as part of the training set positive peptides, whereas
311 were included in the negative peptides. As discussed in
the Methods section, positive and negative peptides were not
selected on this basis. Thus, observation of a +1 precursor ion
is significantly more likely for a negative than positive peptide.
Other parametersssuch as the MS/MS spectrum peak count,
the fraction of matched MS/MS peaks, and the fraction of
matched MS/MS total ion currentswere also significantly more
predictive that for ion trap data, either alone (Table 2) or in
combination with other parameters in pairwise scoring (Table
3). An enhanced signal-to-noise ratio for these data may also
be valuable for the separation of positives and negatives.

One explanation for the difference in performance for the
QTOF versus ion trap datasets might be the larger size of the
QTOF training set. A subset of the QTOF data including 497
positive and 479 negative peptides, the same size as the smaller
of the two ion trap datasets, was examined by the SVM using
13 parameters, and the ROC score computed. The test results
contained 20 false positives and 23 false negatives, and a ROC
score of 0.989. This compares well with the ROC score for
analysis of the full sized QTOF dataset using 13 parameters
(0.988). This suggests that the quality of the QTOF data, rather
than the larger number of examples in the dataset, explains
the improved performance compared to the ion trap-based
results.

The SVM Provides Better Performance than other Tech-
niques. Comparison of SVM Results with Previous Analyses
of SEQUEST Results Based on Thresholds. The results of the
SVM analysis of the above training sets can be compared with
approximations of previous methods, employing different
cutoffs for delta Cn and/or Xcorr, used to evaluate SEQUEST-
generated matches between peptide data and database se-
quences (Table 4). One simple method, used before protein
sequence databases became large, involved selection of pep-
tides as positives with delta Cn values larger than 0.123,25. Using
a criterion of minimizing false positives (defined here as
negative peptides missed using the defined cutoffs) and false
negatives (defined as positive peptides missed), this was the
best performing cutoff of the 3 sets of cutoffs examined. A
second method27 included selection, as positives, of +1 pep-
tides with Xcorr values larger than 1.5, selection of +2 and +3
peptides with Xcorr values larger than 2, and several other
criteria including manual examination. Use of these cutoffs
alone resulted in intermediate performance among the 3 sets
of cutoffs. A more stringent method5,28 included retention of
tryptic peptides with Xcorr values above 1.9, 2.2, and 3.75 for
+1, +2, and +3 peptides, a delta Cn of 0.1 or greater, and tryptic
ends, followed by manual confirmation of the sequence match
to the MS/MS spectrum under some circumstances. The cutoffs
from this method resulted in the highest sum of false positives
and false negatives for the 3 methods considered, although it
gave lower levels of false positives than some of the other sets
of cutoffs. The SVM results using both 9 and 13 parameters
gave a significantly lower sum of false positives and false
negatives than these sets of cutoffs.

Comparison of SVM Results with Qscore Results. Training
set peptides analyzed using SVM calculations were also ana-
lyzed using the Qscore algorithm29. Qscore is a program that
evaluates the quality of protein identifications from SEQUEST
results using probabilistic scoring. The program requires at least
two peptides for a protein identification, thus for comparison
purposes with individual peptides contained in the nonredun-
dant human database-ion trap training set, we modified the
Qscore program to allow the display of calculated scores for
single peptides. Qscore is not a binary classifier, thus true and
false positives and negatives were not calculated. In Figure 3,
the ROC curve for Qscore analysis of the ion trap-nonredundant
human dataset is compared with ROC curves generated using
SVM calculations. For both the 9- and the 13-parameter SVM
results, the ROC curves are shifted to the upper left, indicating
that for a fixed percent of false positives, there are significantly
more true positive peptides from the SVM analysis. Although
Qscore does not attempt to identify proteins with fewer than
two peptides, these results suggest that a similar use of SVM
peptides, combined with careful examination for mistakes of

Table 3. Pairwise Contributions of Individual Feature Fisher
Scores to the Separation of Positive and Negative Peptides

mass spectrometer:

database:

ion trap

NR human

ion trap

NR full

QTOF-1

NR human

feature 1 feature 2 9 or 13 parameters
delta Cn Xcorr 1.51 1.15 3.60

charge 0.980 0.809 3.56
MH 1.05 0.877 3.12
% ion match 1.76 1.43 2.81
SP 1.43 1.18 2.80

Xcorr charge 0.208 0.068 1.94
MH 0.366 0.162 1.89
Sp 0.956 0.698 1.88
%ion match 1.37 0.846 1.83

Sp MH 0.743 0.593 1.92
charge 0.502 0.402 1.77

%ion match MH 1.53 1.13 2.09
charge 0.402 0.322 1.25
Sp 0.959 0.775 1.12

13 parameters
fraction matched
MSMS peaks

delta Cn 1.48 1.21 4.23

Xcorr 1.08 0.661 3.38
Sp 0.998 0.811 2.38
%ion match 0.998 0.811 2.38
MH 0.114 0.087 1.67
charge 0.014 0.007 1.53
peak count 0.328 0.148 1.18

fraction matched
MSMS TIC

delta Cn 1.68 1.34 4.74

Xcorr 1.33 0.843 3.82
fraction matched
MSMS peaks

0.556 0.394 2.82

Sp 1.17 0.931 2.58
MH 0.327 0.229 2.10
charge 0.108 0.057 1.90
% ion match 1.08 0.700 1.47

peak count delta Cn 1.01 0.861 1.42

Table 4. Analysis of Training Sets Using Different Methods

method:a 1 2 3 SVM-9 SVM-13

training set: false positives, false negatives
ion trap, NR human 115, 142 133, 187 132, 369 48, 117 44, 100
ion trap, full NR 87, 142 305, 55 180, 251 62, 81 53, 70
QTOF, NR human 108, 81 126, 86 57, 285 27, 81 18, 51

a The cutoffs used for these comparative analyses are taken from Eng et
al.23 and Yates et al.25 for method 1, from Link et al.27 for method 2, and
from Washburn et al.5 and Gygi et al.28 for method 3; the SVM analyses used
both 9 and 13 parameters. False positives and negatives for methods 1-3
were calculated as the number of negative and positive peptides missed by
the cutoffs, respectively.
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outliers from initial SVM analysis of SEQUEST data, might
provide higher quality protein identifications.

Recently, Keller et al.40 described an algorithm similar to the
methods described here. They use discriminant function
analysis, which is closely related to the SVM algorithm, to
discriminate between true and false peptides. They also employ
the expectation maximization algorithm to fit a curve that
converts their predictions into probabilities. However, the
method incorporates only four SEQUEST scores plus the
number of tryptic peptide termini present in the matched
peptides. Ions of different charge (+2 and +3) are analyzed
separately, using ion trap peptide data. Xcorr’, delta Cn, and
ln RSp contribute to most of the discrimination between
positive and negative peptides. Our data includes more pa-
rameters, and +1, +2, and +3 ions are included in one analysis.
For our training sets, we find that using more parameters
significantly improves the discrimination between positive and
negative peptides.

Comments on Results. The support vector machine is a
binary classifier, and is thus useful for making decisions about
membership of analyzed entities in either of two classes. Here,
we have defined the two classes as peptides correctly or
incorrectly matching SEQUEST-assigned sequences. Additional
applications using mass spectrometry data might include
binary decisions between classes such as presence and absence
of an early stage disease such as cancer41. Similar decision
making could be applied to de novo sequenced peptides if there
was sufficient information describing the fit of a de novo
sequence to a peptide, and if the problem was constructed as
to whether or not the de novo sequence was correct. This would
likely involve other algorithms than SEQUEST, which relies
mainly on pattern matching between predicted and observed
MS/MS spectra.

On the basis of our experience and on the training set data
examined, there are several categories of incorrectly predicted

peptides. First, we initially encountered false positives based
on the SEQUEST selection of peptides, matched to a given
precursor ion and its MS/MS spectrum, that were not the top
ranked peptides. These, and incorrectly labeled peptides, were
removed after manual examination of results from initial
rounds of SVM analysis. Second, the analysis of some of the
tryptic maps of individual “pure” proteins indicated that there
were other proteins present with more than one high-scoring
peptide. Examples of negative peptides were not taken from
these samples. They were instead substituted with samples of
at least 97% protein purity, which were limited to injections of
no more than 100 fmol of peptides. The presumed levels of
impurity should thus be below the routine limit of detection
for our ion trap or QTOF mass spectrometers (ca. 10 fmol) as
currently configured. Nonetheless, it is possible that some of
the proteins assigned as negatives might represent impurities
present in the sample.

We have not been able to completely separate positives from
negatives in any of the training sets examined, for data acquired
on either mass spectrometer. Some of the reasons discussed
below may help explain this observation. First, the training sets
included the lowest scoring available positive peptides, which
were often among multiple peptides correctly identifying a
known protein. A number of false positive sequences with high
SEQUEST scores, for example peptides selected as second
choices for known positive peptides, were also included. Similar
examples have been reported when using reversed-sequence
databases as controls.29 For the ion trap-non redundant human
database-searched training set, there were 124 positive peptides
with delta Cn values below 0.1. For +1, +2, and +3 ions there
were 4, 33, and 75 additional peptides that did not meet the
most stringent Xcorr cutoffs (method 3) in Table 4. There were
108 negative peptides with delta Cn values of 0.1 or above, and
14, 74, and 0 additional +1, +2, and +3 negative peptides with
Xcorr values above those used for cutoffs in method 3 of Table
4. These were thus challenging training sets.

Second, a number of false positives and negatives were
assigned to peptides with noisy MS/MS spectra, or with poor
fragmentation in these spectra. In both cases, the information
content necessary for correct sequencing will be compromised,
and it is expected that accurate sequence assignments will be
difficult. Of the 22 poorly fragmenting positive peptides incor-
rectly assigned as negatives, all but one contained an internal
residue (pro, his, arg) thought to cause uneven peptide
fragmentation,42,43 and 14 contained more than one of these
internal residues. It is not clear that even manual examination
of these peptide MS/MS spectra will lead to a correct sequence
match. A tentative identification of proteins based on these
questionable peptides will require additional experiments, or
additional matching peptides of higher quality, for verification.
A computational indication of ambiguously identified peptides,
indicated by the computed distance from the 9-parameter or
13-parameter hyperplane, should select any peptide so posi-
tioned for further scrutiny.

More generally, incorrect sequence assignments may also
occur if the correct sequence is not in the database examined.
For human protein sequences 80% of novel gene predictions
from drafts of the Ensembl and Celera datasets occur in only
one of these datasets,44 thus an accurate and complete human
protein sequence database is not yet available. Other incorrect
assignments may be due to modifications to individual amino
acids not incorporated into the sequences searched, or to
incorrect assignment of the precursor ion charge when a lower

Figure 3. Comparison of Qscore with SVM analyses of a peptide
training set. A ROC plot was used to compare SVM and Qscore
analysis of an ion-trap nonredundant human database training
set using either 9 parameters (light gray diamonds) or 13
parameters (top curve, open black boxes). Qscore was modified
to calculate values for single peptides rather than requiring two
peptides for an analysis, and these scores were used for the
comparison. Both SVM analyses gave a higher number of true
positives for a fixed number of false positives than the modified
Qscore analysis (lowest curve, filled circles).
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mass accuracy instrument is used and the ratio of MS to MS/
MS scans is low. The best resulting sequence will then be
incorrect.

Conclusions

Using appropriate training sets, our approach allows an
automated computational first-pass analysis of SEQUEST data
on individual peptides. This should allow a higher throughput
analysis of shotgun peptide sequencing results. For tandem
mass spectrometry data, SVM analysis of experimentally ob-
tained parameters, SEQUEST-calculated statistics, and ad-
ditional parameters allows a better match between these data
and peptide sequences than previous methods, using our
training sets. The use of four new parameters tested here
contributed significantly to the separation of positive and
negative peptides. A good but not complete separation between
positive and negative peptides was obtained for ion trap data
using two different databases. A significantly better separation
was obtained for uncalibrated QTOF MS/MS data. Using SVM
calculations, the contributions of the parameters to the separa-
tion were individually examined. The parameters delta Cn,
Xcorr, Sp, the fraction of the MS/MS spectrum ion current
matched by peptide fragments, and the fraction of the total
number of MS/MS spectrum peaks matched by peptide frag-
ments contributed significantly to the separation of positive
and negative peptides. Each training set is customized to the
mass spectrometer used to collect data and the database
examined. Protein identifications from these peptides will then
be based on the number of individual peptides identifying a
particular protein, and the distance of each peptide from the
hyperplane separating positives and negatives in the appropri-
ate training set. The reproducibility and uniqueness of the
identification will also be important38 for correct protein
identifications. Manual examination of spectra of peptides with
poor or ambiguous SVM-calculated scores should identify noisy
or poorly fragmenting spectra that may compromise peptide
identification.
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ABSTRACT
Motivation: During the past decade, the new focus on
genomics has highlighted a particular challenge: to integrate
the different views of the genome that are provided by various
types of experimental data.
Results: This paper describes a computational framework
for integrating and drawing inferences from a collection of
genome-wide measurements. Each dataset is represented via
a kernel function, which defines generalized similarity relation-
ships between pairs of entities, such as genes or proteins.The
kernel representation is both flexible and efficient, and can be
applied to many different types of data. Furthermore, kernel
functions derived from different types of data can be combined
in a straightforward fashion. Recent advances in the theory
of kernel methods have provided efficient algorithms to per-
form such combinations in a way that minimizes a statistical
loss function. These methods exploit semidefinite program-
ming techniques to reduce the problem of finding optimiz-
ing kernel combinations to a convex optimization problem.
Computational experiments performed using yeast genome-
wide datasets, including amino acid sequences, hydropathy
profiles, gene expression data and known protein–protein
interactions, demonstrate the utility of this approach. A stat-
istical learning algorithm trained from all of these data to
recognize particular classes of proteins—membrane proteins
and ribosomal proteins—performs significantly better than the
same algorithm trained on any single type of data.
Availability: Supplementary data at http://noble.gs.washington.
edu/proj/sdp-svm
Contact: noble@gs.washington.edu

INTRODUCTION
The recent availability of multiple types of genome-wide data
provides biologists with complementary views of a single gen-
ome and highlights the need for algorithms capable of unifying

∗To whom correspondence should be addressed at: Health Sciences Center,
Box 357730, 1705 NE Pacific Street, Seattle, WA 98195, USA.

these views. In yeast, for example for a given gene we typ-
ically know the protein it encodes, that protein’s similarity to
other proteins, its hydrophobicity profile, the mRNA expres-
sion levels associated with the given gene under hundreds of
experimental conditions, the occurrences of known or inferred
transcription factor binding sites in the upstream region of
that gene and the identities of many of the proteins that interact
with the given gene’s protein product. Each of these distinct
data types provides one view of the molecular machinery of
the cell. In the near future, research in bioinformatics will
focus more and more heavily on methods of data fusion.

Different data sources are likely to contain different and
thus partly independent information about the task at hand.
Combining those complementary pieces of information can be
expected to enhance the total information about the problem at
hand. One problem with this approach, however, is that gen-
omic data come in a wide variety of data formats: expression
data are expressed as vectors or time series; protein sequence
data as strings from a 20-symbol alphabet; gene sequences are
strings from a different (4-symbol) alphabet; protein–protein
interactions are best expressed as graphs and so on.

This paper presents a computational and statistical frame-
work for integrating heterogeneous descriptions of the same
set of genes. The approach relies on the use of kernel-based
statistical learning methods that have already proven to be very
useful tools in bioinformatics (Noble, 2004). These methods
represent the data by means of a kernel function, which defines
similarities between pairs of genes, proteins and so on. Such
similarities can be quite complex relations, implicitly cap-
turing aspects of the underlying biological machinery. One
reason for the success of kernel methods is that the kernel
function takes relationships that are implicit in the data and
makes them explicit, so that it is easier to detect patterns. Each
kernel function thus extracts a specific type of information
from a given dataset, thereby providing a partial description
or view of the data. Our goal is to find a kernel that best
represents all the information available for a given statistical
learning task. Given many partial descriptions of the data, we
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solve the mathematical problem of combining them using a
convex optimization method known as semidefinite program-
ming (SDP) (Nesterov and Nemirovsky, 1994; Vandenberghe
and Boyd, 1996). This SDP-based approach (Lanckriet et al.,
2004) yields a general methodology for combining many par-
tial descriptions of data that is statistically sound, as well as
computationally efficient and robust.

In order to demonstrate the feasibility of these methods,
we apply them to the recognition of two important groups
of proteins in yeast—ribosomal proteins and membrane pro-
teins. The ribosome is a universal protein complex that is
responsible for the translation of mRNA into the correspond-
ing amino acid sequence via the universal genetic code. The
structure of the ribosome has been solved (Schluenzen et al.,
2000; Harms et al., 2001), although the precise roles of many
auxiliary factors are not completely understood. Proteins that
participate in the ribosome share similar sequence features and
correlated mRNA expression patterns (Brown et al., 2000).

Membrane proteins are proteins that anchor in one of
the various membranes in the cell, including the plasma,
ER, golgi, peroxisomal, vacuolar, cellular and mitochondrial
inner and outer membranes. Many membrane proteins serve
important communicative functions between cellular com-
partments and between the inside and the outside of the cell
(Alberts et al., 1998). Classifying a protein as a membrane
protein or not based on protein sequence is non-trivial and
has been the subject of much previous research (Engleman
et al., 1986; Krogh et al., 2001; Chen and Rost, 2002). This
is a typical statistical learning problem in which a single type
of feature derived from the protein sequence cannot provide
the full story.

For both of these protein classes, we demonstrate that incor-
porating knowledge derived from the amino acid sequences,
gene expression data and known protein–protein interactions
significantly improves classification performance relative to
our method trained on any single type of data. The SDP-
based approach also performs better than a classifier trained
using a naive, unweighted combination of kernels, and the
method continues to perform well in the presence of artificially
induced experimental noise.

We begin by outlining the main ideas of the kernel approach
to pattern analysis, providing examples of kernels defined
on yeast genome-wide datasets. We then describe how these
kernels can be integrated using SDP to provide a unified
description. Finally, we describe a series of computational
experiments that demonstrate the validity and power of the
kernel approach to data fusion for recognition of ribosomal
and membrane proteins in yeast.

KERNEL METHODS
Kernel methods work by embedding data items (correspond-
ing to genes, proteins, and so on) into a vector space, F ,
called a feature space (Cristianini and Shawe-Taylor, 2000;
Schölkopf and Smola, 2002; Wahba, 1990; Vapnik, 1998,

1999). A key characteristic of kernel methods is that the
embedding in feature space is generally defined implicitly,
by specifying an inner product for the feature space. Thus, for
a pair of data items, x1 and x2, denoting their embeddings as
�(x1) and �(x2), respectively, we specify the inner product
of the embedded data, 〈�(x1), �(x2)〉, via a kernel function
K(x1, x2). Any symmetric, positive semidefinite function is
a valid kernel function, corresponding to an inner product
in some feature space. Note that if all we require is inner
products, then we neither need to have an explicit representa-
tion of the mapping � nor even need to know the nature of
the feature space. It suffices to be able to evaluate the kernel
function.

Evaluating the kernel on all pairs of data points yields a
symmetric, positive semidefinite matrix known as the kernel
matrix or the Gram matrix. Intuitively, a kernel matrix can be
regarded as a matrix of generalized similarity measures among
the data points. The first stage of processing in a kernel method
is to reduce the data by computing this matrix.

The reduction to a kernel matrix reflects the fact that kernel
methods are generally based on linear statistical procedures in
feature space. In particular, the classification algorithm that
we use in this paper—known as a support vector machine
(SVM) (Boser et al., 1992)—forms a linear discriminant
boundary in feature space. Consider a dataset consisting of
n pairs (xi , yi), where xi is the i-th data item (e.g. a protein
sequence) and yi ∈ {−1, 1} is a label (e.g. membrane or non-
membrane). Compute the n × n kernel matrix whose (i, j )-th
entry is K(xi , xj ). Given this matrix, and given the labels yi ,
we can throw away the original data; the problem of fitting
the SVM to data reduces to an optimization procedure that is
based entirely on the kernel matrix and the labels.

Different kernel functions correspond to different embed-
dings of the data and thus can be viewed as capturing different
notions of similarity. For example, in a space derived from
amino acid sequences, two genes that are close to one another
will have protein products with very similar amino acid
sequences. This amino acid space would be quite different
from a space derived from microarray gene expression meas-
urements, in which closeness would indicate similarity of the
expression profiles of the genes. In general, a single type of
data can be mapped into many different feature spaces. The
choice of feature space is made implicitly via the choice of
kernel function.

For the tasks of ribosomal and membrane protein classi-
fication we experiment with seven kernel matrices derived
from three different types of data: four from the primary pro-
tein sequence, two from protein–protein interaction data, and
one from mRNA expression data. These are summarized in
Table 1.

Protein sequence
Smith–Waterman, BLAST and Pfam HMM kernelsA
homolog of a membrane protein is likely to be located in
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Table 1. Kernel functions

Kernel Data Similarity measure

KSW protein sequences Smith-Waterman
KB protein sequences BLAST
KPfam protein sequences Pfam HMM
KFFT hydropathy profile FFT
KLI protein interactions linear kernel
KD protein interactions diffusion kernel
KE gene expression radial basis kernel
KRND random numbers linear kernel

The table lists the seven kernels used to compare proteins, the data on which they are
defined, and the method for computing similarities. The final kernel, KRND, is included
as a control. All kernel matrices, along with the data from which they were generated,
are available at noble.gs.washington.edu/proj/sdp-svm.

the membrane, and similarly for the ribosome. Therefore,
we define three kernel matrices based upon standard homo-
logy detection methods. The first two sequence-based kernel
matrices (KSW and KB) are generated using the BLAST
(Altschul et al., 1990) and Smith–Waterman (SW) (Smith and
Waterman, 1981) pairwise sequence comparison algorithms,
as described previously (Liao and Noble, 2002). Both
algorithms use gap opening and extension penalties of 11 and
1, and the BLOSUM 62 matrix. As matrices of BLAST or
Smith–Waterman scores are not necessarily positive semidef-
inite, we represent each protein as a vector of scores against all
other proteins. Defining the similarity between proteins as the
inner product between the score vectors (the so-called empir-
ical kernel map, Tsuda 1999) leads to valid kernel matrices,
one for the BLAST score and one for the SW score. Note that
including in the comparison set proteins with unknown labels
allows the kernel to exploit this unlabeled data. The third ker-
nel matrix (KPfam) is a generalization of the previous pairwise
comparison-based matrices in which the pairwise comparison
scores are replaced by expectation values derived from hidden
Markov models (HMMs) in the Pfam database (Sonnhammer
et al., 1997).

Fast Fourier Transform (FFT) kernel The fourth sequence-
based kernel matrix (KFFT) is specific to the membrane protein
recognition task. This kernel directly incorporates information
about hydrophobicity patterns, which are known to be useful
in identifying membrane proteins. Generally, each mem-
brane protein passes through the membrane several times. The
transmembrane regions of the amino acid sequence are typ-
ically hydrophobic, whereas the non-membrane portions are
hydrophilic. This specific hydrophobicity profile of the pro-
tein allows it to anchor itself in the cell membrane. Because
the hydrophobicity profile of a membrane protein is critical
to its function, this profile is better conserved in evolution
than the specific amino acid sequence. Therefore, classical
methods for determining whether a protein pi (consisting of
|pi | amino acids) spans a membrane (Chen and Rost, 2002),

depend upon its hydropathy profile h(pi ) ∈ R
|pi |: a vector

containing the hydrophobicities of the amino acids along the
protein (Engleman et al., 1986; Black and Mould, 1991; Hopp
and Woods, 1981). The FFT kernel uses hydropathy profiles
generated from the Kyte–Doolittle index (Kyte and Doolittle,
1982). This kernel compares the frequency content of the
hydropathy profiles of the two proteins. First, the hydropathy
profiles are pre-filtered with a low-pass filter to reduce noise:

hf (pi ) = f ⊗ h(pi ),

where f = 1
4 (1 2 1) is the impulse response of the filter

and ⊗ denotes convolution with that filter. After pre-filtering
the hydropathy profiles (and if necessary appending zeros to
make them equal in length—a commonly used technique not
altering the frequency content), their frequency contents are
computed with the FFT algorithm:

Hf (pi ) = FFT[hf (pi )].
The FFT kernel between proteins pi and pj is then obtained by
applying a Gaussian kernel function to the frequency contents
of their hydropathy profiles:

KFFT(pi , pj ) = exp[−‖Hf (pi ) − Hf (pj )‖2/2σ ]
with width σ = 10. This kernel detects periodicities in the
hydropathy profile, a feature that is relevant to the identifica-
tion of membrane proteins and complementary to the previous,
homology-based kernels.

Protein interactions: linear and diffusion kernelsFor the
recognition of ribosomal proteins, protein–protein interac-
tions are clearly informative, since all ribosomal proteins
interact with other ribosomal proteins. For membrane pro-
tein recognition, we expect information about protein–protein
interactions to be informative for two reasons. First, hydro-
phobic molecules or regions of molecules are probably more
likely to interact with each other than with hydrophilic
molecules or regions. Second, transmembrane proteins are
often involved in signaling pathways, and therefore, differ-
ent membrane proteins are likely to interact with a similar
class of molecules upstream and downstream in these path-
ways (e.g. hormones upstream or kinases downstream). The
two protein interaction kernels are generated using medium-
and high-confidence interactions from a database of known
interactions (von Mering et al., 2002). These interactions can
be represented as an interaction matrix, in which rows and
columns correspond to proteins, and binary entries indicate
whether the two proteins interact.

The first interaction kernel matrix (KLI) is comprised of
linear interactions, i.e. inner products of rows and columns
from the centered, binary interaction matrix. The more similar
the interaction pattern (corresponding to a row or column from
the interaction matrix) for a pair of proteins, the larger the
inner product will be.
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An alternative way to represent the same interaction data
is to consider the proteins as nodes in a large graph. In this
graph, two proteins are linked when they interact and oth-
erwise not. Kondor and Lafferty (2002) propose a general
method for establishing similarities between the nodes of a
graph, based on a random walk on the graph. This method effi-
ciently accounts for all possible paths connecting two nodes,
and for the lengths of those paths. Nodes that are connected by
shorter paths or by many paths are considered more similar.
The resulting diffusion kernel generates the second interaction
kernel matrix (KD).

An appealing characteristic of the diffusion kernel is its abil-
ity, like the empirical kernel map, to exploit unlabeled data.
In order to compute the diffusion kernel, a graph is construc-
ted using all known protein–protein interactions, including
interactions involving proteins whose subcellular locations
are unknown. Therefore, the diffusion process includes inter-
actions involving unlabeled proteins, even though the kernel
matrix only contains entries for labeled proteins. This allows
two labeled proteins to be considered close to one another if
they both interact with an unlabeled protein.

Gene expression: radial basis kernelFinally, we also
include a kernel constructed entirely from microarray gene
expression measurements. A collection of 441 distinct
experiments was downloaded from the Stanford Microarray
Database (genome-www.stanford.edu/microarray). This data
provides us with a 441-element expression vector character-
izing each gene. A Gaussian kernel matrix (KE) is computed
from these vectors by applying a Gaussian kernel function
with width σ = 100 to each pair of 441-element vectors,
characterizing a pair of genes. Gene expression data is expec-
ted to be useful for recognizing ribosomal proteins, since their
expression signatures are known to be highly correlated with
one another. We do not expect that gene expression will be
particularly useful for the membrane classification task. We do
not need to eliminate the kernel a priori, however; as explained
in the following section, our method is able to provide an a pos-
teriori measure of how useful a data source is relative to the
other sources of data.

KERNEL METHODS FOR DATA FUSION
Each of the kernel functions described above produces, for the
yeast genome, a square matrix in which each entry encodes a
particular notion of similarity of one yeast protein to another.
Implicitly, each matrix also defines an embedding of the pro-
teins in a feature space. Thus, the kernel representation casts
heterogeneous data—variable-length amino acid strings, real-
valued gene expression data, and a graph of protein–protein
interactions—into the common format of kernel matrices.

The kernel formalism also allows these various matrices
to combine. Basic algebraic operations such as addition,
multiplication and exponentiation preserve the key property
of positive semidefiniteness, and thus allow a simple but

powerful algebra of kernels (Berg et al., 1984). For example,
given two kernel functions K1 and K2, inducing the embed-
dings �1(x) and �2(x), respectively, it is possible to define
the kernel K = K1 + K2, inducing the embedding �(x) =
[�1(x), �2(x)]. Of even greater interest, we can consider
parameterized combinations of kernels. In particular, given
a set of kernels K = {K1, K2, . . . , Km}, we can form the
linear combination

K =
m∑

i=1

µiKi , (1)

where the weights are constrained to be non-negative to assure
positive semidefiniteness: µi ≥ 0; i = 1, . . . , m. We consider
this kind of kernel combination in this paper.

As we have discussed, fitting a kernel-based statistical
classifier (such as the SVM) to data involves solving an optim-
ization problem based on the kernel matrix and the labels. In
particular, the SVM finds a linear discriminant in feature space
that has maximal distance (‘margin’) between the members
of the positive and negative classes. The algorithm for finding
this optimal linear discriminant involves solving an optimiza-
tion problem known as a quadratic program, a particular form
of convex optimization problem for which efficient solutions
are known (Nesterov and Nemirovsky, 1994).

The specific form of SVM that we use in this paper is the
1-norm soft margin support vector machine (Boser et al.,
1992; Schölkopf and Smola, 2002). An SVM forms a lin-
ear discriminant boundary in the feature space F : f (x) =
wT�(x) + b, where w ∈ F and b ∈ R. Given a labeled
sample Sn = {(x1, y1), . . . , (xn, yn)}, a 1-norm soft margin
SVM optimizes with respect to w and b so as to maximize the
distance (‘margin’) between the positive and negative class,
allowing misclassifications (therefore ‘soft margin’):

min
w,b,ξ

wTw + C

n∑
i=1

ξi

subject to yi[wT�(xi) + b] ≥ 1 − ξin

ξi ≥ 0, i = 1, . . . , n (2)

where C is a regularization parameter, trading off error against
margin. By considering the dual problem corresponding to
Equation (2), one can prove (Schölkopf and Smola, 2002)
that the weight vector can be expressed as w = ∑n

i=1 αi�(xi),
where the support values αi are solutions of the following dual
quadratic program (QP):

max
α

2αTe − αTdiag(y)Kdiag(y)α

subject to 0 ≤ α ≤ C, αTy = 0, (3)

where y = (y1, y2, . . . , yn)
T and diag(y) is a diagonal matrix

with entries given by the elements of y. An unlabeled data
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item xnew can subsequently be classified by computing the
linear function

f (xnew) = wT�(xnew) + b =
n∑

i=1

αiK(xi , xnew) + b.

If f (xnew) is positive, then we classify xnew as belonging
to class +1; otherwise, we classify xnew as belonging to
class −1.

In Lanckriet et al. (2004), we show that for a fixed trace
of K , the classification performance is bounded by a func-
tion of the optimum achieved in Equation (3): the smaller,
the better the guaranteed performance. Thus, whereas in the
standard SVM formulation K is a given kernel matrix, we
can in fact learn an optimal kernel matrix by parameteriz-
ing K and minimizing Equation (3) with respect to these
kernel parameters. More concretely, we consider the para-
meterization in Equation (1) with additional trace and positive
semidefiniteness constraints. Plugging this into Equation (3)
and minimizing with respect to µi gives:

min
µi

max
α

2αTe − αTdiag(y)

(
m∑

i=1

µiKi

)
diag(y)α

subject to 0 ≤ α ≤ C, αTy = 0,

trace

(
m∑

i=1

µiKi

)
= c,

m∑
i=1

µiKi 	 0,

where c is a constant. Again considering the Lagrangian dual
problem, we can show that this problem of finding optimal µi

and αi reduces to a convex optimization problem known as a
semidefinite program (SDP):

min
µi ,t ,λ,γ≥0

t

subject to trace

(
m∑

i=1

µiKi

)
= c,

m∑
i=1

µiKi 	 0,

(
Y (µ) e + γ + λy

(e + γ + λy)T t − 2CδTe

)
	 0, (4)

where we let Y (µ) = diag(y)(
∑m

i=1 µiKi)diag(y). SDP can
be viewed as a generalization of linear programming, where
scalar linear inequality constraints are replaced by more gen-
eral linear matrix inequalities (LMIs): F(x) 	 0, meaning
that the matrix F has to be in the cone of positive semidefinite
matrices, as a function of the decision variables x. Note that
the first LMI constraint in Equation (4), K = ∑m

i=1 µiKi 	 0,

emerges very naturally because the optimal kernel matrix must
indeed come from the cone of positive semidefinite matrices.
Linear programs and semidefinite programs are both instances
of convex optimization problems, and both can be solved via
efficient interior-point algorithms (Vandenberghe and Boyd,
1996).

In this paper, the weights µi are constrained to be non-
negative and the Ki are positive semidefinite and normalized
([Ki]jj = 1) by construction; thus K 	 0 is automatic-
ally satisfied. In that case, we can show that the SDP in
Equation (4) reduces to a quadratically constrained quadratic
program (QCQP), which is a special case of SDP that can be
solved more efficiently:

max
α,t

2αTe − ct

subject to t ≥ 1

n
αTdiag(y)Kidiag(y)α,

αTy = 0,

0 ≤ α ≤ C, (5)

for i = 1, . . . , m. Thus, by solving a QCQP, we are capable
of finding an adaptive combination of kernel matrices—and
thus an adaptive combination of heterogeneous information
sources—that solves our classification problem. The output
of our procedure is a set of weights µi and a discriminant
function based on these weights. We obtain a classification
decision that merges information encoded in the various kernel
matrices, and we obtain weights µi that reflect the relative
importance of these information sources.

EXPERIMENTAL DESIGN
In order to test our kernel-based approach in the setting
of yeast protein classification, we use as a gold standard
the annotations provided by the MIPS Comprehensive Yeast
Genome Database (CYGD) (Mewes et al., 2000). The CYGD
assigns 1125 yeast proteins to particular complexes, of which
138 participate in the ribosome. The remaining approximately
5000 yeast proteins are unlabeled. Similarly, CYGD assigns
subcellular locations to 2318 yeast proteins, of which 497
belong to various membrane protein classes, leaving ∼4000
yeast proteins with uncertain location.

The primary input to the classification algorithm is a col-
lection of kernel matrices from Table 1. For membrane
protein classification, for comparison with the SDP/SVM
learning algorithm, we consider several classical biological
methods that are commonly used to determine whether a
Kyte–Doolittle plot corresponds to a membrane protein, as
well as a state-of-the-art technique using HMMs to predict
transmembrane helices in proteins (Krogh et al., 2001). The
first method relies on the observation that the average hydro-
phobicity of membrane proteins tends to be higher than that of
non-membrane proteins, because the transmembrane regions
are more hydrophobic. We therefore define f1 as the average
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Fig. 1. Combining datasets yields better classification performance. The height of the bars in the upper two plots are proportional to the ROC
score (top) and the percentage of true positives at one percent false positives (middle), for the SDP/SVM method using the given kernel. Error
bars indicate standard error across 30 random train/test splits. In the lower plots, the heights of the colored bars indicate the relative weights
of the different kernel matrices in the optimal linear combination. These results in tabular form, along with percent accuracy measurements,
are given in the online supplement.

hydrophobicity, normalized by the length of the protein. We
will compare the classification performance of our statistical
learning algorithm with this metric.

However, clearly, f1 is too simplistic. For example, protein
regions that are not transmembrane only induce noise in f1.
Therefore, an alternative metric filters the hydrophobicity plot
with a low-pass filter and then computes the number, the height
and the width of those peaks above a certain threshold (Chen
and Rost, 2002). The filter is intended to smooth out periodic
effects. We implement two such filters, choosing values for the
filter order and the threshold based on Chen and Rost (2002).
In particular, we define f2 as the area under the 7th-order
low-pass filtered Kyte–Doolittle plot and above a threshold
value 2, normalized by the length of the protein. Similarly,
f3 is the corresponding area using a 20th-order filter and a
threshold of 1.6.

Finally, the transmembrane HMM (TMHMM) Web server
(www.cbs.dtu.dk/services/TMHMM) is used to make predic-
tions for each protein. In Krogh et al. (2001), transmembrane
proteins are identified by TMHMM using three different met-
rics: the expected number of amino acids in transmembrane
helices, the number of transmembrane helices predicted by
the N -best algorithm, and the expected number of transmem-
brane helices. Only the first two of these metrics are provided
in the TMHMM output. Accordingly, we produce two lists
of proteins, ranked by the number of predicted transmem-
brane helices (TPH) and by the expected number of residues
in transmembrane helices (TENR).

Each algorithm’s performance is measured by randomly
splitting the data (without stratifying) into a training and
test set in a ratio of 80/20. We report the receiver operating

characteristic (ROC) score, which is the area under a curve that
plots true positive rate as a function of false positive rate for
differing classification thresholds (Hanley and McNeil, 1982;
Gribskov and Robinson, 1996). The ROC score measures the
overall quality of the ranking induced by the classifier, rather
than the quality of a single point in that ranking. An ROC
score of 0.5 corresponds to random guessing, and an ROC
score of 1.0 implies that the algorithm succeeded in putting
all of the positive examples before all of the negatives. In
addition, we select the point on the ROC curve that yields a
1% false positive rate, and we report the rate of true positives
at this point (TP1FP). Each experiment is repeated 30 times
with different random splits in order to estimate the variance
of the performance values.

RESULTS
We performed computational experiments that study the per-
formance of the SDP/SVM approach as a function of the
number of data sources, compare the approach to a simpler
approach using an unweighted combination of kernels, study
the robustness of the method to the presence of noise, and for
membrane protein classification, compare the performance of
the method to classical biological methods and state-of-the-art
techniques for membrane protein classification.

Ribosomal protein classification
Figure 1A shows the results of training an SVM to recognize
the cytoplasmic ribosomal proteins, using various kernel func-
tions. Very good recognition performance can be achieved
using several types of data individually: the Smith–Waterman
kernel yields an ROC of 0.9903 and a TP1FP of 86.23%,

2631



G.R.G.Lanckriet et al.

Table 2. Classification performance on the cytoplasmic ribosomal class, in the presence of noise or improper weighting

KSW KPF KLI KB KD KR1,...,R6 KR7,...,R12 TP1FP ROC

5.08 0.31 0.22 0.39 0.00 – – 88.21 ± 1.73% 0.9933 ± 0.0011
5.07 0.31 0.22 0.39 0.00 0.01 – 88.19 ± 1.60% 0.9932 ± 0.0011
5.06 0.30 0.22 0.38 0.01 0.02 0.01 88.08 ± 1.65% 0.9932 ± 0.0010
1.00 1.00 1.00 1.00 1.00 – – 75.20 ± 2.38% 0.9906 ± 0.0012
1.00 1.00 1.00 1.00 1.00 1.00 – 59.66 ± 3.03% 0.9791 ± 0.0017
1.00 1.00 1.00 1.00 1.00 1.00 1.00 42.87 ± 2.59% 0.9620 ± 0.0027

The table lists the percentage of true positives at 1% false positives (TP1FP) and the ROC score for several combinations of kernels. The first three lines of results were obtained
using SDP-SVM, and the last three lines by setting the weights uniformly. Columns 1 through 5 report the average weights for the potentially informative kernels (averaged over the
training/test splits), column 6 contains the average weight for a first set of 6 random kernels (averaged over the 6 kernels and the training/test splits) and column 7 similarly for an
additional set of 6 random kernels. Each random kernel was generated by computing inner products on randomly generated 400-element vectors, in which each vector component
was sampled independently from a standard normal distribution. In the table, an en-rule indicates that the corresponding kernel is not considered in the combination.

and the gene expression kernel yields corresponding values
of 0.9995 and 98.31%. However, combining all six kernels
using SDP provides still better performance (ROC of 0.9998
and TP1FP of 99.71%). These differences, though small, are
statistically significant according to a Bonferroni corrected
Wilcoxon signed rank test.

For this task, the SDP approach performs no better than
the naive approach of combining all six kernel matrices in an
unweighted fashion. Note, however, that the SDP solution also
provides an additional explanatory result, in the form of the
weights assigned to the kernels. These weights are illustrated
in Figure 1A and suggest that, as expected, the cytoplasmic
ribosomal proteins are best defined by their expression profiles
and, secondarily, by their sequences. An additional benefit
offered by SDP over the naive approach is its robustness in
the presence of noise. In order to illustrate this effect, we
omit the expression kernel from the combination and add six
kernels generated from Gaussian noise (KR1,...,R6). This set of
kernels degrades the performance of the naive combination,
but has no effect on the SDP/SVM. With six additional random
kernels (KR7,...,R12) the benefit of optimizing the weights is
even more apparent (Table 2 and the online supplement).

Among the 30 train/test splits, seven proteins are con-
sistently mislabeled by SDP/SVM (see online supplement).
These include one, YLR406C (RPL31B), that was previ-
ously misclassified as non-ribosomal in an SVM-based study
using a smaller microarray expression dataset (Brown et al.,
2000). In order to better understand the seven false negat-
ives, we separated out the kernel-specific components of the
SVM discriminant score. In nearly every case, the compon-
ent corresponding to the gene expression kernel is the only
one that is negative (data not shown). In other words, these
seven proteins show atypical expression profiles, relative to
the rest of the ribosome, which explains their misclassifica-
tion by the SVM. Visual inspection of the expression matrix
(online supplement) verifies these differences.

Finally, the trained SVM was applied to the set of approx-
imately 5000 proteins that are not annotated in CYGD as

participating in any protein complex. Among these, the
SVM predicts that 14 belong in the cytoplasmic ribosomal
class (see online supplement). However, nine of these pre-
dictions correspond to questionable ORFs, each of which
lies directly opposite a gene that encodes a ribosomal pro-
tein. In these cases, the microarray expression data for the
questionable ORFs undoubtedly reflect the strong pattern of
expression from the corresponding ribosomal genes. Among
the remaining five proteins, two (YNL119W and YKL056C)
were predicted to be ribosomal proteins in a previous SVM-
based study (Brown et al., 2000). YKL056C is particularly
interesting: it is a highly conserved, ubiqitous protein homo-
logous to the mammalian translationally controlled tumor
protein (Gross et al., 1989) and to human IgE-dependent
histamine-releasing factor.

Membrane protein classification
The results of the first membrane protein classification experi-
ment are summarized in Figure 1(B). The plot illustrates that
SDP/SVM learns significantly better from the heterogeneous
data than from any single data type. The mean ROC score
using all seven kernel matrices (0.9219 ± 0.0024) is signific-
antly higher than the best ROC score using only one matrix
(0.8487 ± 0.0039 using the diffusion kernel). This improve-
ment corresponds to a change in TP1FP of 18.91%, from 17.15
to 36.06% and a change in test set accuracy of 7.36%, from
81.30 to 88.66%.

As expected, the sequence-based kernels yield good indi-
vidual performance. The value of these kernels is evidenced
by their corresponding ROC scores and by the relatively large
weights assigned to the sequence-based kernels by the SDP.
These weights are as follows: µB = 2.62, µSW = 1.52,
µPfam = 0.57, µFFT = 0.35, µLI = 0.01, µD = 1.21 and
µE = 0.731. Thus, two of the three kernel matrices that
receive weights >1 are derived from the amino acid sequence.

1For ease of interpretation, we scale the weights such that their sum is equal
to the number m of kernel matrices.
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Table 3. Classification performance on the membrane proteins, in the presence of noise or improper weighting

KB KSW KD KE KR1 KR2 KR3 KR4 TP1FP (%) ROC

1.81 1.05 0.73 0.42 – – – – 35.71 ± 2.13 0.9196 ± 0.0023
3.30 1.98 1.31 0.79 0.08 0.17 0.21 0.17 34.14 ± 2.09 0.9145 ± 0.0026
1.00 1.00 1.00 1.00 – – – – 33.87 ± 2.20 0.9180 ± 0.0026
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 26.24 ± 1.39 0.8627 ± 0.0033

The table lists the percentage true positives at 1% false positives (TP1FP) and the ROC score for several combinations of kernels. The first two lines of results were obtained using
SDP–SVM, and the last two lines were obtained using a uniform kernel weighting. Columns 1 through 8 report the average weights for the respective kernels (averaged over the
training/test splits). A en-rule indicates that the corresponding kernel is not considered in the combination.

The results also show that the interaction-based diffusion
kernel is more informative than the expression kernel. The
diffusion kernel yields an individual ROC score which is sig-
nificantly higher than the expression kernel, and the SDP also
assigns a larger weight to the diffusion kernel (1.21) than to
the expression kernel (0.73). Accordingly, removing the diffu-
sion kernel reduces the percentage true positives at one percent
false positives from 36.06 to 34.52%, whereas removing the
expression kernel has a smaller effect, leading to a TP1FP
of 35.88%. Further description of the results obtained when
various subsets of kernels are used is provided in the online
supplement.

In order to test the robustness of our approach, we performed
a second experiment using four real kernels—KB, KSW, KD

and KE—and four Gaussian noise kernels KR1,...,R4. Using
all eight kernels, SDP assigns values to the random kernels
weights that are close to zero. Therefore, the overall perform-
ance, as measured by TP1FP or ROC score, remains virtually
unchanged. In contrast, the performance of the uniformly
weighted kernel combination, which was previously compet-
itive with the SDP combination, degrades significantly in the
presence of noise, from TP1FP of 33.87% down to 26.24%.
Thus, the SDP approach provides a kind of insurance against
the inclusion of noisy or irrelevant kernels (Table 3).

We also compared the membrane protein classification per-
formance of the SDP/SVM method with that of several other
techniques for membrane protein classification. The ROC
and TP1FP for these methods are listed in Table 4. The res-
ults indicate that using learning in this context dramatically
improves the results relative to the simple hydropathy profile
approach. The SDP/SVM method also improves, though to
a lesser degree, upon the performance of the state-of-the-art
TMHMM model. However, the comparison to TMHMM is
somewhat problematic, for several reasons. First, TMHMM
is provided as a pre-trained model. As such, a cross-validated
comparison with the SDP/SVM is not possible. In particular,
some members of the cross-validation test sets were almost
certainly used in training TMHMM, making its performance
estimate too optimistic. On the other hand, TMHMM aims
to predict membrane protein topology across many different
genomes, rather than in a yeast-specific fashion. Despite these
difficulties, the results in Table 4 are interesting because they

Table 4. Comparison of membrane protein recognition methods

Method ROC TP1FP (%)

f1 0.7345 16.70
f2 0.7504 13.48
f3 0.7879 21.93
TPH 0.7362 30.02
TENR 0.8018 31.38
SDP/SVM 0.9219 36.06

Each row in the table corresponds to one of the membrane protein recognition methods
described in the text: three methods that apply filters directly to the hydrophobicity
profile, two methods based upon the TMHMM model, and the SDP/SVM approach. For
each method, the ROC and TP1FP are reported.

suggest that an approach that exploits multiple genome-wide
datasets may provide better membrane protein recognition
performance than a sequence-specific approach.

DISCUSSION
We have described a general method for combining hetero-
geneous genome-wide datasets in the setting of kernel-based
statistical learning algorithms, and we have demonstrated
an application of this method to the problems of classifying
yeast ribosomal and membrane proteins. The performance of
the resulting SDP/SVM algorithm improves upon the SVM
trained on any single dataset or trained using a naive com-
bination of kernels. Moreover, the SDP/SVM algorithm’s
performance consistently improves as additional genome-
wide datasets are added to the kernel representation and is
robust in the presence of noise.

Vert and Kanehisa (2003) have presented a kernel-based
approach to data fusion that is complementary to that presen-
ted here. In their approach, canonical correlation analysis
(CCA) is used to select features from the space defined by
a second kernel, and can be generalized to operate with more
than two kernels. Thus, whereas the SDP approach combines
different sources into a joint representation, kernel CCA sep-
arates components of a single kernel matrix, identifying the
most relevant ones.

Semidefinite programming is viewed as a tractable instance
of general convex programming, because it is known to
be solvable in polynomial time, whereas general convex
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programs need not be (Nesterov and Nemirovsky, 1994). In
practice, however, there are important computational issues
that must be faced in any implementation. In particular, our
application requires the formation and manipulation of n × n

kernel matrices. For genome-scale data, such matrices are
large, and naive implementation can create serious demands
on memory resources. However, kernel matrices often have
special properties that can be exploited by more sophistic-
ated implementations. In particular, it is possible to prove that
certain kernels necessarily lead to low-rank kernel matrices,
and indeed low-rank matrices are also often encountered in
practice (Williams and Seeger, 2000). Methods such as incom-
plete Cholesky decomposition can be used to find low-rank
approximations of such matrices, without even forming the
full kernel matrix, and these methods have been used success-
fully in implementations of other kernel methods (Bach and
Jordan, 2002; Fine and Scheinberg, 2001). Time complexity
is another concern. The worst-case complexity of the SDP in
Equation (4) is O(n4.5) (Lanckriet et al., 2004), although it can
be solved inO(n3), as a QCQP, under reasonable assumptions.
In practice, however, this complexity bound is not necessar-
ily reached by any given class of problem, and indeed time
complexity has been less of a concern than space complexity
in our work far. Moreover, the low-rank approximation tools
may also provide some help with regards to time complexity.
Nonetheless, running time issues are a concern for deploy-
ment of our approach with higher eukaryotic genomes, and
new implementational strategies may be needed.

Kernel-based statistical learning methods have a number of
general virtues as tools for biological data analysis. First, the
kernel framework accommodates not only the vectorial and
matrix data that are familiar in classical statistical analysis,
but also more exotic data types such as strings, trees, graphs
and text. The ability to handle such data is clearly essential
in the biological domain. Second, kernels provide significant
opportunities for the incorporation of more specific biological
knowledge, as we have seen with the FFT kernel and the Pfam
kernel. Third, the growing suite of kernel-based data analysis
algorithms require only that data be reduced to a kernel matrix;
this creates opportunities for standardization. Finally, as we
have shown here, the reduction of heterogeneous data types
to the common format of kernel matrices allows the devel-
opment of general tools for combining multiple data types.
Kernel matrices are required only to respect the constraint of
positive semidefiniteness, and thus the powerful technique of
semidefinite programming can be exploited to derive general
procedures for combining data of heterogeneous format and
origin.

We thus envision the development of general libraries of
kernel matrices for biological data, such as those that we
have provided at noble.gs.washington.edu/proj/sdp-svm, that
summarize the statistically-relevant features of primary data,
encapsulate biological knowledge, and serve as inputs to
a wide variety of subsequent data analyses. Indeed, given

the appropriate kernel matrices, the methods that we have
described here are applicable to problems such as the pre-
diction of protein metabolic, regulatory and other functional
classes, the prediction of protein subcellular locations, and
the prediction of protein-protein interactions.

Finally, while we have focused on the binary classification
problem in the current paper, there are many possible exten-
sions of our work to other statistical learning problems. One
notable example is the problem of transduction, in which the
classifier is told a priori the identity of the points that are in
the test set (but not their labels). This approach can deliver
superior predictive performance (Vapnik, 1998), and would
seem particularly appropriate in gene or protein classification
problems, where the entities to be classified are often known
a priori.
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Biologists regularly search databases of DNA or protein sequences
for evolutionary or functional relationships to a given query
sequence. We describe a ranking algorithm that exploits the entire
network structure of similarity relationships among proteins in a
sequence database by performing a diffusion operation on a
precomputed, weighted network. The resulting ranking algorithm,
evaluated by using a human-curated database of protein struc-
tures, is efficient and provides significantly better rankings than a
local network search algorithm such as PSI-BLAST.

Pairwise sequence comparison is the most widely used appli-
cation of bioinformatics. Subtle sequence similarities fre-

quently imply structural, functional, and evolutionary relation-
ships among protein and DNA sequences. Consequently,
essentially every molecular biologist working today has searched
an online database of biosequences. This search process is
analogous to searching the World Wide Web with a search
engine such as Google: the user enters a query (a biological
sequence or a word or phrase) into a web form. The search
engine then compares the query with each entry in a database,
and returns to the user a ranked list, with the most relevant or
most similar database entry at the top of the list.

The World Wide Web consists of a network of documents
connected to one another by means of hypertext links. A
database of protein sequences can also be usefully represented
as a network, in which edges may represent functional, structural,
or sequence similarity. Two protein sequences are considered
similar if they contain subsequences that share more similar
amino acids than would be expected to occur by chance. We refer
to the network of sequence similarities as a protein similarity
network.

Early algorithms for detecting sequence similarities did not
exploit the structure of the protein similarity network at all, but
focused instead on accurately defining the individual edges of
the network (1–3). Subsequent work used statistical models
based on multiple alignments to model the local structure of the
network (4, 5) and to perform local search through the protein
similarity network by using short paths (6), average- or single-
linkage scoring of inbound edges (7, 8), and iterative model-
based search (9, 10). The popular PSI-BLAST (11) algorithm falls
into the latter category: PSI-BLAST builds an alignment-based
statistical model of a local region of the protein similarity
network and then iteratively collects additional sequences from
the database to be added to the alignment.

The critical innovation that led to the success of the Google
search engine is its ability to exploit global structure by inferring
it from the local hyperlink structure of the Web. Google’s
PAGERANK algorithm (12) models the behavior of a random web
surfer, who clicks on successive links at random and also
periodically jumps to a random page. The web pages are ranked
according to the probability distribution of the resulting random
walk. Empirical results show that PAGERANK is superior to the
naive, local ranking method, in which pages are simply ranked
according to the number of inbound hyperlinks.

We demonstrate that a similar advantage can be gained by
including information about global network structure in a pro-
tein sequence database search algorithm. In contrast to iterative
protein database search methods such as PSI-BLAST, which
compute the local structure of the protein similarity network on
the fly, the RANKPROP algorithm begins from a precomputed
protein similarity network, defined on the entire protein data-
base. Querying the database consists of adding the query
sequence to the protein similarity network and then propagating
link information outward from the query sequence. After prop-
agation, database proteins are ranked according to the amount
of link information they received from the query. This algorithm
ranks the data with respect to the intrinsic cluster structure (13,
14) of the network. We evaluate the RANKPROP output by using
a 3D-structure-based gold standard, measuring the extent to
which known homologs occur above nonhomologs in the ranked
list. Our experiments suggest that RANKPROP’s ranking is supe-
rior to the ranking induced by the direct links in the original
network.

The protein similarity network represents the degree of
similarity between proteins by assigning weights to each edge.
The degree of similarity between two sequences is commonly
summarized in an E value, which is the expected number of times
that this degree of sequence similarity would occur in a random
database of the given size. By using a weighting scheme that is
a function of the E value, an edge connecting two similar
sequences is given a large weight, and vice versa.

To accommodate edge weights, the RANKPROP algorithm
adopts recently described diffusion techniques (15) from the
field of machine learning, which are closely related to the
spreading activation networks of experimental psychology (16,
17). RANKPROP takes as input a weighted network on the data,
with one node of the network designated as the query. In the
protein ranking problem, the edges of the network are defined
by using PSI-BLAST. The query is assigned a score, and this score
is continually pumped to the remaining points by means of the
weighted network. During the diffusion process, a protein P
pumps to its neighbors at time t the linear combination of scores
that P received from its neighbors at time t � 1, weighted by the
strengths of the edges between them. The diffusion process
continues until convergence, and the points are ranked accord-
ing to the scores they receive. The RANKPROP algorithm is
described formally in Fig. 1. This algorithm provably converges,
and an exact closed form solution can be found (see Supporting
Information, which is published on the PNAS web site).

Methods
We tested the quality of the protein rankings produced by
RANKPROP, using the human-annotated SCOP database of pro-
tein 3D structural domains as a gold standard (18). SCOP has
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been used as a gold standard in many previous studies (19–21).
Sequences were extracted from version 1.59 of the database,
purged by using the web site http:��astral.berkeley.edu so that no
pair of sequences share more than 95% identity. For the
purposes of selecting the RANKPROP parameter �, the resulting
collection of 7,329 SCOP domains was split into two portions:
379 superfamilies (4,071 proteins) for training and 332 (2,899
proteins) for testing. Note that training and testing sequences
never come from the same superfamily. The SCOP database is
organized hierarchically into classes, folds, superfamilies, and
families. For the purposes of this experiment, two domains that
come from the same superfamily are assumed to be homologous,
and two domains from different folds are assumed to be
unrelated. For pairs of proteins in the same fold but different
superfamilies, their relationship is uncertain, and so these pairs
are not used in evaluating the algorithm.

Three protein similarity networks were computed by using the
BLAST and PSI-BLAST (version 2.2.2) algorithms. Two networks
were defined by applying BLAST and PSI-BLAST to a database
comprised only of the 7,329 SCOP domains. An additional
network was created by applying PSI-BLAST to a larger database
that also included all 101,602 proteins from SWISS-PROT (version
40). In each case, the programs were run by using the default
parameters, including the BLOSUM 62 matrix, but with an E value
threshold for reporting results of 10,000. PSI-BLAST was allowed
to run a maximum of six iterations, which previous work
indicates is sufficient for good performance (21), using the
default E value threshold for inclusion in the model of 0.005.
Each of these networks induces a ranking with respect to each
query sequence.

Finally, we applied RANKPROP to the larger PSI-BLAST protein
similarity network. In the network K used by RANKPROP, the
weight Kij associated with a directed edge from protein i to
protein j is exp(�Sj(i)��), where Sj(i) is the E value assigned to
protein i given query j. The value of � � 100 is chosen by using
the training set (see supporting information). For efficiency, the
number of outgoing edges from each node is capped at 1000,
unless the number of target sequences with E values �0.05
exceeds 1000. For each query, RANKPROP runs for 20 iterations,

which brings the algorithm close to convergence (see supporting
information).

We measure the performance of a protein database search
algorithm by using a modified version of the receiver operating
characteristic (ROC) score (22). The ROC score is the area
under a curve that plots false-positive rate versus true-positive
rate for various classification thresholds. The ROC score thus
measures, for a single query, the quality of the entire ranking
produced by the algorithm. In practice, only the top of this
ranking is important. Therefore, we compute the ROC50 score
(23), which is the area under the ROC curve up to the first 50
false-positives. A value of 1 implies that the algorithm success-
fully assigns all of the true relationships higher scores than the
false relationships. For a random ranking of these data, the
expected ROC50 score is close to 0 because most of the se-
quences are not related to the query.

Results
The experimental results, summarized in Fig. 2, show the relative
improvements offered by the various algorithms. Even when
using the small SCOP database, the PSI-BLAST protein similarity
network improves significantly upon the network created using
the simpler BLAST algorithm: PSI-BLAST yields better perfor-
mance than BLAST for 51.3% of the test queries, and worse
performance for only 8.2% of the queries. PSI-BLAST benefits
from the availability of a larger sequence database: increasing
the database size by adding the SWISS-PROT database yields an
additional improvement of the same magnitude (50.9% and
11.4%, respectively). Finally, running RANKPROP on the larger
protein similarity network defined by PSI-BLAST yields improved
rankings for 55.3% of the queries, and decreases performance on
only 9.7%. All of these differences are statistically significant at
P � 0.01 according to a Wilcoxon signed-rank test. A comparison
of PSI-BLAST and RANKPROP ROC scores by query is shown in
Fig. 3, and a diagram illustrating how RANKPROP successfully
re-ranks homologs of a single query is shown in Fig. 4.

Note that there is some obvious structure in Figs. 2 and 3. The
steep slope in the RANKPROP plot (Fig. 2) at around 0.9 ROC50
corresponds to queries mostly from the largest superfamily in the
database, the immunoglobulins with 623 proteins. These queries
are also visible as a cluster at around (0.9, 0.7) in Fig. 3.
RANKPROP’s improved rankings for these queries suggests that
the algorithm successfully exploits cluster structure in the pro-
tein similarity network.

RANKPROP is not misled by the presence of multidomain
proteins in the database. Previous network-based protein simi-
larity detection algorithms explicitly deal with multidomain
proteins. For example, the INTERMEDIATE SEQUENCE SEARCH
algorithm (6) includes a step that extracts the region of the target
sequence that matched the query and then recalculates the
statistical significance of that region with respect to the target
sequences. This step prevents the algorithm from inferring a
false relationship between protein domains A and B through an
intermediate protein containing both A and B. RANKPROP
delivers excellent performance, even when the database contains
�100,000 full-length proteins, many of which contain more than
one domain. Furthermore, Fig. 3 shows that RANKPROP generally
performs better than PSI-BLAST, even when the SCOP query
domain lies on the same protein as another domain in the test set.
A closer investigation (see supporting information) reveals that
RANKPROP does indeed rank these transitive domains higher than
would be expected by chance. However, in general, as long as the
query sequence is connected to many other proteins, then the
true relationships will be mutually reinforcing during network
propagation.

A well known problem with PSI-BLAST is the occasional case in
which it mistakenly pulls in a false-positive match during an early
iteration. This false-positive may then pull in more false-positives

Fig. 1. The RANKPROP algorithm. Given a set of objects (in this case, proteins)
X � x1, . . . , xm, let x1 be the query and x2, . . . , xm be the database (targets) we
would like to rank. Let K be the matrix of object–object similarities, i.e., Kij

gives a similarity score between xi and xj, with K normalized so that ¥j � 2
m Kji �

1 for all i. For computational efficiency, we set K1i � Ki1 for all i, so that we can
compute weights involving the query using a single execution of PSI-BLAST. Let
yi, i � 2, . . . , m, be the initial ranking ‘‘score’’ of a target. In practice, for
efficiency, the algorithm is terminated after a fixed number I of iterations, and
yi(I) is used as an approximation of y*I. The parameter � � [0,1] is set a priori by
the user. For � � 0, no global structure is found, and the algorithm’s output
is just the ranking according to the original distance metric. These experiments
use � � 0.95, looking for clear cluster structure in the data.
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in subsequent iterations, leading to corrupted results. Among the
test set queries, there are 139 queries for which the PSI-BLAST
ROC50 score is worse than the corresponding BLAST score,
indicating that iteration hurt the performance of the algorithm.
For these queries, RANKPROP outperforms BLAST in 106 cases,
despite using as input a protein similarity network defined by
PSI-BLAST. Furthermore, the degree of improvement produced

by RANKPROP relative to BLAST is often large, with a difference
in ROC50 �0.1 for 71 of the 106 queries (see supporting
information).

Among the 282 queries for which PSI-BLAST produces a better
ranking than RANKPROP, most of the differences in ROC are
small. There are, however, 20 queries for which PSI-BLAST
produces an ROC50 that is �0.1 greater than RANKPROP’s
ROC50, and one query for which the difference is �0.2 (see
supporting information). Some of these queries belong to SCOP
class 3 (�-� proteins), which contains a number of homologous
Rossmann folds. In these cases, the first false-positives may in
fact be true-positives. For the other queries, RANKPROP’s diffi-
culty likely arises from overpropagation through the protein
similarity network. Lowering the parameter � could potentially
fix this problem, because as �3 0, we obtain the same ranking
as PSI-BLAST.

Finally, the results indicate that RANKPROP does not spoil good
initial rankings. Indeed, there is only one query for which
PSI-BLAST produces an ROC50 score of 1 (a perfect ranking) and
RANKPROP produces a score worse than 0.98. This query is the
C-terminal fragment of DNA topoisomerase II, with an ROC50
of 0.93. Conversely, there are 30 queries for which PSI-BLAST has
an ROC50 �0.93 and RANKPROP produces a perfect ranking.

To better understand the source of RANKPROP’s improvement
relative to the underlying PSI-BLAST protein similarity network,
we performed an additional round of experiments using two
variants of the RANKPROP algorithm. Each algorithmic variant
restricts RANKPROP to a subset of the protein similarity network.
In the first variant, RANKPROP sees only the local network
structure: the target sequences that are linked directly to the
query, plus the pairwise relationships among those sequences.

Fig. 2. Relative performance of protein ranking algorithms. The graph plots the total number of test set SCOP queries for which a given method exceeds an
ROC50 score threshold. ROC50 is the area under a curve that plots true-positive rate as a function of false-positive rate, up to the 50th false-positive. In the plot,
the lower three series correspond to the three protein similarity networks described in the text; the upper series is created by running RANKPROP on the larger
PSI-BLAST network. For these data, the mean ROC50 for the four methods are 0.506 (BLAST), 0.566 [PSI-BLAST (SCOP)], 0.618 [PSI-BLAST (SCOP plus SPROT)], and 0.707
(RANKPROP).

Fig. 3. Scatter plot of ROC50 scores for PSI-BLAST versus RANKPROP. The plot
contains 2,899 points, corresponding to all queries in the test set. Green points
correspond to query domains that lie on the same protein with another
domain in the test set. All other queries are red.
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This network of local relationships yields RANKPROP perfor-
mance almost identical to PSI-BLAST (see supporting informa-
tion). The second variant includes nonlocal edges but eliminates
all weak edges, with E values �0.005. In contrast with the
previous variant, this version of the algorithm performs only
slightly worse than RANKPROP trained using the entire network.
This result indicates that the improvement of RANKPROP over
PSI-BLAST results primarily from RANKPROP’s ability to learn
from nonlocal network structure, and that the weak links in the
network are of secondary importance. Data sets and FASTA
files are available from the web site of J.W., which can be
accessed at www.kyb.tuebingen.mpg.de�bs�people�weston�
rankprot�supplement.html.

Discussion
RANKPROP is efficient enough to employ the algorithm as part of
a web-based search engine. The precomputation of the PSI-BLAST
protein similarity network is clearly computationally expensive;
however, this operation can be performed in advance offline.
Computing the ranking with respect to a given query requires
first running PSI-BLAST with the query sequence (unless it is
already in the network), and then propagating scores from the
query through the network. In the experiments reported here,
the propagation (20 iterations of RANKPROP) took on average 73
seconds to compute using a Linux machine with an Advanced
Micro Devices (Sunnyvale, CA) MP 2200� processor. BLAST and
PSI-BLAST take �21 and 331 sec per query respectively on the
same database (SCOP plus SPROT). The propagation time
scales linearly in the number of edges in the network. The
propagation time could be improved by removing weak edges
from the protein similarity network [at a relatively small cost in
accuracy (see supporting information)], by running the propa-
gation in parallel, and by reducing the number of iterations.

Finally, the initial query PSI-BLAST computation may be replaced
with BLAST at a relatively small cost in accuracy (see supporting
information), resulting in a query procedure that is faster than
running a single PSI-BLAST query on the entire database.

The experiments described here were performed by using a
single set of PSI-BLAST parameters. These parameters were
previously selected by means of extensive empirical optimization
using the SCOP database as a gold standard and ROCn scores
as the performance metric (17). However, even if better PSI-
BLAST parameters were available, the resulting improved E
values would likely lead to a similar improvement in the per-
formance of the RANKPROP algorithm.

The results reported here are given in terms of the ROC50
performance measure. One might argue that a stricter (or
looser) threshold might be more appropriate, depending on the
cost associated with false-positives. Further experiments (see
supporting information) show that RANKPROP continues to sig-
nificantly outperform PSI-BLAST even for relatively small values
of the ROC threshold (ROC5 or ROC10). At the most strict
threshold, ROC1 (which is equivalent to the percentage of
positive examples appearing before the first negative example in
the ranked output), the difference between the two algorithms
is no longer statistically significant. However, by using the ROC1
measure, RANKPROP performs better on smaller superfamilies
using a small �, and vice versa. Therefore, a simple modification
to the algorithm, in which the value of � depends on the number
of strong matches to the query sequence, once again yields strong
performance relative to PSI-BLAST. In future work, we plan to
investigate more thoroughly algorithms that choose � dynami-
cally based on the local density of the protein similarity network.

A valuable component of the PSI-BLAST algorithm is its method
for estimating statistical confidence, in the form of E values.
Currently, RANKPROP does not produce E values; however,

Fig. 4. Visualization of part of the similarity network. Shown is a small part of the protein similarity network, where d1b30b2 is the query, and the domains
are represented by light blue nodes are its homologs. The large red node represents all other domains. The cyan-colored edges from the query to other nodes
are labeled with weights equal to the PSI-BLAST E value, given d1b30b2 as the query. The rest of the edges indicate the similarity network which is formed of PSI-BLAST

E values, as described in the text. Black edges are between homologs, and red edges are between all nonhomologs and a single homolog, with the minimum
E value across all nonhomologs given as the weight of the edge. No edge is drawn if PSI-BLAST did not assign an E value. PSI-BLAST only correctly identifies two
homologs, d1zfja2 and d1jr1a2. Although d1zfja3 is assigned an E value (of 253), this assignment is larger than three of the nonhomologs in SCOP. The yellow
scores inside the nodes are the RANKPROP activation levels (yi values). In this case, RANKPROP places all of the homologs at the top of the ranked list. This assignment
occurs because there are very low E value paths (by traversing edges with not more than an E value of 9e-5) between the query and all homologs, whereas even
the ‘‘nearest’’ nonhomologs are sufficiently far away (never closer than an E value of 13 to a homolog). Note that d1jr1a2 is assigned a higher score by RANKPROP

than d1zfja2, even though the E values assigned by PSI-BLAST (although similar) indicate the opposite. This result is because d1zfja2 has much lower weighted edges
to nonhomologs, and thus receives more of the nonhomologs’ activation level (which are close to 0). Overall, the RANKPROP ranking gave an ROC50 score of 1,
whereas PSI-BLAST gave an ROC50 score of 0.78 on this query.
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approximate E values may be derivable by means of interpola-
tion and smoothing of the PSI-BLAST E values with respect to the
RANKPROP ranking. Alternatively, it may be possible to fit a
probability distribution to the output scores (24). This fitting will
be the subject of future research.

The primary outcome of this work is not the RANKPROP
algorithm per se, but the observation that exploiting the entire
structure of the protein similarity network can lead to signifi-
cantly improved recognition of pairwise protein sequence sim-
ilarities. RANKPROP provides an efficient, powerful means of
learning from the protein similarity network; however, other

network-based algorithms may also yield similar improvements
relative to the ranking induced by the underlying protein simi-
larity network. Furthermore, this observation is applicable to a
wide range of problem domains, including image and text
ranking, as well as protein or gene ranking using different (or
multiple) types of biological data.

This work is supported by National Science Foundation Awards EIA-
0312706 and DBI-0078523, National Institutes of Health Grant
LM07276–02, and an Award in Informatics from the Pharmaceutical
Research and Manufacturers of America Foundation (to C.S.L.). W.S.N.
is an Alfred P. Sloan Research Fellow.
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ABSTRACT
Motivation: In the living cell nucleus, genomic DNA is pack-
aged into chromatin. DNA sequences that regulate transcrip-
tion and other chromosomal processes are associated with
local disruptions, or ‘openings’, in chromatin structure caused
by the cooperative action of regulatory proteins. Such perturb-
ations are extremely specific for cis-regulatory elements and
occur over short stretches of DNA (typically ∼250 bp). They
can be detected experimentally as DNaseI hypersensitive sites
(HSs) in vivo, though the process is extremely laborious and
costly. The ability to discriminate DNaseI HSs computationally
would have a major impact on the annotation and utilization of
the human genome.
Results: We found that a supervised pattern recognition
algorithm, trained using a set of 280 DNaseI HS and 737
non-HS control sequences from erythroid cells, was capable
of de novo prediction of HSs across the human genome
with surprisingly high accuracy determined by prospective
in vivo validation. Systematic application of this computa-
tional approach will greatly facilitate the discovery and analysis
of functional non-coding elements in the human and other
complex genomes.
Availability: Supplementary data is available at noble.gs.
washington.edu/proj/hs
Contact: noble@gs.washington.edu; jstam@regulome.com

1 INTRODUCTION
The vast majority of gene regulatory sequences in the human
and other complex genomes remain undiscovered. In the
living cell nucleus, DNA is packaged into chromatin fibers by
non-specific association with the histone proteins that make up
the nucleosome. Binding of activating proteins to regulatory
DNA sequences requires cooperativity between the regulat-
ory factors in order to displace a nucleosome, which in turn
disrupts the local architecture of chromatin. This fundamental
feature of eukaryotic cis-regulatory sequences was recognized

∗To whom correspondence should be addressed.

nearly 25 years ago (Wu, 1980; Gross and Garrard, 1988),
when it was discovered that such sequences were hyper-
sensitive to cutting by the non-specific endonuclease DNaseI
in vivo.

DNaseI hypersensitive sites (HSs) have since proven to
be extremely reliable and generic markers of cis-regulatory
sequences. Mapping of DNaseI HSs is a gold-standard
approach for discovering functional non-coding elements
involved in gene regulation and has underpinned the discovery
of most experimentally established distal cis-acting elements
in the human genome. In most cases, identification of func-
tional elements marked by HSs significantly preceded the
assignment of a specific functional role (enhancer, insulator,
etc.) to those elements (Gross and Garrard, 1988; Li et al.,
2002).

Comprehensive identification of DNaseI HSs in the human
genome would be expected to disclose the location of all
known classes of cis-regulatory sequences, including pro-
moters, enhancers, silencers, insulators, boundary elements
and locus control regions. Computational methods for the
identification of the DNaseI HSs would therefore be expec-
ted to accelerate dramatically the functional annotation of the
human genome.

Traditional approaches to computational prediction of cis-
regulatory sequences in complex genomes have focused on
identification and combinatorial analysis of short sequence
motifs (presumed to represent regulatory factor binding sites)
derived from examples of known sites, analysis of upstream
regions of co-regulated genes (Sinha and Tompa, 2002;
Berman et al., 2002), analysis of phylogenetic data or com-
binations thereof (Prakash et al., 2004). Unfortunately, the
performance of even the most advanced algorithms is poor
(Tompa et al., 2005), and the described methods generally
lack biological validation, particularly in the context of the
human genome. Even in the case of extensively characterized
loci, such as the α- and β-globin domains, computational
motif-based approaches have proven to be of little value for
the discovery or annotation of HSs.
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The core sequences giving rise to HSs in vivo are anticipated
to contain complex features that facilitate recognition by spe-
cific sets of regulatory factors interacting cooperatively over
relatively short distances (150–250 bp) (Felsenfeld, 1996;
Stamatoyannopoulos et al., 1995). However, it is not clear a
priori whether recognition of such features is computationally
tractable.

Conventional molecular approaches to the visualization of
HSs have relied on an indirect method (Wu, 1980), and sub-
sequent experimental localization of the core 150–250 bp
activating sequences is extremely laborious (Lowrey et al.,
1992; Talbot et al., 1990). As a result, relatively few HSs
identified with traditional methods have been localized defin-
itively to specific sequence elements, precluding systematic
computational analyses. Recently, however, novel methods
for large-scale sequence-specific discovery of DNaseI HSs
have been described (Sabo et al., 2004; Dorschner et al.,
2004), providing the basis for the recovery of larger numbers
of DNaseI HSs sequences that can be utilized in computational
models.

In this paper, we demonstrate that a sequence-based classi-
fication algorithm can learn to recognize DNaseI HSs with
high accuracy. To train the algorithm, we take advantage
of a collection of 280 validated erythroid HS sequences
from throughout the human genome. We also use a set of
737 confirmed non-HS sequences of equivalent length. We
employ a support vector machine (SVM) classifier, which
learns by example to discriminate between two given classes
of data (Vapnik, 1998; Cristianini and Shawe-Taylor, 2000).
In a cross-validated test, the SVM achieves an accuracy of
85.24 ± 5.03% in predicting HSs. Furthermore, we per-
form a prospective in vivo experimental validation of the
SVM predictions on previously untested regions of the human
genome, using the assay described by Sabo et al. (2004) and
Dorschner et al. (2004). Among HS predictions to which the
SVM assigns probabilities >80%, 79.4% prove to be HSs on
experimental validation in two hematopoietic cell types.

2 METHODS
2.1 Data
For training and cross-validation of the SVM, we use 280
validated erythroid HS sequences from throughout the human
genome. These enabling sequences emerged from the recent
description of a novel methodology for the identification of
HSs via cloning based on their in vivo activity in K562
erythroid cells (Sabo et al., 2004). We also collected 737
sequences from around the genome (distributed proportion-
ally among the autosomes and X chromosome but except-
ing the Y chromosome) that were non-hypersensitive when
tested in the same cell type. Both K562 HS and non-HS
sequences were similar in size (mean length 242.1 versus
242.8 bp, respectively). The complete dataset is available at
noble.gs.washington.edu/proj/hs

We designed primers using Primer3 (Rozen and Skaletsky,
2000) with the following parameters: target amplimer
size = 250 bp ± 50 bases; primer Tm (melting temper-
ature) optimal = 60 ± 2◦C; %GC = 50% optimal, range
40–80%; length = 24 bp optimal, range 19–27 bp; poly X
maximum = 4.

We cultured erythroid cells (K562, ATCC) under standard
conditions [37◦C, 5% CO2 in air, RPMI 1640 plus 10% FBS
(Invitrogen, Carlsbad, CA, USA)]. We harvested the cultures
at a density of 5 × 105 cells/ml. We performed DNaseI diges-
tions following a standard protocol (Reitman et al., 1993).
DNA was subsequently purified using the Puregene system
(Gentra Systems, Minneapolis, MN, USA).

2.2 Support vector machine
We use the freely available Gist SVM implementation
(Pavlidis et al., 2004). For each SVM optimization, we use the
default parameters: a linear kernel function and a 2-norm soft
margin with asymmetric penalties assigned to the positive and
negative classes. Experiments with higher-order kernel func-
tions and different soft margin settings yielded only very small
changes in performance (data not shown).

The output of the SVM is a unit-free discriminant score;
however, this score can be converted into a more useful prob-
ability by performing a sigmoid curve fit (Platt, 1999). This
approach involves holding out a portion of the training set
from the SVM optimization and fitting the sigmoid parameters
using the discriminants from the held-out data. A probability
score of 50% corresponds approximately to the hyperplane
identified by the SVM, and increasing or decreasing probab-
ilities are reflective (non-linearly) of increasing distance from
the hyperplane (in positive or negative directions). The Gist
software implements this curve fitting procedure.

2.3 Performance measure
We measure the overall quality of an SVM classifier using
a receiver operating characteristic (ROC) curve (Hanley and
McNeil, 1982). The trained SVM receives as input a list of
candidate HS sequences and produces as output a ranked list
of these sequences, with the confidently predicted HSs at the
top of the list. Setting a threshold anywhere in this ranked
list produces a particular rate of true and false positives with
respect to that threshold. The ROC curve plots true positive
rate as a function of false positive rate as the threshold varies
from the top to the bottom of the ranked list. The ROC score
is the area under this curve. A classifier that correctly places
all of the HSs at the top of its ranked list would receive a ROC
score of 1, whereas a random ranking would receive a score
of ∼0.5.

3 RESULTS
The SVM algorithm learns to separate a set of labeled training
data by placing the data in a high-dimensional space (a feature
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space) and discovering in that space a hyperplane that separ-
ates the two classes. Predicting the label of a new, unlabeled
data point simply involves determining on which side of the
hyperplane that point lies. SVMs boast powerful theoretical
underpinnings (Vapnik, 1998) and wide applicability because
of their use of kernel functions to represent data. The kernel
function defines similarities between pairs of data points and
allows the SVM to operate in an implicit vector space even for
non-vector data, such as teer, graphs and strings. In computa-
tional biology, SVMs have been applied to a wide variety of
problems (Noble, 2004), including the classification of sev-
eral types of DNA sequence elements: translation start sites
(Zien et al., 2000) and splice sites (Zhang et al., 2003).

Before the SVM classification of HS and non-HS sequences,
we need to embed the sequences into a vector space. In this
work, this embedding is accomplished by using the spectrum
kernel (Leslie et al., 2002). We hypothesize that the difference
between HS and non-HS sequences can be well characterized
in terms of the presence of various short, motif-like sequence
features. The spectrum kernel exhaustively enumerates all
such features (‘k-mers’) of a given length (k) and represents
each sequence as the frequency with which each k-mer appears
in the sequence. For example, the sequence ‘ACGT’ contains
three distinct 2mers (‘AC,’ ‘CG’ and ‘GT’). The k = 2 spec-
trum kernel representation of this sequence is a 16-element
vector (one entry for each possible dinucleotide), with 0.33
for the three k-mers listed above and 0 for all other entries.
In general, we do not expect the k-mers to be strand-specific,
so reverse complements are collapsed into a single feature.
Thus, for k = 2, there are only 10 distinct dinucleotides. In the
experiments reported here, we concatenate the feature vectors
for k = 1, . . . , 6. Thus, the feature vector representation of a
sequence contains 2 + 10 + . . . = 2772 entries.

3.1 Cross-validation
We first tested the pattern recognition performance of the
SVM via 10-fold cross-validation on the collection of 1017
(280 + 737) sequences. This test involves randomly divid-
ing the sequence set into 10 equal-sized subsets, and then
repeatedly training on 90% subsets of the data and testing the
SVM’s generalization performance on the held-out 10%. For
this data set, the mean area under the ROC curve across 10-
fold cross-validation was 0.842±0.021, indicative of excellent
performance (Fig. 1). At the classification threshold selected
by the SVM, the mean accuracy was 85.24 ± 5.03%.

We hypothesize that the DNaseI sequences that the SVM
fails to identify during cross-validation represent a dis-
tinct, hard-to-identify subclass of DNaseI HSs. To test this
hypothesis, we collected a set of 83 HSs that were incor-
rectly classified as non-HS during cross-validation. Removing
the 83-member false-negative (FN) class from the training
set and then retraining and cross-validating a new SVM
(using the same 737 non-HS sequences) produced an ROC
of 0.970 ± 0.0045. Conversely, a second SVM trained to
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Fig. 1. Receiver operating characteristic curve for SVM discrim-
ination of DNaseI HS versus non-HS sequences. The ROC was
computed by training an SVM on a randomly selected 90% subset
of a dataset comprising 280 HS and 737 non-HS sequences, fol-
lowed by testing on the held-out 10%. The area under this particular
curve is 0.84059, indicative of excellent performance. The dot marks
the location of the decision boundary selected by the SVM. At this
threshold, the SVM correctly identifies 17 HSs and 70 non-HSs, and
makes 6 false positive and 9 false negative predictions.

discriminate between the 83 FN sequences and the remain-
ing 934 sequences achieved an ROC of 0.635 ± 0.026. This
result signifies a weaker classifier, though one which per-
forms substantially better than chance (p < 0.0000017). Thus,
learning accurately to recognize this smaller and potentially
more diverse class of HSs may require a larger training set or
a different collection of sequence features.

3.2 Prospective experimental validation
Next we tested the ability of an SVM trained over a random
90% subset of the combined 1017 K562 HS and Non-HS
examples to predict the in vivo DNaseI HS status in K562
cells of 60 000 non-repetitive sequences (as identified by
the RepeatMasker track on the UCSC Genome Browser)
with mean length 225 bp selected from throughout the
human genome. The expected prevalence of HSs in this set
of sequences is higher than random background but <10%
(Sabo et al., 2004).

From the resulting SVM probabilities, we randomly selec-
ted for further testing sequences with assigned high probab-
ility (>80%; n = 146) and low probability (<20%; n = 43).
Each sequence was tested for DNaseI hypersensitivity in K562
erythroid cells using a previously validated real-time quant-
itative PCR assay designed to discriminate DNaseI HSs with
>95% confidence (Sabo et al., 2004). We found 108/146 of
the high probability predictions to be DNaseI HSs when tested
in K562 cells, yielding a positive-predictive value (PPV) for
the SVM of 73.9% (Fig. 2). Testing of low probability predic-
tions in the same cell type revealed that 39/43 were correctly
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Fig. 2. DNaseI hypersensitivity testing of SVM predictions and
control sequences in K562 cells. The y-axis plots the log2 of
the DNaseI sensitivity ratio (copies remaining in DNaseI-untreated
sample/DNaseI-treated sample) assayed by real-time quantitative
PCR. Results from SVM predictions are stratified into low (<20%),
intermediate (50–80%), and high (>80%) SVM-assigned probab-
ility groups. Means of six replicate measurements for each PCR
amplified sequence (‘amplicon’) corresponding to an SVM pre-
diction are shown with triangles. Results are classified as non-HS
(gray shaded boxes) or HS [blue (95% confidence) and orange (99%
confidence) shaded boxes] on the basis of quantitative DNaseI hyper-
sensitivity measurements obtained with real-time PCR (Sabo et al.,
2004; McArthur et al., 2001; Dorschner et al., 2004) using a valid-
ated model for K562 cells described by Sabo et al. (2004). Results
from 186 randomly selected amplicons from the ENCODE regions
(ENCODE Consortium, 2004) are also shown. The proportion of
HS-positives in the random set (5.3%) is higher than expected for the
genome at large, given the considerably higher gene and functional
element density of the ENCODE regions. (Notably, HSs from the
random set coincided with known or predicted regulatory sequences,
including HS4 from the β-globin LCR and several promoters and
CpG islands.)

classified as non-HSs, for a negative-predictive value (NPV)
of 90.7%. We also examined 49 intermediate probability (50–
80%) predictions, and found 33 (67.3%) to be positive. The
cumulative PPV for all predictions with probability >50%
was 70.6%. These results demonstrate the ability of the SVM
to identify DNaseI HSs in vivo with high accuracy.

The high proportion of true-positive predictions within a
single cell type suggests further that the elements identified
by the SVM might represent a class of HSs that are active in
many tissues or are even constitutive. Additionally, because
some HSs are expected to be tissue or lineage-restricted, a pro-
portion of predictions that yielded negative results in erythroid
cells might prove to be HS in another tissue type. To address
this possibility, we tested a subset (n = 93) of sequences
with assigned probability >50% in another hematopoietic

Fig. 3. Conventional DNaseI HS analysis of SVM predictions. To
confirm further that SVM predictions correspond to classical DNaseI
HSs, we selected positive predictions for conventional DNaseI HS
assays employing the indirect end-label Southern blotting technique
(Lowrey et al., 1992). Shown are exemplary results from an SVM
prediction 400 bp upstream of the Nf1 tumor suppressor gene on
chromosome 17 that coincides with a classical DNaseI HS in both
erythroid (K562) and lymphoid (GM0990) cells. For each tissue type,
lanes represent increasing (left to right) DNaseI treatment intensity
(0, 1, 2, 4, 8 and 16 U DNaseI). A radiolabeled probe is targeted to the
5′ end of a 9.6 kb HindIII fragment encompassing the Nf1 transcrip-
tional start site and upstream and downstream flanking sequences. As
DNaseI concentration increases, the 9.6 kb parental band is cleaved
specifically at the hypersensitive site, releasing the marked sub-band.

cell type, B-lymphoblastoid cells (EBV-transformed primary
lymphoblast line GM0990, Coriell). Of 65 SVM-predicted
HSs that were DNaseI hypersensitive in K562 cells, 58
(89.2%) were also HSs in lymphoblastoid cells. An exem-
plary SVM-predicted HS of this type lying upstream of the
NF1 tumor suppressor gene is illustrated in Figure 3. Con-
versely, we found 8/28 (28.6%) sequences that tested negative
in K562 cells were HS-positive in lymphoid cells. These res-
ults indicate that the overall PPV estimate for the SVM based
on testing only in K562 cells represents a minimum value.
More extensive testing in additional tissue types might reveal
further SVM HS predictions to be correct.

3.3 Genome-wide prediction
We then considered how frequently SVM-predicted sequences
occur in the human genome. We first partitioned the human
genome sequence (assembly hg16 = NCBI 34) into non-
overlapping 225 bp segments and identified 4 217 066 seg-
ments lacking repetitive sequences. Next, we selected and
scored all segments and applied a sigmoid fit to derive probab-
ilities from the SVM discriminant scores. The SVM predicted
36 581 (0.89%) genomic segments to be HSs at a probabil-
ity threshold of 50%; 19 429 (0.47%) had probability scores
>80%. At a cumulative minimum PPV level of 70.6% for
DNaseI HSs in vivo, these results suggest that the human
genome contains >26 500 functional non-coding elements
of the class predicted by the SVM. Analysis of the dis-
tribution of SVM predictions in relation to genes revealed
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strong clustering around annotated transcriptional start sites;
however, 65% of predictions were located >5 kb distant from
the nearest 5′ start site.

3.4 Feature analysis
In order to perform its classification, the SVM simultaneously
exploits a large collection of simple k-mer sequence features.
This collection does not correspond to traditional motifs, but
encompasses them in the context of a rich feature space, which
implicitly allows for mismatching and complex dependencies
between sequence positions by combining many short k-mer
features.

In order to gain some insight into this complex feature space
representation, we analyzed the set of 83 improperly classi-
fied (FN) HSs from the initial training set for the presence
of simple sequence features that distinguished them from the
correctly recognized class. We observed that the CG dinuc-
leotide frequency was significantly lower (1.3%) in the FN
class than in the 197 correctly discerned HSs (6.8%), and that
the AT dinucleotide frequency was also skewed, but to a lesser
degree (6.2% versus 2.8%, respectively).

To examine whether the SVM had exploited these dispar-
ities in producing its initial classifications, we computed the
Pearson correlation between the SVM discriminants and each
of the 2772 sequence features. This analysis revealed that,
during the initial training, the SVM had highlighted CG dinuc-
leotides as the most important simple sequence feature, with
a correlation of 0.916. Previous observations stemming from
specific genes have suggested that certain CpG-rich sequences
play a role in maintaining open chromatin structures (Tazi and
Bird, 1990); however, the generality of this observation was
unknown. A posteriori analysis of the 36 581 human gen-
omic predictions revealed a sharply lower correlation (0.679),
indicating that the SVM was integrating a complex array of
additional features in performing predictions. Given the over-
lap between CpG islands and functionally important genomic
locales, significant overlap between the SVM predictions and
this feature is expected. However, 34% of the 36 581 predic-
tions lie outside CpG islands, as defined by the CpG island
track on the UCSC Genome Browser. Moreover, where over-
lap occurs, only a small fraction (13%) of the CpG sequence
is highlighted by the SVM, suggesting that it is recognizing
the functional core of these nebulously defined elements.

3.5 Enrichment in CTCF sites
Although most classes of regulatory sequences bind to a vari-
ety of regulatory proteins, insulator and chromatin domain
boundary elements invariably contain recognition sites for
the protein CTCF. Insulator and boundary elements organize
the human genome by partitioning functional gene domains
(Bell et al., 2001). These elements typically give rise to
prominent DNaseI HSs that are manifest across a wide range
of tissue types. We therefore hypothesized that CTCF sites

should be significantly enriched in high versus low probabil-
ity SVM predictions. We searched sets of sequences selected
from the top 25% and bottom 25% of the SVM probability
range for occurrences of the canonical CTCF binding motif
CCGCNNGGNGGCAG. This search discovered 3462 CTCF
sites that received positive log-odds scores in the top 25% set
and only 335 such sites in the bottom 25% set. Using a more
stringent log-odds threshold of 2, we found 548 CTCF sites in
the top 25% and 29 sites in the bottom 25% set. Among the top
25% set, 3 CTCF sites perfectly match the consensus and 57
more match with a single mismatch. No sites match this well
in the bottom 25%. The dramatic enrichment of CTCF sites in
high probability SVM predictions suggests that a prominent
subset of SVM-predicted HSs function in vivo as insulator or
domain boundary elements.

4 DISCUSSION
Identification of DNaseI HSs is a gold-standard methodology
for the identification of vertebrate cis-regulatory sequences
and has facilitated the discovery of the vast majority of valid-
ated human cis-regulatory elements residing outside of core
promoters. Although novel molecular approaches for large-
scale mapping of DNaseI HSs have recently been described
(Dorschner et al., 2004; Sabo et al., 2004), comprehensive
annotation of human DNaseI HSs—even in the context of
a single tissue—remains distant and will require substantial
resources. In contrast, computational tools provide the basis
for rapid coverage of the entire genome.

A priori, prediction of DNaseI HSs is expected to be an
extremely challenging computational problem. The fact that it
has proven tractable for a subclass of these elements is there-
fore quite surprising. Given the relatively modest size of the
training sets employed here, the accuracy of the approach
will probably improve with expanded numbers of examples.
Although not every HS necessarily encodes a classical cis-
regulatory element, most HSs do. It is therefore notable
that the current level of predictive accuracy (PPV 70%) is
substantially higher than that described for any computation-
ally based methodology for identification of cis-regulatory
sequences. Nor is attainment of 100% accuracy a requirement,
given the potential for coupling of computational predic-
tions to a platform for high-throughput biological validation,
such as the high-throughput real-time PCR assay employed
here for prospective examination of SVM annotations. Iter-
ative application of the training-and-testing paradigm with
additional HS sequences should enable generation of more
powerful, accurate and diverse classifiers.

Although described and validated in the context of a single
tissue (human erythroid cells), the approach described here
is broadly applicable. Extension of this paradigm to other
tissue types should enable recognition of additional classes
of HSs and, thereby, delineation of large numbers of novel
elements expected to play central roles in the transcriptional
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regulation of human genes. Because DNaseI HSs are a fun-
damental property of cis-regulatory sequences from a wide
variety of organisms, the approach described here should be
widely extensible to other vertebrate genomes, and to higher
eukaryotic genomes generally.

In summary, our results demonstrate the feasibility of
accurate, large-scale computational prediction of the in vivo
signature of human cis-regulatory sequences and provide a
powerful new tool for the annotation of complex genomes.
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