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Abstract. Competition-based FDR control has been commonly used for
over a decade in the computational mass spectrometry community [5].
Recently, the approach has gained significant popularity in other fields
after Barber and Candés laid its theoretical foundation in a more gen-
eral setting that included the feature selection problem [1]. In both
cases, the competition is based on a head-to-head comparison between an
observed score and a corresponding decoy/knockoff. We recently demon-
strated some advantages of using multiple rather than a single decoy
when addressing the problem of assigning peptide sequences to observed
mass spectra [17]. In this work, we consider a related problem—detecting
peptides based on a collection of mass spectra—and we develop a new
framework for competition-based FDR control using multiple null scores.
Within this framework, we offer several methods, all of which are based
on a novel procedure that rigorously controls the FDR in the finite sam-
ple setting. Using real data to study the peptide detection problem we
show that, relative to existing single-decoy methods, our approach can
increase the number of discovered peptides by up to 50% at small FDR
thresholds.

Keywords: Multiple hypothesis testing · Peptide detection · Tandem
mass spectrometry · False discovery rate

1 Introduction

Proteins are the primary functional molecules in living cells, and tandem mass
spectrometry (MS/MS) currently provides the most efficient means of studying
proteins in a high-throughput fashion. Knowledge of the protein complement
in a cellular population provides insight into the functional state of the cells.
Thus, MS/MS can be used to functionally characterize cell types, differentiation
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stages, disease states, or species-specific differences. For this reason, MS/MS is
the driving technology for much of the rapidly growing field of proteomics.

Paradoxically, MS/MS does not measure proteins directly. Because proteins
themselves are difficult to separate and manipulate biochemically, an MS/MS
experiment involves first digesting proteins into smaller pieces, called “peptides.”
The peptides are then measured directly. A typical MS/MS experiment generates
∼10 observations (“spectra”) per second, so a single 30-min MS/MS experiment
will generate approximately 18,000 spectra. Canonically, each observed spectrum
is generated by a single peptide. Thus, the first goal of the downstream analysis
is to infer which peptide was responsible for generating each observed spectrum.
The resulting set of detected peptides can then be used, in a second analysis
stage, to infer what proteins are present in the sample.

In this work, we are interested in the first problem—peptide detection. This
problem is important not only as a stepping stone toward the downstream goal
of detecting proteins; in many proteomics studies, the peptides themselves are
of primary interest. For example, MS/MS is being increasingly applied to com-
plex samples, ranging from the microbiome in the human gut [21] to microbial
communities in environmental samples such as soil or ocean water [30]. In these
settings, the genome sequences of the species in the community are only par-
tially characterized, so protein inference is problematic. Nonetheless, observa-
tion of a particular peptide can often be used to infer the presence of a group of
closely related species (a taxonomic clade) or closely related proteins (a homology
group). Peptide detection is also of primary interest in studies that aim to detect
so-called “proteoforms”—variants of the same protein that arise due to differ-
ential splicing of the mature RNA or due to post-translational modifications
of the translated protein. Identifying proteoforms can be critically important,
for example, in the study of diseases like Alzheimer’s or Parkinson’s disease, in
which the disease is hypothesized to arise in part due to the presence of deviant
proteoforms [23,28,37].

Specifically, we focus on the task of assigning confidence estimates to pep-
tides that have been identified by MS/MS. As is common in many molecular
biology contexts, these confidence estimates are typically reported in terms of
the false discovery rate (FDR), i.e., the expected value of the proportion of false
discoveries among a set of detected peptides. For reasons that will be explained
below, rather than relying on standard methods for control of the FDR such
as the Benjamini-Hochberg (BH) procedure [2] the proteomics field employs a
strategy known as “target-decoy competition” (TDC) to control the FDR in the
reported list of detected peptides [5]. TDC works by comparing the list of pep-
tides detected with a list of artificial peptides, called “decoys,” detected using
the same spectra set. The decoys are created by reversing or randomly shuffling
the letters of the real (“target”) peptides. The TDC protocol, which is described
in detail in Sect. 2.2, estimates the FDR by counting the number of detected
decoy peptides and using this count as an estimate for the number of incorrectly
detected target peptides.
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One clear deficiency of TDC is its reliance on a single set of decoy peptides
to estimate the FDR. Thus, with ever increasing computational resources one
can ask whether we can gain something by exploiting multiple randomly drawn
decoys for each target peptide. We recently described such a procedure, called
“average target-decoy competition” (aTDC), that, in the context of the related
spectrum identification problem (described in Sect. 2.1), reduces the variability
associated with TDC and can provide a modest boost in power [17,18].

In this paper we propose a new approach to using multiple decoy scores. The
proposed procedure relies on a direct competition between the target and its
corresponding decoy scores, rather than on averaging single competitions. We
formulate our approach in the following more general setting. Suppose that we
can compute a test statistic Zi for each null hypothesis Hi, so that the larger
Zi is, the less likely is the null. However, departing from the standard multiple
hypotheses setup, we further assume that we cannot compute p-values for the
observed scores. Instead, we can only generate a small sample of independent
decoys or competing null scores for each hypothesis Hi: Z̃j

i j = 1, . . . , d (Defini-
tion 2). Note that the case d = 1 corresponds to the TDC setup described above.
We will show using both simulated and real data that the novel method we pro-
pose yields more power (more discoveries) than our aforementioned averaging
procedure.

In addition to the peptide detection problem, our proposed procedure is
applicable in several other bioinformatics applications. For example, the proce-
dure could be used when analyzing a large number of motifs reported by a motif
finder, e.g., [12], where creating competing null scores can require the time con-
suming task of running the finder on randomized versions of the input sets, e.g.,
[25]. In addition, our procedure is applicable to controlling the FDR in selecting
differentially expressed genes in microarray experiments where a small number
of permutations is used to generate competing null scores [36].

Our proposed method can also be viewed as a generalization of Barber and
Candés’ “knockoff” procedure [1], which is a competition-based FDR control
method that was initially developed for feature selection in a classical linear
regression model. The procedure has gained a lot of interest in the statistical and
machine learning communities, where it has been applied to various applications
in biomedical research [10,29,38] and has been extended to work in conjunction
with deep neural networks [22] and with time series data [9]. Despite the different
terminology, both knockoffs and decoys serve the same purpose in competition-
based FDR control; hence, for the ideas presented in this paper the two are
interchangeable. A significant part of Barber and Candés’ work is the sophis-
ticated construction of their knockoff scores; controlling the FDR then follows
exactly the same competition that TDC uses. Indeed, their Selective SeqStep+
(SSS+) procedure rigorously formalizes in a much more general setting the same
procedure described above in the context of TDC. Note that Barber and Candés
suggested that using multiple knockoffs could improve the power of their proce-
dure so the methods we propose here could provide a stepping stone toward that.
However, we would still need to figure out how to generalize their construction
from one to multiple knockoffs.
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2 Background

2.1 Shotgun Proteomics and Spectrum Identification

In a “shotgun proteomics” MS/MS experiment, proteins in a complex biological
sample are extracted and digested into peptides, each with an associated charge.
These charged peptides, called “precursors,” are measured by the mass spec-
trometer, and a subset is then selected for further fragmentation into charged
ions, which are detected and recorded by a second round of mass spectrometry
[26,27]. The recorded tandem fragmentation spectra, or spectra for short, are
then subjected to computational analysis.

This analysis typically begins with the spectrum identification problem,
which involves inferring which peptide was responsible for generating each
observed fragmentation spectrum. The most common solution to this problem is
peptide database search. Pioneered by SEQUEST [8], the search engine extracts
from the peptide database all “candidate peptides,” defined by having their mass
lie within a pre-specified tolerance of the measured precursor mass. The quality
of the match between each one of these candidate peptides and the observed frag-
mentation spectrum is then evaluated using a score function. Finally, the optimal
peptide-spectrum match (PSM) for the given spectrum is reported, along with
its score [24].

In practice, many expected fragment ions will fail to be observed for any given
spectrum, and the spectrum is also likely to contain a variety of additional,
unexplained peaks [26]. Hence, sometimes the reported PSM is correct—the
peptide assigned to the spectrum was present in the mass spectrometer when
the spectrum was generated—and sometimes the PSM is incorrect. Therefore, we
report a thresholded list of top-scoring PSMs, together with the critical estimate
of the fraction of incorrect PSMs in our reported list.

2.2 False Discovery Rate Control in Spectrum Identification

The general problem of controlling the proportion of false discoveries has been
studied extensively in the context of multiple hypotheses testing (MHT). We
briefly review this setup in Supplementary Sect. 6.1; however, these techniques
cannot be applied directly to the spectrum identification problem. A major rea-
son for that is the presence in any shotgun proteomics dataset of both “native
spectra” (those for which their generating peptide is in the target database) and
“foreign spectra” (those for which it is not). These create different types of false
positives, implying that we typically cannot apply FDR controlling procedures
that were designed for the general MHT context to the spectrum identification
problem [16].

Instead, the mass spectrometry community uses TDC to control the FDR in
the reported list of PSMs [3,5,6,15]. TDC works by comparing searches against a
target peptide database with searches against a decoy database of peptides. More
precisely, let Zi be the score of the optimal match (PSM) to the ith spectrum
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in the target database, and let Z̃i be the corresponding optimal match in the
decoy database. Each decoy score Z̃i directly competes with its corresponding
target score Zi for determining the reported list of discoveries. Specifically, for
each score threshold T we only report target PSMs that won their competition:
Zi > max{T, Z̃i}. Subsequently, the number of decoy wins (Z̃i > max{T,Zi}) is
used to estimate the number of false discoveries in the list of target wins. Thus,
the ratio between that estimate and the number of target wins yields an estimate
of the FDR among the target wins. To control the FDR at level α we choose
the smallest threshold T = T (α) for which the estimated FDR is still ≤ α.
It was recently shown that, assuming that incorrect PSMs are independently
equally likely to come from a target or a decoy match and provided we add 1
to the number of decoy wins before dividing by the number of target wins, this
procedure rigorously controls the FDR [13,20].

2.3 The Peptide Detection Problem

The spectrum identification is largely used as the first step in addressing the pep-
tide identification problem that motivates the research presented here. Indeed,
to identify the peptides we begin, just like we do in spectrum identification, by
assigning each spectrum to the unique target/decoy peptide which offers the
best match to this spectrum in the corresponding database. We then assign to
each target peptide a score Zj which is the maximum of all PSM scores of spec-
tra that were assigned to this peptide in the first phase. Similarly, we assign
to the corresponding decoy peptide a score Z̃j , which again is the maximum of
all PSM scores involving spectra that were assigned to that decoy peptide. The
rest continues using the same TDC protocol we outlined above for the spectrum
identification problem [11,31].

3 Controlling the FDR Using Multiple Decoys

3.1 Why Do We Need a New Approach?

A key feature of our problem is that due to computational costs the number
of decoys, d, is small. Indeed, if we are able to generate a large number of
independent decoys for each hypothesis, then we can simply apply the standard
FDR controlling procedures (Supplementary Sect. 6.1) to the empirical p-values.
These p-values are estimated from the empirical null distributions, which are
constructed for each hypothesis Hi using its corresponding decoys. Specifically,
these empirical p-values take values of the form (d1−ri+1)/d1, where d1 = d+1,
and ri ∈ {1, . . . , d1} is the rank of the originally observed score (“original score”
for short) Zi in the combined list of d1 scores:

(
Z̃0
i = Zi, Z̃1

i , . . . , Z̃
d
i

)
(ri = 1 is

the lowest rank). Using these p-values the BH procedure [2] rigorously controls
the FDR, and Storey’s method [32] will asymptotically control the FDR as the
number of hypotheses m → ∞.
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Unfortunately, because d is small, applying those standard FDR control pro-
cedures to the rather coarse empirical p-values may yield very low power. For
example, if d = 1, each empirical p-value is either 1/2 or 1, and therefore for
many practical examples both methods will not be able to make any discoveries
at usable FDR thresholds.

Alternatively, one might consider pooling all the decoys regardless of which
hypothesis generated them. The pooled empirical p-values attain values of the
form i/ (m · d+ 1) for i = 1, . . . ,md + 1; hence, particularly when m is large,
the p-values generally no longer suffer from being too coarse. However, other
significant problems arise when pooling the decoys. These issues — discussed
in Supplementary Sect. 6.2 — imply that in general, applying BH or Storey’s
procedure to p-values that are estimated by pooling the competing null scores
can be problematic both in terms of power and control of the FDR.

3.2 A Novel Meta-procedure for FDR Control Using Multiple
Decoys

The main technical contribution of this paper is the introduction of several
procedures that effectively control the FDR in our multiple competition-based
setup and that rely on the following meta-procedure.
Input: an original/target score Zi and d competing null scores Z̃j

i for each null
hypothesis Hi.
Parameters: an FDR threshold α ∈ (0, 1), two tuning parameters c = ic/d1
(d1 = d+1), the “original/target win” threshold, and λ = iλ/d1, the “decoy win”
threshold where iλ, ic ∈ {1, . . . , d} and c ≤ λ, as well as a (possibly randomized)
mapping function ϕ : {1, . . . , d1 − iλ} '→ {d1 − ic + 1, . . . , d1}.
Procedure:

1. Each hypothesis Hi is assigned an original/decoy win label:

Li =






1 ri ≥ d1 − ic + 1 (original win)
0 ri ∈ (d1 − iλ, d1 − ic + 1) (ignored hypothesis)
−1 ri ≤ d1 − iλ (decoy win)

, (1)

where ri ∈ {1, . . . , d1} is the rank of the original score when added to the list
of its d decoy scores.

2. Each hypothesis Hi is assigned a score Wi = Z̃(si)
i , where Z̃(j)

i is the jth
order statistic or the jth largest score among

(
Z̃0
i = Zi, Z̃1

i , . . . , Z̃
d
i

)
, and the

“selected rank”, si, is defined as

si =






ri Li = 1 (so Wi = Zi in an original win)

ui Li = 0 (where ui is randomly chosen uniformly in {d1 − ic + 1, . . . , d1})
ϕ(ri) Li = −1 (so Wi coincides with a decoy score in a decoy win)

(2)



uri.keich@sydney.edu.au

60 K. Emery et al.

3. The hypotheses are reordered so that Wi are decreasing, and the list
of discoveries is defined as the subset of original wins D(α, c,λ) :=
{i : i ≤ iαcλ, Li = 1}, where

iαcλ := max
{
i :

1 + # {j ≤ i : Lj = −1}
# {j ≤ i : Lj = 1} ∨ 1

· c

1 − λ
≤ α

}
. (3)

We assume above that all ties in determining the ranks ri, as well as the order of
Wi, are broken randomly, although other ways to handle ties are possible (e.g.,
Sect. 8.3 in our technical report [7]).

Note that the hypotheses for which Li = 0 can effectively be ignored as they
cannot be considered discoveries nor do they factor in the numerator of (3).

Our procedures vary in how they define the (generally randomized) mapping
function ϕ (and hence si in (2)), as well as in how they set the tuning parameters
c,λ. For example, in the case d = 1 setting c = λ = 1/2 and ϕ(1) := 2 our meta-
procedure coincides with TDC. For d > 1 we have increasing flexibility with
d, but one obvious generalization of TDC is to set c = λ = 1/d1. In this case
Li = 1 if the original score is larger than all its competing decoys and otherwise
Li = −1. Thus, by definition, ϕ is constrained to the constant value d1 so si ≡ d1
and Wi is always set to Z(d1)

i = max
{
Z̃0
i , . . . , Z̃

d
i

}
. Hence we refer to this as the

“max method.” As we will see, the max method controls the FDR, but this does
not hold for any choice of c,λ and ϕ. The following section specifies a sufficient
condition on c,λ and ϕ that guarantees FDR control.

3.3 Null Labels Conditional Probabilities Property

Definition 1. Let N be the indices of all true null hypotheses. We say the null
labels conditional probabilities property (NLCP) is satisfied if conditional on all
the scores W = (W1, . . .Wm) the random labels {Li : i ∈ N} are (i) independent
and identically distributed (iid) with P (Li = 1 | W) = c and P (Li = −1 | W) =
1 − λ, and (ii) independent of the false null labels {Li : i /∈ N}.

Note that in claiming that TDC controls the FDR we implicitly assume that a
false match is equally likely to arise from a target win as it is from a decoy win
independently of all other scores [13]. This property coincides with the NLCP
with d = 1 and c = λ = 1/2. Our next theorem shows that the NLCP generally
guarantees the FDR control of our meta-procedure. Specifically, we argue that
with NLCP established step 3 of our meta-procedure can be viewed as a special
case of Barber and Candés’ SSS+ procedure [1] and its extension by Lei and
Fithian’s Adaptive SeqStep (AS) [19]. Both procedures are designed for sequen-
tial hypothesis testing where the order of the hypotheses is pre-determined – by
the scores Wi in our case.

Theorem 1. If the NLCP holds then our meta-procedure controls the FDR in
a finite-sample setting, that is, E (|D(α, c,λ) ∩ N |/|D(α, c,λ)|) ≤ α, where the
expectation is taken with respect to all the decoy draws.
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Why does Theorem 1 make sense? If the NLCP holds then a true null Hi is
an original win (Li = 1) with probability c and is a decoy win with probability
1−λ. Hence, the factor c

1−λ that appears in (3) adjusts the observed number of
decoy wins, # {j ≤ i : Lj = −1}, to estimate the number of (unobserved) false
original wins (those for which the corresponding Hi is a true null). Ignoring the
+1 correction, the adjusted ratio of (3) therefore estimates the FDR in the list
of the first i original wins. The procedure simply takes the largest such list for
which the estimated FDR is ≤ α.

Proof. To see the connection with SSS+ and AS we assign each hypothesis Hi

a p-value pi := P (Li ≥ l). Clearly, if the NLCP holds then

pi =






c l = 1
λ l = 0
1 l = −1

. (4)

Moreover, the NLCP further implies that for any u ∈ (0, 1) and i ∈ N ,
P (pi ≤ u | W) ≤ u, and that the true null labels Li, and hence the true null
p-values, pi, are independent conditionally on W. It follows that, even after sort-
ing the hypotheses by the decreasing order of the scores Wi, the p-values of the
true null hypotheses are still iid valid p-values that are independent from the
false nulls. Hence our result follows from Theorem 3 (SSS+) of [1] for c = λ, and
more generally for c ≤ λ from Theorem 1 (AS) of [19] (with s = c).

Remark 1. With the risk of stating the obvious we note that one cannot simply
apply SSS+ or AS by selectingWi = Zi for all i with the corresponding empirical
p-values (d1 − ri + 1)/d1. Indeed, in this case the order of the hypotheses (by
Wi) is not independent of the true null p-values.

3.4 When Does the NLCP Hold for Our Meta-procedure?

To further analyze the NLCP we make the following assumption on our decoys.

Definition 2 (formalizing the multiple-decoy problem). If the d1 (orig-
inal and decoy) scores corresponding to each true null hypothesis are iid inde-
pendently of all other scores then we say we have “iid decoys”.

It is clear that if we have iid decoys then for each fixed i ∈ N the rank ri is
uniformly distributed on 1, . . . , d1, and hence P (Li = 1) = c and P (Li = −1) =
1 − λ. However, to determine whether or not ri is still uniformly distributed
when conditioning on W we need to look at the mapping function ϕ as well.

More specifically, in the iid decoys case the conditional distribution of {Li :
i ∈ N} given W clearly factors into the product of the conditional distribution of
each true null Li given Wi: a true null’s Li is independent of all {Lj ,Wj : j ,= i}.
Thus, it suffices to show that Li is independent of Wi for each i ∈ N . Moreover,
because Wi is determined in terms of si and the set of scores

{
Z̃0
i , . . . , Z̃

d
i

}
,

and because a true null’s label Li and si are independent of the last set (a set



uri.keich@sydney.edu.au

62 K. Emery et al.

is unordered), it suffices to show that Li is independent of si. Of course, si is
determined by ϕ as specified in (2).

For example, consider the max method where si ≡ d1 (equivalently ϕ ≡ d1):
in this case, Li is trivially independent of si and hence by the above discussion
the method controls the FDR. In contrast, assuming d1 is even and choosing
ϕ ≡ d1 with c = λ = 1/2 we see that the scores {Wi : i ∈ N,Li = −1} will
generally be larger than the corresponding {Wi : i ∈ N,Li = 1}. Indeed, when
Li = −1 we always choose the maximal score Wi = Z(d1)

i , whereas Wi is one of
the top half scores when Li = 1. Hence, P (Li = −1 | higher Wi) > 1/2.

So how can we guarantee that the NLCP holds for pre-determined values of
c = ic/d1 and λ = iλ/d1? The next theorem provides a sufficient condition on ϕ
(equivalently on si) to ensure the property holds.

Theorem 2. If the iid decoys assumption holds, and if for any i ∈ N and
j ∈ {d1 − ic + 1, . . . , d1}

P (si = j, ri ≤ d1 − iλ) = P (si = j, Li = −1) =
d1 − iλ
d1 · ic

, (5)

then the NLCP holds and hence our meta-procedure with those values of c,λ and
ϕ controls the FDR.

Proof. By (5), for any i ∈ N and j ∈ {d1 − ic + 1, . . . , d1},

P (Li = 1 | si = j) =
P (si = j, Li = 1)

∑
l∈{−1,0,1} P (si = j, Li = l)

=
1/d1

(d1 − iλ)/(d1 · ic) + (iλ − ic) /d1 · 1/ic + 1/d1
=

ic
d1

= c,

P (Li = −1 | si = j) =
(d1 − iλ) / (d1 · ic)

(d1 − iλ)/(di · ic) + (iλ − ic) /d1 · 1/ic + 1/d1
=

d1 − iλ
d1

= 1 − λ.

At the same time P (Li = 1 | si = j) = 1 for j ∈ {1, . . . , ic} always holds;
therefore, Li is independent of si and by the above discussion the NLCP holds.
Theorem 1 completes the proof.

For any fixed values of c,λ we can readily define a randomized ϕ = ϕu
so that the NLCP holds: randomly and uniformly map {1, . . . , d1 − iλ} onto
{d1 − ic + 1, . . . , d1}. Indeed, in this case (5) holds:

P (si = j, si "= ri) = P (ri ∈ {1, . . . , d1 − iλ}) ·P (si = j | ri ∈ {1, . . . , d1 − iλ}) =
d1 − iλ

d1
·
1

ic
.

(6)

3.5 Mirroring and Mirandom

Using the above randomized uniform map ϕu we have a way to define an FDR-
controlling variant of our meta-procedure for any pre-determined c,λ. However,
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we can design more powerful procedures using alternative definitions of ϕ (for
the same values of c,λ).

For example, with c = λ = 1/2 and an even d1 we can consider, in addition to
ϕu, the mirror map: ϕm(j) := d1−j+1. It is easy to see that under the conditions
of Theorem 2, P (si = j, ri ≤ d1 − iλ) = 1/d1 hence (5) holds and the resulting
method, which we refer to as the “mirror method” (because when Li = −1, si
is the rank symmetrically across the median to ri), controls the FDR. Similarly,
we can choose to use a shift map ϕs: ϕs(j) = j + d1/2, which will result in a
third FDR-controlling variant of our meta-procedure for c = λ = 1/2.

Comparing the shift and the mirror maps we note that when Li = −1, ϕs

replaces middling target scores with high decoy scores, whereas ϕm replaces low
target scores with high decoy scores. Of course, the high decoy scores are the
ones more likely to appear in the numerator of (3), and generally we expect
the density of the target scores to monotonically decrease with the quality of the
score. Taken together, it follows that the estimated FDR will generally be higher
when using ϕs than when using ϕm, and hence the variant that uses ϕs will be
weaker than the mirror. By extension the randomized ϕu will fall somewhere
between the other two maps, as can be partly verified by the comparison of the
power using ϕm and ϕu in panel A of Supplementary Fig. 1.

We can readily extend the mirroring principle to other values of c and λ
where ic divides d1 − iλ, however when ic ! d1 − iλ we need to introduce some
randomization into the map. Basically, we accomplish this by respecting the
mirror principle as much as we can while using the randomization to ensure
that (5) holds—hence the name mirandom for this map/procedure. It is best
described by an example.

Suppose d = 7. Then for ic = 3 (c = 3/8) and iλ = 4 (λ = 1/2) the mirandom
map, ϕmd, is defined as

ϕmd(j) =






8 j = 1
8 (with probability 1/3), or 7 (with probability 2/3) j = 2
7 (with probability 2/3), or 6 (with probability 1/3) j = 3
6 j = 4

Note the uniform coverage (4/3) of each value in the range, implying that if
j is randomly and uniformly chosen in the domain then ϕmd(j) is uniformly
distributed over {6, 7, 8}.

More generally the mirandom map ϕmd for a given c ≤ λ is defined in two
steps. In the first step it defines a sequence of d1−iλ distributions F1, . . . , Fd1−iλ

on the range {d1 − ic + 1, . . . , d1} so that

– each Fl is defined on a contiguous sequence of natural numbers, and
– if j < l then Fj stochastically dominates Fl and min support {Fj} ≥

max support {Fl}.

In practice, it is straightforward to construct this sequence of distributions and
to see that, when combined, they necessarily satisfy the following equal coverage
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property: for each j ∈ {d1 − ic + 1, . . . , d1},
∑d1−iλ

l=1 Fl (j) = d1−iλ
ic

. In the second
step, mirandom defines si for any i with ri ∈ {1, . . . , d1 − ic} by randomly
drawing a number from Fri (independently of everything else).

It follows from the equal coverage property that for any i ∈ N and j ∈
{d1 − ic + 1, . . . , d1} (5) holds for ϕmd for essentially the same reason it held
for ϕu in (6). Hence, the mirandom map allows us to controls the FDR for any
pre-determined values of c,λ.

3.6 Data-Driven Setting of the Tuning Parameters c,λ

All the procedures we consider henceforth are based on the mirandom map.
Where they differ is in how they set c,λ. For example, choosing c = λ = 1/2 gives
us the mirror (assuming d1 is even), c = λ = 1/d1 yields the max, while choosing
λ = 1/2 and c = α ≤ 1/2 coincides with Lei and Fithian’s recommendation
in the related context of sequential hypothesis testing (technically we set c =
-α · d1./d1 and refer to this method as “LF”). All of these seem plausible;
however, our extensive simulations (Supplementary Sect. 6.3) show that none
dominates the others with substantial power to be gained/lost for any particular
problem (Supplementary Fig. 1, panels B-D). As the optimal values of c,λ seem
to vary in a non-trivial way with the nature of the data, as well as with d and
α, we turned to data-driven approaches to setting c,λ.

Lei and Fithian pointed out the connection between the (c,λ) (they refer
to c as s) parameters of their AS procedure and the corresponding parameters
in Storey’s procedure. Specifically, AS’s λ is analogous to the parameter λ of
[33] that determines the interval (λ, 1] from which π0, the fraction of true null
hypotheses, is estimated, and AS’s c is Storey’s rejection threshold (Supplemen-
tary Sect. 6.4).

We take this analogy one step further and essentially use the procedure of
[33] to determine c by applying it to the empirical p-values, p̃i := (d1−ri+1)/d1.
However, to do that, we first need to determine λ.

We could have determined λ by applying the bootstrap approach of [33]
to p̃i. However, in practice we found that using the bootstrap option of the
qvalue package [35] in our setup can significantly compromise our FDR control.
Therefore, instead we devised an alternative approach inspired by the spline-
based method of [34] for estimating π0, where we look for the flattening of the
tail of the p-value histogram as we approach 1. Because our p-values, p̃i, lie on
the lattice i/d1 for i = 1, . . . , d1, instead of threading a spline as in [34], we
repeatedly test whether the number of p-values in the first half of the considered
tail interval (λ, 1] is significantly larger than their number in the second half of
this interval (Supplementary Sect. 6.5).

Our finite-decoy Storey (FDS) procedure starts with determining λ as above
then essentially applies the methodology of [33] to p̃i to set c = tα before apply-
ing mirandom with the chosen c,λ (Supplementary Sect. 6.6). We defined FDS
as close as possible to Storey, Taylor and Siegmund’s recommended procedure
for guaranteed FDR control in the finite setting [33]. Indeed, as we argue in
Supplementary Sect. 6.7, FDS converges to a variant of Storey’s procedure once
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we let d −→ ∞ (the mirror and mirandom maps in general have an interesting
limit in that setup). However, we found that a variant of FDS that we denote as
FDS1 (Supplementary Sect. 6.6), often yields better power in our setting, so we
considered both variants.

FDS and FDS1 peek at the data to set c,λ hence they no longer fall under
mirandom’s guaranteed FDR control. Still, our extensive simulations show they
essentially control the FDR: their empirical violations of FDR control are roughly
in line with that of the max method, which provably controls the FDR (Sup-
plementary Fig. 2). Importantly, FDS1 seems to deliver overall more power than
the mirror, max, LF, FDS and TDC, and often substantially more (Supplemen-
tary Fig. 3). We note, however, that at times FDS1 has 10–20% less power than
the optimal method, and we observe similar issues with the examples mentioned
in Supplementary Sect. 6.2 where BH has no power (Supplementary Sect. 6.10).
These issues motivate our next procedure.

3.7 A Bootstrap Procedure for Selecting an Optimal Method

Our final, and ultimately our recommended multi-decoy procedure, uses a novel
resampling approach to choose the optimal procedure among several of the above
candidates. Our optimization strategy is indirect: rather than using the resam-
ples to choose the method that maximizes the number of discoveries, we use the
resamples to advise us whether or not such a direct maximization approach is
likely to control the FDR.

Clearly, a direct maximization would have been ideal had we been able to
sample more instances of the data. In reality, that is rarely possible all the more
so with our underlying assumption that the decoys are given and that it is for-
biddingly expensive to generate additional ones. Hence, when a hypothesis is
resampled it comes with its original, as well as its decoy scores, thus further
limiting the variability of our resamples. In particular, direct maximization will
occasionally fail to control the FDR. Our Labeled Bootstrap monitored Maxi-
mization (LBM) procedure tries to identify those cases.

In order to gauge the rate of false discoveries we need labeled samples. To
this end, we propose a segmented resampling procedure that makes informed
guesses (described below) about which of the hypotheses are false nulls before

resampling the indices. The scores
{
Z̃j
i

}d

j=0
associated with each resampled

conjectured true null index are then randomly permuted, which effectively boils
down to randomly sampling j ∈ {0, 1, . . . , d} and swapping the corresponding
original score Z̃0

i = Zi with Z̃j
i .

The effectiveness of our resampling scheme hinges on how informed are our
guesses of the false nulls. To try and increase the overlap between our guesses
and the true false nulls we introduced two modifications to the naive approach of
estimating the number of false nulls in our sample and then uniformly drawing
that many conjectured false nulls. First, we consider increasing sets of hypotheses
Hj ⊂ Hj+1 and verify that the number of conjectured false nulls we draw from
each Hj agrees with our estimate of the number of false nulls in Hj . Second,
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rather than being uniform, our draws within each set Hj are weighted according
to the empirical p-values so that hypotheses with more significant empirical p-
values are more likely to be drawn as conjectured false nulls. Our segmented
resampling procedure is described in detail in Supplementary Sect. 6.8.

In summary, LBM relies on the labeled resamples of our segmented resam-
pling approach to estimate whether we are likely to control the FDR when using
direct maximization (we chose FDS, mirror, and FDS1 as the candidate meth-
ods). If so, then LBM uses the maximizing method; otherwise, LBM chooses a
pre-determined fall-back method (here we consistently use FDS1, see Supple-
mentary Sect. 6.9 for details).

Our simulations suggest that LBM’s control of the FDR is on-par with that
of the, provably FDR-controlling, max: the overall maximal observed violation is
5.0% for LBM while it is 6.7% for max, and the number of curves (out of 1200)
in which the maximal violation exceeds 2% is 21 for LBM, and 24 for the max
(panels A and D, Supplementary Fig. 2). Power-wise LBM arguably offers the
best balance among our proposed procedures, offering substantially more power
in many of the experiments while never giving up too much power when it is not
optimal (Supplementary Fig. 4). Finally, going back to the examples where BH
and Storey’s procedure applied to the empirical p-values fail we find that all our
methods, including LBM, essentially control the FDR where Storey’s procedure
substantially failed to do so, and similarly that LBM delivers substantial power
where BH had none (Supplementary Sect. 6.10).

4 The Peptide Detection Problem

Our peptide detection procedure starts with a generalization of the WOTE pro-
cedure of [11]. We use Tide [4] to find for each spectrum its best matching peptide
in the target database as well as in the d decoy peptide databases. We then assign
to the ith target peptide the observed score, Zi, which is the maximum of all the
PSM scores that were optimally matched to this peptide. We similarly define
the maximal scores of each of that peptide’s d randomly shuffled copies as the
corresponding decoy scores: Z̃1

i , . . . , Z̃
d
i . If no spectrum was optimally matched

to a peptide then that peptide’s score is −∞.
We then applied to the above scores TDC (d = 1, with the +1 finite sample

correction)—representing a peptide-level analogue of the picked target-decoy
strategy of [31]—as well as the mirror, LBM and the averaging-based aTDC1

each using d ∈ {3, 5, 7, 9}. Note that to ameliorate the effect of decoy-induced
variability on our comparative analysis we report the average of our analysis
over 100 applications of each method using that many randomly drawn decoy
sets (Supplementary Sect. 6.11).

We used three datasets in our analysis: “human”, “yeast” and “ISB18” (Sup-
plementary Sect. 6.11). Panel D of Supplementary Fig. 5 suggests that when

1 We used the version named aTDC+
1 , which was empirically shown to control the

FDR even for small thresholds/datasets [18].
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applied to the ISB18 dataset all our procedures seem to control the FDR:2 the
empirically estimated FDR is always below the selected threshold. In terms of
power, again we see that LBM is the overall winner: it typically delivers the
largest number of discoveries, and even in the couple of cases where it fails to do
so it is only marginally behind the top method (panels A–C). In contrast, each of
the other methods has some cases where it delivers noticeably fewer discoveries.

More specifically, for α = 0.01 LBM’s average of 142.0 ISB18 discoveries (d =
3) represents an 8.0% increase over TDC’s average of 131.5 ISB18 discoveries,
and we see a 9.4% increase over TDC when using d = 5 (143.3 discoveries). In
the human dataset and for the same α = 0.01 we see a 2.8% increase in power
going from TDC to LBM with d = 3 (532.4 vs. 547.1 discoveries), and a 4.2%
increase when using LBM with d = 5 (555.0 discoveries). LBM offers the biggest
gains in the yeast dataset where we see (again α = 0.01) a 45.5% increase in
power going from TDC to LBM with d = 3 (76.3 vs. 111.0 discoveries), and a
46.7% increase when using LBM with d = 5 (111.9 discoveries). Moreover, we
note that for this α = 0.01 TDC reported 0 yeast discoveries in 33 of the 100
runs (each using a different decoy database), whereas LBM reported a positive
number of discoveries in all 100 runs for each d > 1 we considered.

At the higher FDR thresholds of 0.05 and 0.1 LBM offers a much smaller
power advantage over TDC and is marginally behind for α = 0.1 and d = 3
in the human and yeast datasets. Also, consistent with our simulations, we find
that the mirror lags behind LBM, and in fact in these real datasets it is roughly
on par with TDC.

Finally, although aTDC was designed for the spectrum identification prob-
lem and in practice was never applied to the peptide detection problem, it
was instructive to add aTDC to this comparison. LBM consistently delivered
more detected peptides than aTDC did, although in some cases the difference
is marginal. Still, in the human dataset for α = 0.01 with d = 3 we see a 4.4%
increase in power going from aTDC to LBM (524.2 vs. 547.1 discoveries), and
with d = 5 a 4.6% increase when using LBM (530.8 vs. 555.0 discoveries). Sim-
ilarly, in the ISB18 dataset for α = 0.01 with d = 3 we see a 7.3% increase in
power going from aTDC to LBM (132.3 vs. 142.0 discoveries), and with d = 5 a
6.4% increase when using LBM (134.7 vs. 143.3 discoveries).

In Supplementary Sect. 6.12 we discuss a further analysis where we added two
more spectra runs to the yeast dataset representing a higher budget experiment.
In this case at 1% FDR the average number of TDC discoveries was 275.9 and
for LBM using d = 5 decoys it was 294. Subsequent Gene Ontology enrichment
test of the 54 proteins imputed from the peptide discovered by LBM yielded two
overrepresented biological process terms that were not present in the 50 proteins
imputed from TDC. The two missing terms—“cellular protein localization” and
“cellular macromolecule localization”—are closely related and imply that the
sample under investigation is enriched for proteins responsible in shuttling or
maintaining other proteins in their proper cellular compartments. Critically, an

2 Being a controlled experiment, the ISB18 dataset allows us to empirically gauge the
FDR.
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analysis based solely on the traditional TDC approach would entirely miss this
property of the sample being analyzed.

5 Discussion

We consider a new perspective on the peptide detection problem which can be
framed more broadly as multiple-competition based FDR control. The problem
we pose and the tools we offer can be viewed as bridging the gap between the
canonical FDR controlling procedures of BH and Storey and the single-decoy
approach of the popular TDC used in spectrum identification (ID). Indeed, our
proposed FDS converges to Storey’s method as the number of decoys d −→ ∞
(Supplementary Sect. 6.7).

The methods we propose here rely on our novel mirandom procedure, which
guarantees FDR control in the finite sample case for any pre-determined values
of the tuning parameters c,λ. Our extensive simulations show that which of our
methods delivers the maximal power varies with the properties of the experiment,
as well as with the FDR threshold α. This variation motivates our introduction
of LBM. LBM relies on a novel labeled resampling technique, which allows it to
select its preferred method after testing whether a direct maximization approach
seems to control the FDR. Our simulations, as well as our analysis of peptide
detection using real datasets, suggest that LBM largely controls the FDR and
seems to offer the best balance among our multi-decoy methods as well as a
significant power advantage over the single-decoy TDC.

Finally, as mentioned, our approach is applicable beyond peptide detec-
tion. Moreover, while we stated our results assuming iid decoys, the results
hold in a more general setting of “conditional null exchangeability” (Supple-
mentary Sect. 6.13). This exchangeability is particularly relevant for future work
on generalizing the construction of [1] to multiple knockoffs, where the iid decoys
assumption is unlikely to hold.

Related work.We recently developed aTDC in the context of spectrum ID. The
goal of aTDC was to reduce the decoy-induced variability associated with TDC
by averaging a number of single-decoy competitions [17,18]. As such, aTDC
fundamentally differs from the methods of this paper which simultaneously
use all the decoys in a single competition; hence, the methods proposed here
can deliver a significant power advantage over aTDC (panel F, Supplementary
Fig. 4 and Supplementary Fig. 5). Our new methods are designed for the iid (or
exchangeable) decoys case, which is a reasonable assumption for the peptide
detection problem studied here but does not hold for the spectrum ID for which
aTDC was devised. Indeed, as pointed out in [16], due to the different nature of
native/foreign false discoveries, the spectrum ID problem fundamentally differs
from the setup of this paper and even the above, weaker, null exchangeability
property does not hold in this case. Thus, LBM cannot replace aTDC entirely;
indeed, LBM is too liberal in the context of the spectrum ID problem. Note
that in practice aTDC has not previously been applied to the peptide detection
problem.



uri.keich@sydney.edu.au

Multiple Competition-Based FDR Control and Its Application 69

While working on this manuscript we became aware of a related Arxiv sub-
mission [14]. The initial version of that paper had just the mirror method, which
as we show is quite limited in power. A later version that essentially showed up
simultaneously with the submission of our technical report [7] extended their
approach to a more general case; however, the method still consists of a subset
of our independently developed research in that: (a) they do not consider the λ
tuning parameter, (b) they use the uniform random map ϕu which, as we show,
is inferior to mirandom, and (c) they do not offer either a general deterministic
(FDS) or bootstrap based (LBM) data-driven selection of the tuning parame-
ter(s), relying instead on a method that works only in the limited case-control
scenario they consider.
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