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Abstract

The increasing size of protein sequence databases is straining methods of sequence analysis, even
as the increased information offers opportunities for sophisticated analyses of protein structure, function
and evolution. Here we describe a method called Meta-MEME that uses artificial intelligence-based
algorithms to build models of families of protein sequences. These models can be used to search protein
sequence databases for remote homologs. The MEME (Multiple Expectation-maximization for Motif
Elicitation) software package identifies motif patterns in a protein family, and these motifs are combined
into a hidden Markov model (HMM) that can be used as a database searching tool. Meta-MEME is
sensitive and accurate, as well as automated and unbiased, making it suitable for the analysis of large
datasets. We demonstrate Meta-MEME on a family of dehydrogenases that includes mammalian 11�-
hydroxysteroid and 17�-hydroxysteroid dehydrogenase and their homologs in the short chain alcohol
dehydrogenase family. We chose this dataset because it is large and phylogenetically diverse, providing
a good test of the sensitivity and selectivity of Meta-MEME on a protein family of biological interest.
Indeed, Meta-MEME identifies at least 350 members of this family in Genpept96 and clearly separates
these sequences from non-homologous proteins. We also show how the MEME motif output can be used
for phylogenetic analysis.

1 Introduction

The number of known protein sequences is increasing rapidly as various genome projects come on line [1,
2, 3]. This explosion of data provides an opportunity for comparisons of protein sequences from distantly
related organisms, allowing for the identification of conserved regions, or motifs, that are likely to be func-
tionally important. The usual approach for identifying distantly related homologs is to search a database
with a sequence using FASTA [4] or BLAST [5]. However, as databases increase in size, such searches tend
to miss the more distantly related homologs because of the noise from unrelated proteins having a random
similarity to the sequence being searched.

Sensitivity can be increased by using the information from several homologous proteins to construct a
composite of conserved regions for database searching [6, 7, 8]. In this approach, homologous sequences
are aligned, conserved motifs are identified and an amino acid profile or log-odds matrix for each motif is
calculated. This log-odds matrix is representative of the relative amino acid probabilities at specific positions
and is characteristic of the protein family, which makes the log-odds matrix a sensitive probe for searching
a database. Increasing the number of diverse protein sequences for motif analysis increases the sensitivity
of the resulting search, as well as increasing the information about motif structure and its relationship to
function. Unfortunately, aligning a large number of divergent sequences requires gaps and insertions. These
complicate the multiple sequence alignment, and in some cases, make it difficult to accurately characterize
the boundaries of the motifs, reducing their utility for analysis of structure and function.

To address these problems, we have developed an automated method for constructing motifs called
Multiple Expectation-maximization for Motif Elicitation (MEME) [9, 10]. This method can analyze large
datasets — in this paper we use thirty-seven dehydrogenase sequences — using a statistical algorithm called
expectation-maximization [11]. MEME discovers a set of motifs that describe the given group of related
sequences. The unbiased and automated properties of this method make it accurate and convenient for
determining motifs. Moreover, each motif’s log-odds matrix is a sensitive probe for searching a databank
such as Genpept96 or SWISSPROT for distantly related homologs. A version of MEME running on a
parallel supercomputer is available via the World-Wide Web athttp://www.sdsc.edu/MEME .

Here we describe improvements that increase the sensitivity and selectivity of this method by incorpo-
rating into the searching algorithm two other important pieces of information from the motif analysis: the
order and spacing of motifs. To use this information, we have created Meta-MEME, an automated hid-
den Markov model extension to MEME. Hidden Markov models have been used previously to characterize
protein families and to direct homology searches [12, 13]. Meta-MEME differs from these other HMM
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approaches in its focus on motif regions. By precisely modeling only the highly-conserved regions of the
dataset, Meta-MEME selectively discards noisy, inter-motif information.

In addition, we show that concatenated MEME motifs can be used to construct reliable phylogenetic
trees for distantly related sequences. Concatenated motifs can be aligned unambiguously, unlike entire
sequences. This is an important consideration when constructing a multiple alignment of many distantly
related sequences because the alignment may be degraded by mutations suggested spuriously by ambiguities
in assigning insertions and deletions. Others have dealt with this problem and have constructed useful
phylogenetic trees by ignoring the highly divergent segments containing insertions and deletions [14, 15].
We find that concatenated MEME motifs also yield useful trees, with the advantage that the analysis is
unbiased and automated.

We use Meta-MEME to analyze a family of dehydrogenases [16, 17, 18, 19, 20, 21] that includes 11�-
hydroxysteroid and 17�-hydroxysteroid dehydrogenase, enzymes that are important in actions of steroids
that affect blood pressure, reproduction and development and also the growth of some cancers of breast
and prostate. In addition to its medical importance, we chose this family for testing our method because
it is large and phylogenetically diverse and, thus, representative of what will be available for analysis as
more genomes are sequenced. Using a dataset of thirty-seven dehydrogenases, we find that Meta-MEME
is a sensitive, selective and convenient tool for identifying distantly related homologs in databases, which
should prove useful for subsequent analysis of their structure, function and evolution.

2 Methods

The details of the MEME algorithm have been described elsewhere [9, 10]. Briefly, MEME uses the
expectation-maximization algorithm [11] to disover conserved regions, or motifs, in a dataset of protein
sequences. The algorithm uses a heuristic criterion function based on a maximum likelihood ratio test to
compare candidate motifs. MEME outputs models of conserved regions in rank order, with the strongest
motif represented by the first model. For the analyses reported here, we use MEME version 2.0 with the
minimum width set at 12 amino acids and the Dirichlet mixture prior [9, 10]. The training set consists
of the thirty-seven sequences shown in Table 1 with their SWISSPROT codes. Pairwise alignments of
almost all of these sequences are less than 30% identical after using gaps and insertions to maximize identi-
ties [17, 22, 23]. Many sequences are less than 20% identical after use of gaps and insertions.

Hidden Markov models

A hidden Markov model is a probabilistic model in which a hidden stochastic process produces a sequence
of observable outputs [24]. In Meta-MEME, the sequence of outputs is a series of amino acids. The model
is linear, and each hidden state in the model corresponds to one or more adjacent amino acids in the protein
family being modeled. In a Meta-MEME hidden Markov model, motif regions are modeled without insert
states, so the motifs are similar to gapless profiles [6]. Spacer regions between motifs can be of variable
length.

The six strongest motifs in the set of thirty-seven divergent dehydrogenase sequences are determined
using MEME 2.0. Then Genpept96 is searched with the log-odds output for the six motifs, and the highest
scoring protein is used as a canonical template for the motif order and spacing. This template provides the
framework for a motif-based hidden Markov model incorporating all six motifs. Because the hidden Markov
model is linear, it takes into account the canonical order and spacing of the motifs. The motif-based hidden
Markov model is used by a modified Smith-Waterman algorithm [25] to search Genpept96 for homologs.
The output score for each sequence is expressed in bits (i.e.,log2).
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2BHD STREX 20-Beta-Hydroxysteroid Dehydrogenase
3BHD COMTE 3-Beta-Hydroxysteroid Dehydrogenase
ACT3 STRCO Putative Ketoacyl Reductase
ADH DROME Alcohol Dehydrogenase
AP27 MOUSE Adipocyte P27 Protein (AP27).
BA72 EUBSP 7-Alpha-Hydroxysteroid Dehydrogenase
BDH HUMAN D-Beta-Hydroxybutyrate Dehydrogenase Precursor
BEND ACICA Cis-1,2-Dihydroxy-3,4-Cyclohexadiene-1-Carboxylate Dehydrogenase
BPHB PSEPS Biphenyl-2,3-Dihydro-2,3-Diol Dehydrogenase
BUDC KLETE Acetoin(Diacetyl) Reductase
CSGA MYXXA C-Factor.
DHB2 HUMAN Estradiol 17 Beta-Dehydrogenase 2
DHB3 HUMAN Estradiol 17 Beta-Dehydrogenase 3
DHCA HUMAN Carbonyl Reductase (NADPH)
DHES HUMAN Estradiol 17 Beta-Dehydrogenase
DHGB BACME Glucose 1-Dehydrogenase B
DHII HUMAN Corticosteroid 11-Beta-Dehydrogenase
DHMA FLAS1 N-Acylmannosamine 1-Dehydrogenase
ENTA ECOLI 2,3-Dihydro-2,3-Dihydroxybenzoate Dehydrogenase
FABG ECOLI 3-Oxoacyl-[Acyl-Carrier Protein] Reductase
FABI ECOLI Enoyl-[Acyl-Carrier-Protein] Reductase (NADH)
FIXR BRAJA FixR Protein.
FVT1 HUMAN Follicular Variant Translocation Protein 1 Precursor (FVT-1).
GUTD ECOLI Sorbitol-6-Phosphate 2-Dehydrogenase
HDE CANTR Hydratase-Dehydrogenase-Epimerase (HDE).
HDHA ECOLI 7-Alpha-Hydroxysteroid Dehydrogenase
HMTR LEIMA H Region Methotrexate Resistance Protein
LIGD PSEPA C Alpha-Dehydrogenase
MAS1 AGRRA Agropine Synthesis Reductase.
NODG RHIME Nodulation Protein G (Host-Specificity Of Nodulation Protein C).
PCR PEA Protochorophyllide Reductase Precursor
PGDH HUMAN 15-Hydroxyprostaglandin Dehydrogenase (NAD(+))
PHBB ZOORA Acetoacetyl-Coa Reductase
RIDH KLEAE Ribitol 2-Dehydrogenase
YINL LISMO Hypothetical 26.8 Kd Protein In Inla 5’region (ORFA).
YRTP BACSU Hypothetical 25.3 Kd Protein In Rtp 5’region (ORF238)
YURA MYXXA Hypothetical Protein In Uraa 5’region (Fragment).

Table 1: SWISSPROT identifiers and descriptions for the 37 short chain alcohol dehydrogenase training set.
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Phylogeny

The sequences of the first six motifs from the MEME analysis of each dehydrogenase homolog were col-
lapsed into a single string. These motif-only strings were analyzed using the protein parsimony analysis
program from the Phylip software package [26]. The analysis was repeated 30 times, using at each iteration
a random reordering of the sequences, and selecting the most parsimonious tree from all iterations.

3 Results

MEME analysis

Figure 1 displays the six motifs of the dehydrogenase dataset along with the entropy plot, which is a mea-
sure of the information content at each position. The motifs are mapped onto the primary sequence of 20�-
hydroxysteroid dehydrogenase in Figure 2. Also shown in Figure 2 is the secondary structure determined
from X-ray crystallographic analysis [27]. The secondary and tertiary structure of this enzyme is very sim-
ilar to homologs such as dihydropteridine reductase [28], 17�-hydroxysteroid dehydrogenase-type 1 [29],
enoyl reductases [30, 31], andE. coli 7�-hydroxysteroid dehydrogenase [32] despite having pairwise se-
quence similarities of 15% to 22%. The six motifs map onto structurally important domains, some of which
have been shown to be functionally important by site-specific mutagenesis studies [33, 34, 35, 36, 37, 38]
and structural analysis [39, 40]. Beginning at the amino terminus, the order of the motifs is (2)-(1)-(6)-
(4)-(3)-(5). Their combined length is 85 amino acids, and they span 183 residues of 20�-hydroxysteroid
dehydrogenase.

Hidden Markov model analysis

These six motifs were combined in their proper order into a single hidden Markov model for analysis. This
model was then used to search Genpept96 for homologs. Figure 3 shows the histogram of the output of
this search, and Table 2 shows selected sequences from the output. The distribution is bimodal with a clear
minimum at 20 bits, demonstrating excellent separation of dehydrogenase homologs from the rest of the
database.

The high scoring sequences contain the full 85 residues in the template, which spans 180 to 188 amino
acids in most of the proteins. This is consistent with an absence of extra loops in these proteins and a
common 3D structure. An interesting exception is carbonyl reductase, in which the six motifs span 228
residues due to an insertion of 41 residues between motifs 4 and 2 [41]. This insertion does not compromise
the analysis. Meta-MEME output is useful in identifying the region where a distantly homologous protein
has diverged from the dataset. For example,Drosophila immigransalcohol dehydrogenase has a score of
90.6 bits based on residues 14-85 of the template. Evidently, the segment corresponding to motif 2 in this
alcohol dehydrogenase has diverged from the dataset. A similar analysis holds for an oxidoreductase (score
of 65.7 bits) required for shoot apex development inArabidopsis thaliana.

We examined the sequences with scores below twenty bits using citations in Entrez and SwissProt and,
in some cases, a BLAST search to determine which sequences were homologous to short chain dehydroge-
nases. All sequences above 8.9 bits are homologs. The first non-homologous protein is malate dehydroge-
nase at 8.9 bits; the next is ribulose bisphosphate carboxylase/oxygenase at 8.5 bits.

Phylogeny

One consequence of the projects to sequence genomes in phylogenetically diverse organisms is a wider use
of phylogenetic analysis to assist in understanding the evolution of structure and function. We were inter-
ested in how well the motifs generated by MEME could be used for a phylogenetic analysis. We therefore
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MOTIF 1
         bits 6.8
              6.1
              5.4
              4.7
Information   4.1
content       3.4         *
(26.1 bits)   2.7    *   **
              2.0 *  * * ** *
              1.4 * ** ******
              0.7 ***********
              0.0 -----------

Multilevel        GRVDVLVNNAG
consensus           L I I
sequence

MOTIF 2
         bits 6.8
              6.1
              5.4
              4.7
Information   4.1
content       3.4
(25.1 bits)   2.7    **     *
              2.0   ***   ***
              1.4 ******  ***
              0.7 ***********
              0.0 -----------

Multilevel        ALVTGASSGIG
consensus         VII  GA  L
sequence                G

MOTIF 3
         bits 6.8
              6.1
              5.4
              4.7
Information   4.1 *
content       3.4 *   *
(31.3 bits)   2.7 *   *
              2.0 *  **     *
              1.4 * *****   **  **
              0.7 ******** *******
              0.0 ----------------

Multilevel        YSASKAAVxGLTRSLA
consensus            A FGL  FSK
sequence

MOTIF 4
         bits 6.8
              6.1
              5.4
              4.7
Information   4.1
content       3.4
(18.2 bits)   2.7        *
              2.0 * ***  *
              1.4 * ******
              0.7 ********
              0.0 --------

Multilevel        GRIVNVSS
consensus            I I
sequence

MOTIF 5
         bits 6.8
              6.1
              5.4
              4.7
Information   4.1
content       3.4
(28.1 bits)   2.7         *
              2.0  *      **   *
              1.4 ** ** * **   * *
              0.7 ***** **** * ***
              0.0 ----------------

Multilevel        GIRVNAVxPGxVxTDM
consensus          VT   I    I
sequence

MOTIF 6
         bits 6.8
              6.1
              5.4
              4.7
Information   4.1
content       3.4        *
(35.7 bits)   2.7        *
              2.0 *      *
              1.4 *     **  * *         *
              0.7 ********* ******* *** *
              0.0 -----------------------

Multilevel        WDRVIxVNLTGVFxLTRAVLPxM
consensus         F     I   S V G Q     L
sequence

Figure 1: Motifs from MEME analysis of short chain alcohol dehydrogenases.The entropy plot is a
measure of the information content at each position of the motif. The consensus sequence below the entropy
plot shows sites where specific amino acids are present with a probability of at least 20%.
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                 β-strand-A  Turn         α-helix-B
               ÃÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
  1 M N D L S G K T V I I T G G A R G L G A E A A R Q A V A A
                    2 2 2 2 2 2 2 2 2 2 2

      β-strand-B            α-helix-C
   ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´         ÃÄÄÄÄÄ
 30 G A R V V L A D V L D E E G A A T A R E L G D A A R Y Q H

   β-strand-C           α-helix-D                 β-strand-D
    ÄÄÄÄÄÄÄÄÄ´ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´   ÃÄÄÄÄÄÄÄÄÄÄÄÄÄ
 59 L D V T I E E D W Q R V V A Y A R E E F G S V D G L V N N
                                            1 1 1 1 1 1 1 1 1

     β-strand-D                        α-helix-E
    ÄÄÄÄÄÄÄÄÄÄÄ´           ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 88 A G I S T G M F L E T E S V E R F R K V V D I N L T G V F
    1 1                             6 6 6 6 6 6 6 6 6 6 6 6 6

        α-helix-E                  β-strand-E
    ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´         ÃÄÄÄÄÄÄÄÄÄÄÄÄÄ´
117 I G M K T V I P A M K D A G G G S I V N I S S A A G L M G
    6 6 6 6 6 6 6 6 6 6             4 4 4 4 4 4 4 4

                        α-helix-F
           ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
146 L A L T S S Y G A S K W G V R G L S K L A A V E L G T D R
                3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3             5

         β-strand-F
    ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
175 I R V N S V H P G M T Y T P M T A E T G I R Q G E G N Y P
    5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

                              α-helix-G
                         ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
204 N T P M G R V G N E P G E I A G A V V K L L S D T S S Y V

       β-strand-G
     ÃÄÄÄÄÄÄÄÄÄÄÄ´
233 T G A E L A V D G G W T T G P T V K Y V M G Q 255

• • •

Figure 2: Alignment of MEME motifs on Streptomyces hydrogenans20�-hydroxysteroid dehydro-
genase. Each motif as determined by MEME is shown below the sequence ofS. hydrogenans20�-
hydroxysteroid dehydrogenase. The secondary structure was determined from the X-ray analysis of crys-
tals of S. hydrogenans20�-hydroxysteroid dehydrogenase [27], and has a similar fold to that of its ho-
mologs [28, 29, 30, 31, 32]. The boxed segment at the beginning of motif 3 contains the conserved tyrosine
and lysine residues at the catalytic site.
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Figure 3:Hidden Markov model analysis of Genpept96.The output histogram has a minimum at 20 bits,
demonstrating the selectivity of the HMM analysis. Sequences with negative scores are not shown. The
peaks at 105 and 115 bits are due toDrosophilaalcohol dehydrogenase sequences.

Figure 4: Phylogenetic analysis of the dehydrogenase dataset.The sequences of the first six motifs
from the MEME analysis of each protein were collapsed into a single sequence and analyzed by parsimony
analysis [26]. The 11�-hydroxysteroid and 17�-hydroxysteroid dehydrogenases-type 1 cluster together on
a branch separate from 17�-hydroxysteroid dehdyrogenases-type 2 and 3, which are on separate branches.
The motif phylogeny is in agreement with a phylogenetic analysis of the entire sequences of the steroid
dehydrogenases [23].
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Score Sequence Model ID Description
178.7 8-188 1-85 gi—145881 3-ketoacyl-acyl carrier protein reductase [Escherichia coli]
174.8 9-194 1-85 gi—153142 actIII protein [Streptomyces coelicolor]
170.9 5-184 1-85 gi—790552 acetoacetyl CoA reductase [Rhizobium meliloti]
170.4 8-190 1-85 gi—1203984 NAD+-dependent 15-hydroxyprostaglandin dehydrogenase [H. sapiens]
170.2 9-189 1-85 gi—46308 nodG gene product (AA 1-245) [R. meliloti] ketoreductase [S. nogalater]
169.3 6-186 1-85 gi—1222069 3-oxoacyl-[acyl-carrier protein] reductase [Haemophilus influenzae]
149.4 10-191 1-85 gi—309860 beta-hydroxysteroid dehydrogenase [Comamonas testosteroni]
149.1 14-196 1-85 gi—912437 7alpha-hydroxysteroid dehydrogenase [Escherichia coli]
148.0 10-192 1-85 gi—1419053 unknown [Mycobacterium tuberculosis]
145.5 325-504 1-85 gi—695398 hydratase-dehydrogenase-epimerase [Candida tropicalis]
133.1 6-193 1-85 gi—975895 17-beta-hydroxysteroid dehydrogenase [Homo sapiens]
127.7 8-235 1-85 gi—181037 carbonyl reductase [Homo sapiens]
116.6 37-222 1-85 gi—179475 11-beta-hydroxysteroid dehydrogenase [Homo sapiens]
115.4 32-213 1-85 gi—1054531 11-cis-retinol dehydrogenase [Bos taurus]
90.6 86-188 14-82 gi—304662 alcohol dehydrogenase [Drosophila immigrans]
65.8 118-244 12-85 gi—957251 oxidoreductase required for shoot apex development=FEY [A. thaliana]
23.2 138-195 46-85 gi—46868 ORF3 protein [Streptomyces coelicolor]
21.3 32-203 2-58 gi—861340 similar to ribitol dehydrogenase [Caenorhabditis elegans]
19.7 15-101 1-22 gi—603171 unknown [Escherichia coli]
19.1 12-45 58-85 gi—453866 tropinone reductase homologue [Arabidopsis thaliana]
18.8 8-18 1-11 gi—145888 ORF3 [Escherichia coli]
18.5 4-41 54-85 gi—699381 glucose 1-dehydrogenase [Mycobacterium leprae]
18.0 3-157 1-60 gi—473600 dTDP-glucose dehydratase [Streptomyces fradiae]
17.7 1-33 59-85 gi—1053075 orf1; similar to E.coli EnvM [Proteus mirabilis]
17.6 128-184 47-85 gi—641817 halohydrin epoxidase A [Corynebacterium sp.]
17.3 19-168 1-77 gi—641819 halohydrin epoxidase B [Corynebacterium sp.]
17.3 4-14 1-11 gi—415277 unknown [Escherichia coli]
16.7 1-13 73-85 gi—887852 ORF f67p [Escherichia coli]
16.0 1-26 66-85 gi—1234827 Orf1; similar EnvM [Legionella pneumophila]
15.6 262-313 51-85 gi—237650 enoyl-acyl carrier protein reductase [Brassica napus]
15.3 85-149 27-67 gi—1332595 dNDP-glucose dehydratase [Streptomyces sp.]
14.5 28-147 2-40 gi—618456 norsolornic acid [Aspergillus parasiticus]
13.9 10-20 1-11 gi—471145 ORFUP [Sphingomonas paucimobilis]
13.7 1-13 73-85 gi—1166429 K08F4.9 [Caenorhabditis elegans]
13.4 217-298 25-85 gi—1055124 coded for by C. elegans cDNA yk62b4.3
13.0 98-173 27-67 gi—1314581 dTDP-D-glucose-4,6-dehydratase [Sphingomonas S88]
13.0 89-143 29-59 gi—1359482 dNDP-glucose dehydratase [Amycolatopsis mediterranei]
12.8 97-171 27-67 gi—398120 TDP-glucose oxireductase [Xanthomonas campestris]
12.4 9-117 1-37 gi—1143392 uridine diphosphate glucose epimerase [Arabidopsis thaliana]
12.2 113-186 50-85 gi—203979 dihydropteridine reductase (EC 1.6.99.7) [Rattus norvegicus]
12.2 116-189 50-85 gi—181553 dihydropteridine reductase (EC 1.6.99.7) [Homo sapiens]
12.0 101-174 27-67 gi—1001273 hypothetical protein [Synechocystis sp.]
10.8 2-22 68-85 gi—666992 alcohol dehydrogenase [Drosophila mojavensis]
10.4 6-164 2-67 gi—413996 ipa-72d gene product [Bacillus subtilis]
10.3 25-200 1-19 gi—506333 HrEpiB [Halocynthia roretzi]
9.9 8-116 1-37 gi—1173555 UDP-galactose-4-epimerase [Pisum sativum]
9.6 3-93 1-27 gi—567874 thymidine diphosphoglucose 4,6-dehydratase [S. erythraea]
9.6 1-15 71-85 gi—516105 aklaviketone reductase [Streptomyces sp.]
9.4 23-64 37-59 gi—699306 hypothetical protein [Mycobacterium leprae]
9.3 2-29 1-18 gi—1294775 ADP-L-glycero-D-manno-heptose-6-epimerase [Haemophilus influenzae]
8.9 3-111 1-41 gi—1429254 UDP-glucose 4-epimerase [Bacillus subtilis]
8.9 4-154 1-58 gi—406095 UDP-glucose 4-epimerase [Neisseria meningitidis]
8.9 3-62 1-15 gi—294198 malate dehydrogenase [Photobacterium sp.]
8.6 38-48 1-11 gi—466869 gpdB; B1496F1 31 [Mycobacterium leprae]
8.5 87-198 13-85 gi—407314 inhA peptide (AA 1-269) [Mycobacterium tuberculosis]
8.5 87-198 13-85 gi—1155270 enoyl ACP reductase [Mycobacterium bovis]
8.5 58-95 33-56 gi—1381396 ribulose bisphosphate carboxylase/oxygenase large subunit

Table 2: Selected Meta-MEME output from from an analysis of Genpept96. We show some high
scoring sequences that contain all 85 residues in the six motifs. In 3-ketoacyl-acyl carrier protein reductase,
these map to residues 8-188 with a score of 178.7. In carbonyl reductase [41], these map to residues 8-
235 with a ascore of 127.7. Motif residues 14-82 map to residues 86-188 onDrosophila immigransalcohol
dehydrogenase with a score of 90.6. Analysis of proteins with scores from 23.2 to 8.5 bits reveal that the first
protein that is not a member of the short chain dehydrogenase family is malate dehydrogenase with a score
of 8.9 bits, followed by ribulose bisphosphate carboyxlase/oxygenase with a score of 8.5 bits. The sequences
of several homologs, such as halohydrin epoxidase [42] and the sugar epimerases [43, 44, 45], have diverged
from the signature motif used in PROSITE [46], which has made identification of their ancestry difficult.
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combined the first six motifs for each protein into a single sequence, which by virtue of the MEME analysis
can be aligned with the other thirty-six proteins. Two equally parsimonious phylogenies were discovered by
Phylip [26]. One of these two is shown in Figure 4; the other phylogeny was similar. Phylogenies using the
entire sequences of 11�-hydroxysteroid dehydrogenase-type 1, 17�-hydroxysteroid dehydrogenase-types
1, 2, and 3, and�-hydroxybutyrate dehydrogenase [23], as well as bacterial steroid dehydrogenases [22]
have been determined previously [23] and are in general agreement with that from the motifs. In particular,
the type 1 11�- and 17�-hydroxysteroid dehydrogenases cluster together on a branch separate from 17�-
hydroxysteroid dehydrogenase-type 2, which clusters with�-hydroxybutyrate dehydrogenase. On a separate
branch is 17�-hydroxysteroid dehydrogenase-type 3. Thus, the information in the eighty-five residues in the
first six motifs gives a useful phylogeny for the steroid dehydrogenases.

4 Discussion

There is a strong biological basis for the sensitivity of Meta-MEME. Motifs 1 and 2 are part of the nu-
cleotide cofactor binding site [47, 48, 49]; motif 3 contains the catalytic site. A protein sequence that had
motifs 1 and 3 interchanged would not have the same 3D structure and could not function the way the steroid
dehydrogenases do. By scoring protein similarity and dissimilarity on the basis of motif order and spacing,
the HMM method is using the spatial information in the 3D structure of the canonical dehydrogenase to
identify homologs from the noise of unrelated proteins that have islands of amino acid sequence similarity
to the dataset. Comparisons of protein 3D structures is the most sensitive method for determining homol-
ogy [50], which we propose explains the excellent ability of HMM to separate homologs from noise as seen
in Figure 3.

In summary, the combination of HMM and MEME into the Meta-MEME tool provides a sensitive
and selective method for homology searches to identify distantly related proteins. This facilitates collecting
large and diverse collections of homologous proteins for motif analysis for use in elucidating the relationship
between structure, function and evolution.
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