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ABSTRACT

Motivation Accurate knowledge of the genome-wide binding of
transcription factors in a particular cell type or under a particular
condition is necessary for understanding transcriptional regulation.
Using epigenetic data such as histone modification and DNase I,
accessibility data has been shown to improve motif-based in silico
methods for predicting such binding, but this approach has not yet
been fully explored.
Results We describe a probabilistic method for combining one
or more tracks of epigenetic data with a standard DNA sequence
motif model to improve our ability to identify active transcription
factor binding sites (TFBSs). We convert each data type into a
position-specific probabilistic prior and combine these priors with
a traditional probabilistic motif model to compute a log-posterior
odds score. Our experiments, using histone modifications H3K4me1,
H3K4me3, H3K9ac and H3K27ac, as well as DNase I sensitivity,
show conclusively that the log-posterior odds score consistently
outperforms a simple binary filter based on the same data. We also
show that our approach performs competitively with a more complex
method, CENTIPEDE, and suggest that the relative simplicity of the
log-posterior odds scoring method makes it an appealing and very
general method for identifying functional TFBSs on the basis of DNA
and epigenetic evidence.
Availability and implementation: FIMO, part of the MEME Suite
software toolkit, now supports log-posterior odds scoring using
position-specific priors for motif search. A web server and source
code are available at http://meme.nbcr.net. Utilities for creating priors
are at http://research.imb.uq.edu.au/t.bailey/SD/Cuellar2011.
Contact: t.bailey@uq.edu.au
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Binding of transcription factors (TFs) to DNA is a key step in the
regulation of gene expression, strongly influencing the activation
or repression of genes. However, accurately locating transcription
factor binding sites (TFBSs) in eukaryotic genomes containing

∗To whom correspondence should be addressed.

gigabases of DNA is challenging because a typical TF binds to
relatively short (4–10 bp) DNA sequences that occur at many places
throughout the genome, only a small portion of which are actively
involved in gene regulation in any particular cell type.

In vivo, several molecular mechanisms limit the binding of
TFs to a small fraction of the potential sites. Perhaps most
significantly, local chromatin structure, arising from the packaging
of DNA, histones and other proteins, occludes access of the
TF to many genomic loci. Some aspects of this structure—
notably, numerous types of post-translational covalent modifications
such as acetylation, methylation, phosphorylation, ubiquitination,
ribosylation, glycosylation and sumoylation—affect TF binding in a
complex fashion that is not yet completely understood. Empirically,
however, numerous studies have shown that TF binding is associated
with several types of histone marks (e.g mono- and tri-methylation of
histone H3 lysine 4) (Barski et al., 2007; Cui et al., 2009; Heintzman
et al., 2007; Heintzmann et al., 2009; Robertson et al., 2007) and
with hypersensitivity to cleavage by DNase I (Bernat et al., 2006;
Crawford et al., 2006; Hesselberth et al., 2009; Keene et al., 1981;
McArthur et al., 2001; Wu, 1980).

In light of these observations, a variety of computational methods
have been proposed that aim to improve our ability to identify
active TFBSs on the basis of the DNA sequence plus one or
more epigenetic experimental assays. Perhaps the simplest such
approach scans for occurrences of a specified DNA motif, but
deterministically filters out some positions on the basis of the raw
signal from a histone modification ChIP-seq assay (Whitington et al.,
2009). This type of filter greatly improves the accuracy of TFBS
prediction. Several other integrative methods have been proposed
for combining DNA motifs with chromatin data (Ernst et al., 2010;
Won et al., 2009, 2010). Among these methods, the one most directly
comparable to the one proposed here is CENTIPEDE (Pique-
Regi et al., 2011), which employs a hierarchical Bayesian mixture
model that incorporates information about the DNA sequence,
evolutionary conservation, distance to the transcription start site,
DNase I accessibility and activating and repressing histone marks.

In this work, we propose a probabilistic method for combining one
more more tracks of epigenetic data with a standard DNA sequence
motif model to improve our ability to identify active TFBSs. Our
work thus makes two primary methodological contributions. First,
we describe a heuristic procedure for converting each data type
into a probabilistic prior. The approach itself is novel, though
it is motivated by similar methods introduced in the context of
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motif discovery by the Hartemink group (Gordân et al., 2010;
Narlikar et al., 2006), and in the context of TFBS prediction
by Lahdesmaki et al. (2008). Critically, our method is applicable
to any real-valued data type, requiring the specification of a single
hyperparameter with an intuitive interpretation. Second, we describe
how to combine a given sequence motif, represented as a position
weight matrix (PWM), with the prior to compute a log-posterior odds
score. This approach is directly analogous to the most widely used
method for scanning for occurrences of TFBSs, and contrasts with a
more computationally intensive Markov Chain Monte Carlo-based
method proposed previously (Lahdesmaki et al., 2008).

In addition to these methodological contributions, our work
suggests three significant conclusions. First, our experiments,
using histone modifications H3K4me1, H3K4me3, H3K9ac and
H3K27ac, as well as DNase I sensitivity, show conclusively that
the log-posterior odds score consistently outperforms a previously
described binary filter based on the same data (Whitington et al.,
2009). This point is critical, because the simple filter has clear
intuitive appeal; we need to begin by demonstrating that our method
improves upon this simple baseline. Second, among epigenetic
datasets, we find that DNase I sensitivity provides the most value,
with only a relatively small additional boost in performance when
we also consider histone marks. Third, we evaluate our method
using the benchmark dataset described in the CENTIPEDE paper.
In this setting, CENTIPEDE performs better on average, but
the improvement is not uniform across TFs. This comparison to
CENTIPEDE clearly illustrates the value of our proposed method.
The strong performance of the log-posterior odds score, coupled
with the relative simplicity of the method, make it an appealing and
very general method for identifying functional TFBSs on the basis
of DNA and epigenetic evidence. In practical terms, the second and
third conclusions above combine to suggest that a single prior based
on DNase I is all we need to achieve excellent TFBS identification
in practice.

2 METHODS

2.1 Creating priors from epigenetic data
We desire a prior distribution on the probability that genomic position i is
bound by any TF in a given tissue. (Throughout the article, we use the terms
‘tissue’ and ‘tissue-specific’ to refer to data from a particular tissue, cell
line or condition.) If we have tissue- and position-specific information yi

for each genomic position, 1≤ i≤n, we denote the desired prior distribution
by Pr(Bi|yi), where the random variable Bi is true if and only if any TF
is bound at position i. The yi can be, for example, tag counts at genomic
positions from a histone modification or DNase I assay. We use a heuristic
procedure to convert these tag counts to a function that we can use as the
desired prior distribution.

To carry out the conversion from tag count to prior, we require a
monotonically increasing function, f (yi), such that 0≤ f (yi)≤1 for all values
of yi. Although we use f (yi) as a prior distribution, we do not require that
the n transformed yi values sum to one. Rather, we would like them to sum
to some user-chosen estimate, β>0, of the total number of binding sites of
all TFs in the given tissue.

To construct the mapping function f (yi), we first map the interval bounded
by the minimum and maximum observed values of yi ([ymin,ymax]), to the
interval [a,1] using the linear function

g(yi) = 1−a

ymax −ymin
(yi −ymin)+a,

where 0<a<1. In a moment we will see that the value of a is not free, but
is determined by our choice of β. In this work, we employ a linear mapping,
but any monotonically increasing function could be used for g(yi).

We then define f (yi) in terms of g(yi) as

f (yi) = β
g(yi)∑n
j=1 g(yj)

. (1)

It is trivial to see that summing f (yi) over all genomic positions gives β, as
desired. Since g(yi) is monotonic and increasing and β is positive, f (yi) is
clearly monotonic and increasing, as required. We also require that f (yi)≥0,
and we note that this is true because g(yi) and β are both positive. To ensure
that f (yi)≤1, we note that the smallest that g(yi) can be is a, and the largest
it can be is 1, so

β
g(yi)∑n
j=1 g(yj)

≤ β
1

1+a(n−1)
.

Setting the right-hand side above equal to 1 and solving for a gives

a = β−1

n−1
. (2)

Using this value for a ensures that f (yi)≤1. Note that since it makes no sense
to set β>n (because β is the prior estimate of the total number of binding sites
in the given tissue, which cannot exceed the number of genomic positions
n), a will always be < 1, as required to define the mapping function g(yi)
above.

2.2 Log-posterior odds motif scoring
2.2.1 Definition In the previous section, we described a function on
epigenetic data, f (yi), which we will interpret as Pr(Bi|yi), the prior
probability that genomic position i is occupied by any TF in the tissue of the
epigenetic data. Thus, Pr(Bi) represents the ‘general binding propensity’ of
genomic region xi. In this section, we derive a scoring function for predicting
the TFBSs of a given TF in a given tissue using a standard PWM TF motif, M,
and the position-specific prior function, f (yi). This scoring function, which
we call the log-posterior odds score, is simply the sum of the traditional
log-likelihood ratio motif score, S(xi), and the log-prior odds score, P(i),

Ŝ(xi) = S(xi)+P(i). (3)

The log-prior odds score is defined as

P(i) = log

(
f (yi)

1−f (yi)

)
. (4)

The log-likelihood ratio motif score is

S(xi) =
w∑

j=1

Mb,j,

where w is the width of the motif and b=xi,j refers to the DNA base in the
j-th position of site xi.

2.2.2 Derivation The log-posterior odds score [Equation (3)] is motivated
by Bayes decision theory, which states that the best score for discriminating
sites from non-sites given an observed sequence and any additional
information is the posterior odds (Duda et al., 2001). We will show that the
log-posterior odds score defined by Equation (3) is approximately equal to
the log-posterior odds that a candidate site for the given TF starts at position
i in the sequence.

Ŝ(xi) ≈ log

(
Pr(si|xi,yi)

Pr(si|xi,yi)

)
. (5)

Here, the Boolean variable si is true if and only if xi is a binding site for
the given TF in a given tissue. Note that Boolean variable si differs from Bi,
which is true when any TF binds to site xi in the given tissue.

We make the simplifying assumption that the sequence data xi and
epigenetic data yi are conditionally independent given the ‘class’ variable
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si. In other words, we assume that once we know whether xi is a site or not,
knowing yi adds no additional information about the particular sequence of
bases comprising xi, and vice versa. Under this assumption, we can write

Pr(xi,yi|si)=Pr(xi|si)Pr(yi|si). (6)

By applying Bayes’ rule twice, and by exploiting Equation (6), we can
rewrite the numerator of Equation (5), the probability of the class being ‘true’
(e.g. position i is a site), as

Pr(si|xi,yi) = Pr(xi,yi|si)Pr(si)

Pr(xi,yi)

= Pr(xi|si)Pr(yi|si)Pr(si)

Pr(xi,yi)

= Pr(xi|si)Pr(si|yi)Pr(yi)

Pr(xi,yi)
. (7)

A similar derivation rewrites the denominator of Equation (5), the probability
of position i not being a site, as

Pr(si|xi,yi) = Pr(xi|si)Pr(si|yi)Pr(yi)

Pr(xi,yi)
. (8)

Thus, under the independence assumption above, the log-posterior ratio
[(the right-hand side of Equation (5)] can be expressed as the sum of a
log-likelihood ratio and the log-prior odds

log

(
Pr(xi|si)

Pr(xi|si)

)
+log

(
Pr(si|yi)

Pr(si|yi)

)
, (9)

by applying Equations (7) and (8) and a bit of algebra. This approach can be
easily extended to multiple priors under similar independence assumptions,
adding additional log-prior odds terms to the above sum (Section 1 in
Supplementary Material).

We estimate the log-likelihood ratio [the first term in Equation (9)] using
the standard PWM score, S(xi). We assume that the binding sites of the
given TF are correctly modeled by the position-specific probability matrix
�m ={fc,j}, where fc,j is the probability of DNA base c at position j in the
motif of width w. We further assume that non-sites are modeled by a zero-
order Markov model �0 ={pc}, where pc is the probability of base c at any
non-site position. If we let the PWM M have entries Mc,j = log(fc,j/pc), it is
easy to see that

log

(
Pr(si|xi)

Pr(si|xi)

)
≈

w∑
j=1

Mb,j =S(xi), (10)

where b=xi,j refers to the DNA base in the j-th position of site xi. In our
implementation of the log-posterior odds score, we actually score both DNA
strands independently, and our notation could be easily extended (with some
loss of clarity) to include this complication (e.g. x+

i and x−
i to indicate the

corresponding sites on the two DNA strands).
We estimate the log-prior odds [second term in Equation (9)] using f (yi),

our estimate of Pr(Bi|yi), the prior probability of any TF binding to position
i. Recall that the Boolean variable Bi is true if genomic region xi is bound
by some TF in a given tissue or cell type or condition. We note that if Bi

is false, then si must also be false, since Bi being false means that no TF
binds region xi, that is, Pr(si|Bi,yi)=0. To estimate Pr(si|yi), we make the
further simplifying assumption that the epigenetic data yi adds no knowledge
if we already know the value of the general binding propensity variable Bi.
That is, we assume that Pr(si|Bi,yi)=Pr(si|Bi). We further assume that the
probability of a position being the site of a given TF, conditional on it being
the site of some TF, is a constant. That is, we assume that Pr(si|Bi)=α for
some 0≤α≤1. Using the above, we can write the required TF-specific as a
scaled version of the non-TF-specific prior,

Pr(si|yi) = Pr(si|Bi,yi)Pr(Bi|yi)+Pr(si|Bi,yi)Pr(Bi|yi)

= Pr(si|Bi,yi)Pr(Bi|yi)

= Pr(si|Bi)Pr(Bi|yi)

= αPr(Bi|yi).

Typically, the epigenetic data yi will not be specific to a given TF, but
will rather describe the general binding propensity of genomic region xi.

In practice, we find that the value of the scale factor α has little effect on
the accuracy of TFBS predictions made by the log posterior-odds score, so
we set α=1 in the remainder of this work. We also find that the accuracy
is little affected by the value of β over a wide range of values (Section 6
in Supplementary Material), and we use β=10000 unless otherwise noted.
Note also that if our smoothed auxiliary data yi is specific to the given TF,
that is, Pr(si|yi)=Pr(Bi|yi), then we can simply set α=1. In any case, with
α=1, and using f (yi) as our estimate of Pr(Bi|yi), we now see that the second
term in Equation (9) is

log

(
Pr(si|yi)

Pr(si|yi)

)
= log

(
αPr(Bi|yi)

1−αPr(Bi|yi)

)

≈ log

(
f (yi)

1−f (yi)

)

= P(i). (11)

Since Ŝ(xi)=S(xi)+P(i), combining Equations (10) with (11) shows that the
log-posterior odds score is approximately equal to the log-posterior odds, as
required.

2.3 Epigenetic datasets for creating priors
To create tissue-specific priors for predicting TF binding, we use a variety
of epigenetic datasets. Specifically, we consider DNase I sensitivity, which
correlates with transcriptional competence, as well as the histone marks
H3K4me1, H3K4me3, H3K9ac and H3K27ac, which have been shown
to correlate with active transcription (Kurdistani and Grunstein, 2003). In
addition, we use the histone mark H3K27me3 as a negative control, given
that is a key marker of epigenetic transcriptional repression. The sources of
the data, as well as the tissue types and histone modifications we study, are
summarized in Supplementary Table S2.

In our first experiment, to directly compare log-posterior odds motif
scoring with our previous work (Whitington et al., 2009), we use H3K4me3
ChIP-seq data from mouse embryonic stem (ES) cells (Mikkelsen et al.,
2007). These data represent the ‘density’ of antibody-enriched fragments,
calculated at 25 bp resolution. Each value is calculated by adding one to
the count for each uniquely aligned fragment occurring within 200 bp of the
given position. Reads occurring 200–300 bp from a given position contribute
a count of 0.25 to the count in that 25 bp interval. We use this count as the
value of yi in Equation (1) for all positions in the 25 bp window, and we
replace β with β/25 in that equation and in Equation (2) since there are now
only n/25 prior values that must sum to β.

In our other experiments, we use ChIP-seq histone mark datasets from two
human cell lines—K562 and GM12878. These data were generated by the
Bernstein lab as part of the ENCODE Consortium (Myers et al., 2011), where
the raw tag counts were converted to densities as described in the preceding
paragraph. In these experiments, for the K562 cell line we use ENCODE
DNase I hypersensitivity (HS) data generated by the Stamatoyannopoulos
lab at the University of Washington. These data are provided as smoothed
data that specifies the total number of tags mapping to a genomic window of
150 bp, with windows specified every 20 bp (Myers et al., 2011). In order to
compare our results with previous work by others (Pique-Regi et al., 2011),
for the GM12878 cell line we use ENCODE DNase I HS data from the
Crawford lab at Duke University (Boyle et al., 2011). We converted these
data to exactly the same format as the K562 data, smoothing tag counts in
a window of 150 bp with windows every 20 bp. We use this density as yi in
Equation (1) for all positions in the 20 bp window, and we replace β with
β/20 in that equation.

In order to study a novel prediction approach based on filtering by PWM
score followed by sorting on DNase I HS, we also prepared an unsmoothed
version of the same GM12878 DNase I HS data. We processed the tagAlign
files from the three replicate files separately, discarding multi-mapping tags,
and collapsing all duplicate counts within a single file to a count of 1. We
then pooled the processed data from the replicates, creating a file containing
the total number of tags at each genomic position.
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2.4 Defining TFBS gold standards based on ChIP-seq
data

We used two types of gold standard for evaluating TFBS prediction methods.
For a given TF and tissue, each gold standard is created by considering ChIP-
seq data for that TF in that tissue as well as a known PWM for the TF. These
PWMs are described in Supplementary Table S3.

Our first two experiments are carried out using a ‘peak-centric’ gold
standard, which defines a single position in each ChIP-seq peak as a binding
site for the TF (a positive), and treats all other genomic positions as negatives.
The single positive position assigned to each ChIP-seq peak is the position
with the highest PWM score. No positive site is assigned to peaks that do
not contain a site with a P < 0.005, as computed by FIMO (Grant et al.,
2011). Using this gold standard allows us to compare with the earlier work
of Whitington et al. (2009). The ChIP-seq datasets we use for generating the
peak-centric gold standards are summarized in Supplementary Table S1.

In our third experiment, to compare our approach against a recently
published method, we use the ‘site-centric’ gold standard that was used by
Pique-Regi et al. (2011). This gold standard first removes from consideration
all genomic positions that are not potential sites, and labels as ‘positive’ and
‘negative’ the sites with strong ChIP-seq evidence for or against occupancy
by the TF in the given tissue. Potential sites are those with PWM scores
greater than log2(10000)=13.28 bits. Positive sites are potential sites that
occur within a declared ChIP-seq peak. Negative sites are sites that are not
within a ChIP-seq peak and the ChIP-seq control signal (tag count) is higher
than the ChIP-seq signal. All potential sites that are not clearly positives or
negatives according to these two rules are removed from consideration.

2.5 TFBS prediction accuracy metrics
We use two metrics for measuring the accuracy of predictions. Both are based
on the true positive rate (TPR) and the false positive rate of a predictor. The
TPR, which is often called sensitivity, is the number of true positives divided
by the number of known positives at a given score threshold. The FPR is
the number of false positives divided by the number of known negatives at
a given score.

The first accuracy metric we use is the area under the receiver operating
characteristic curve (AUC). This metric gives a combined measure of
accuracy at all sensitivity rates, by integrating TPR over all values of
FPR (Swets, 1988). The second metric we use is sensitivity at 1% FPR,
which allows us to compare the accuracy of prediction methods when a
premium is placed on avoiding false positives.

3 RESULTS

3.1 H3K4me3 prior improves TFBS prediction
accuracy in mouse ES cells

In our first experiment, we use the log-posterior odds score with
the H3K4me3 prior to predict the genome-wide binding of 13 TFs
in mouse ES (mES) cells. This experiment tests the hypothesis
that our probabilistic prior yields improved TFBS prediction
accuracy relative to two competing methods: using no prior at
all, or using a ‘hard’ prior, in the form of a site filter based on
histone modification ChIP-seq tag counts. We described the latter
approach previously (Whitington et al., 2009); accordingly, this
experiment uses the same experimental design as that previous work.
Specifically, we employ peak-centric gold standards, as described
in Section 2, prepared using the TF ChIP-seq datasets listed in
Supplementary Table S1. The 13 TFs are cMyc, CTCF, E2f4, Esrrb,
Klf4, Nanog, nMyc, Oct4, Smad1, Sox2, Stat3, Tcfcp2l1 and Zfx.

The results shown in Figure 1 demonstrate that predictions made
using the log-posterior odds score are substantially more accurate
than those made using the PWM score. The sensitivity at 1% FPR

Fig. 1. Accuracy of H3K4me3 log-posterior odds score compared with
H3K4me3 filtering in mES cells. Results are shown for predicting the binding
sites of 13 TFs in mES cells. Accuracies are measured using peak-centric
gold standards. The solid bars represent the mean sensitivity at 1% false
positive rate; error bars show standard error. ‘PWM’ refers to using just the
PWM score; ‘Prior’ refers to the log-posterior odds score using the H3K4me3
prior; ‘≥n’ refers to the H3K4me3 histone-filtering method using a tag-count
threshold of n.

improves from an average of 37% using the PWM score to over
53% using the H3K4me3 prior. As indicated by the small standard
error bars, accuracy using the prior is fairly consistent for all 13 TFs,
ranging from 77% for Nanog to 98% for CTCF (data not shown).
In the Supplementary Material, we show that the log-posterior
odds score is also substantially more accurate than the PWM score
when we measure the FPR at a given sensitivity (Supplementary
Fig. S3 and Table S6). For example, at 20% sensitivity, using the
log-posterior odds score reduces the FPR by ∼68%.

In this experiment, the H3K4me3 log-posterior odds score is also
substantially more accurate than our previous method of filtering by
histone score and sorting by PWM score (Whitington et al., 2009).
The best filtering approach (n≥2) has a average sensitivity of only
42%, compared with 53% using the log-posterior odds score (Fig. 1).
The H3K4me3 log-posterior odds score is also more accurate than
the filtering approach in terms of FPR at sensitivity levels between
20% and 100% (Supplementary Fig. S3).

The H3K4me3 log-posterior odds score also achieves higher
overall AUC than either the PWM score or any of the filtering
methods tested. (Supplementary Fig. S2). The average AUC for
predicting the binding sites of the 13 TFs is 92.4% for using the
log-posterior odds score. The best filtering approach we test (n≥2)
has average AUC of 91.5%, and the PWM score achieves 88.6%
AUC. The small differences in AUC among the different methods
shows that AUC obscures the significant differences at low false
positive rates. This is due to the large imbalance in the number of
positives and negatives in the peak-centric gold standard causing
AUC to emphasize accuracy at high false positive rates.

3.2 Histone modification and DNase I HS priors
improve TFBS prediction in human K562 cells

In our second experiment, having established the utility of our log-
posterior odds scoring in mouse, we perform a systematic evaluation
of a variety of priors in human K562 cells. Our aims in this
experiment are 2-fold: first, to verify that our proposed method
works well with priors derived from a variety of types of histone
modifications or from DNase I sensitivity data; second, to examine
the extent to which multiple priors can be combined to achieve
even better motif search performance. For evaluation, we again
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Fig. 2. The log-posterior odds score based on various histone marks and DNase I data improves binding site recognition in human K562 cells. Results are
shown for predicting the binding sites of 15 TFs in K562 (human erythroleukaemia) cells. The height of each bar corresponds to the average sensitivity at
1% false positive rate, and error bars indicate standard error. All DNase I hypersensitivity data are from the Stamatoyannopoulos lab at the University of
Washington.

use a peak-centric gold standard, this time derived from 15 TFs
(Supplementary Table S1). The priors used in this second experiment
are based on the histone ChIP-seq and DNase I datasets for K562
cells listed in Supplementary Table S2. The 15 TFs are Atf3, Brg1,
cFos, cMyc, Egr1, Gabp, Gata1, Jund, Max, Nfe2, Nfya, Nfyb, Sirt6,
Usf1 and YY1.

The results of this experiment, summarized in Figure 2, show
clearly that log-posterior odds scoring is much more accurate than
the PWM score. For example, for 15 TFs the average sensitivity
at 1% FPR is 53.7% using the DNase I prior, compared with
only 31.3% using PWM scanning. Among the five priors based on
single epigenetic datasets used in Figure 2 (DNase I HS, H3K4me1,
H3K4me3, H3K9ac and H3K9ac), the DNase I prior is the most
informative according to this accuracy metric and according to AUC
(Supplementary Fig. S4). Strikingly, at both 20 and 50% sensitivity,
the log-posterior odds score with the DNase I HS prior reduces the
number of false positives by almost 90% on average when predicting
the binding of these 15 TFs (Supplementary Fig. S5). Among the
four single-histone priors, H3K27ac and H3K4me3 are the most
informative, achieving sensitivities of 49.3 and 48.8%, respectively,
at 1% FPR. This result agrees with our previous observation
that H3K4me3 is highly predictive of TF binding compared with
other histone marks (Whitington et al., 2009). The prior based
on H3K4me1 data is much less effective in this experiment, yet
still achieves a higher sensitivity rate (38.5%) than PWM scanning
(31.3%). These results suggest that DNase I sensitivity data is most
useful in predicting TF binding, but that in the absence of DNase I HS
data, priors based on H3K27ac, H3K4me3 or even H3K4me1 ChIP-
seq data can still greatly increase the accuracy of TFBS prediction
when used with the log-posterior odds score.

Finally, we investigate if multiple priors can be combined to
achieve even greater prediction accuracy. We observe in Figure 2
that combining DNase I sensitivity data with an informative histone

modification (H3K4me3 or H3K27ac) yields an improvement
in sensitivity, relative to using any of the three priors alone.
For example, the sensitivity of the log-posterior score using a
composite prior based on DNase I and H3K4me3 data is 60.3%
at 1% FPR, compared with 53.7% using the DNase I prior or 48.8%
using the H3K4me3 prior alone.

Somewhat surprisingly, we found that using multiple histone
marks to construct priors did not improve accuracy greatly compared
to using a single histone prior. For example, a prior constructed from
all four of our (non-control) histone marks—H3K4me1, H3K4me3,
H3K9ac and H3K27ac—achieves sensitivity of 49.7% at 1% FPR,
only marginally better than the accuracy of the prior based on
H3K27ac alone (49.3% sensitivity at 1% FPR). However, a prior
constructed from H3K9ac and H3K27ac does show moderately
improved accuracy (Fig. 2). When accuracy is measured in terms of
AUC, the conclusions are the same (Supplementary Fig. S4).

The failure of the combined histone priors to improve over the
individual priors may be due to the fact that these three histone marks
are highly correlated (Supplementary Fig. S7). On the assumption
that the lack of improvement was due to correlated priors not
contributing additional information, we also tested a prior combining
H3K4me1, which is far less correlated with the other three, with
the best histone prior, H3K4me3. However, this prior—H3K4me1
and H3K4me3—performs no better than the K3K4me3 prior alone
(Fig. 2).

3.3 DNase I-based scores dramatically improve TFBS
prediction in human GM12878 cells

In our third experiment, we compare the log-posterior odds score
method to a recently described method called CENTIPEDE (Pique-
Regi et al., 2011). Accordingly, this experiment follows the design
used by Pique-Regi et al. (2011). Specifically, we use site-centric
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Table 1. Performance of five TFBS prediction methods on putative sites with high PWM score

TF Neg Pos Area under the ROC curve (%) Sensitivity at 1% false positive rate

PWM H-p D-p Cpd D-s PWM H-p D-p Cpd D-s

CTCF 23201 17093 80.2 82.5 93.6 97.5 97.9 26.4 27.4 44.5 87.6 33.7
Gabpa 19150 924 61.4 96.4 99.1 99.7 99.8 2.0 27.5 70.2 95.0 98.1
Jund 72172 14 82.0 92.7 99.4 98.6 99.0 21.4 0.0 78.6 78.6 57.1
Max 13611 72 70.6 93.3 94.6 99.6 99.7 8.0 36.1 33.1 88.9 94.4
Nrsf 1642 1193 89.1 88.1 92.5 95.2 89.3 57.1 55.3 62.7 46.2 13.9
Srf 11146 133 72.3 90.6 95.4 99.2 99.7 12.0 25.5 42.8 92.5 93.2

Mean 75.9 90.6 95.8 98.3 97.6 21.2 28.6 55.3 81.5 65.1

The table shows two measurements of accuracy of tissue-specific TFBS prediction in GM12878 (lymphoblastoid) cells. The first three columns list the transcription factor (TF)
and numbers of negative (Neg) and positive (Pos) sites in the site-centric gold standard for that TF. Accuracies (area under the ROC curve and sensitivity at 1% false positive rate)
are shown for sorting sites by either the PWM score (PWM), the log-posterior odds using the H3K4me3 prior (H-p), the log-posterior odds using the DNase I prior (D-p), the
CENTIPEDE log-posterior odds (Cpd) or the DNase I score (D-s). All DNase I data are from the Crawford lab at Duke University. Best results for each accuracy metric are shown
in bold.

gold standards for six TFs in the GM12878 lymphoblastoid cell
line. The first three columns of Table 1 list these TFs along with
the corresponding numbers of positive and negative sites in the site-
centric gold standards. As before, we use as performance metrics
the AUC and sensitivity achieved at 1% false positive rate, as used
by Pique-Regi et al. (2011). We also explored accuracy in terms
of sensitivity at 1% false discovery rate (Supplementary Table S8),
with results essentially identical to those described below.

The results of this experiment, summarized in the left half of
Table 1, show two very clear trends. First, as in our previous two
experiments, using the log-posterior odds score with an epigenetic
prior results in higher TFBS prediction accuracy, compared with
traditional PWM scoring, with the DNase I prior outperforming
the H3K4me3 histone prior. For example, the mean AUC when
predicting the binding of these six TFs in GM12878 cells is 75.9%
when putative sites are sorted by the PWM score, 90.6% using
the H3K4me3 prior and 95.8% when we use the DNase I prior.
Using either of these two priors also results in a large increase in
the sensitivity achieved at a 1% FPR. On average, the sensitivity
more than doubles when we use the DNase I HS prior, compared
with using the PWM score (55.3% versus 21.2% sensitivity). Using
the H3K4me3 prior, the improvement in sensitivity at 1% FPR is far
less (sensitivity = 28.6%). We also tested other histone priors and
combinations of histone priors, and the results are very similar (data
not shown).

Second, the CENTIPEDE method, which leverages DNase I HS,
sequence conservation and distance from TSS data, usually performs
better than the log-posterior odds score using only the H3K4me3
or DNase I prior (Table 1). For all six TFs, CENTIPEDE’s AUC is
higher than the corresponding AUC for our method using the DNase
I prior. Overall, the average difference in AUC is 2.5%, which is
relatively large considering that the AUC scores themselves are quite
close to 100%. The results with respect to sensitivity at 1% FPR are
similar, with CENTIPEDE performing better than the DNase I prior
in four out of six cases.

However, while investigating the cause for CENTIPEDE’s strong
performance in this experiment, we made a surprising discovery: we
are able to achieve performance comparable to CENTIPEDE’s by
completely ignoring the PWM and using only the DNase I data.

This strawman method, which we call the ‘DNase I score’, simply
sorts all putative sites by the total number of DNase I cuts (tags) in
a window of 150 bp around the site. Recall that the site-centric gold
standards contain only putative sites with PWM scores greater than
log2(10000)=13.28 bits. Hence, the DNase I score is analogous
to the ‘histone filter’ proposed by Whitington et al. (2009), except
that rather than filtering by histone tag counts and ranking by PWM
score, the DNase I score filters by PWM score and ranks by DNase I
tag counts. As can be seen from Table 1 (column ‘D-s’), the DNase
I score AUC is higher than CENTIPEDE’s (and than the DNase
I prior’s) for five out of six TFs. For the remaining TF (Nrsf),
CENTIPEDE achieves a much higher AUC (95.2% compared with
89.3%). In terms of sensitivity at 1% FPR, the DNase I score
performs substantially better than CENTIPEDE for three of the six
TFs, but is much worse for the other three TFs: Nrsf, CTCF and
Jund. These results suggest that the DNase I score method is as
accurate as CENTIPEDE in terms of AUC, but less accurate at very
low false positive rates.

The above observation—that simply ranking sites based on DNase
I sensitivity yields results that are competitive with the best-
performing method—suggests that, if we only consider sequences
whose PWM scores are relatively high, DNase I sensitivity is more
useful than the DNA sequence at discriminating between bound and
unbound sequences. It also makes clear a weakness in the site-centric
gold standard. Since the site-centric gold standard is based solely on
sites with PWM scores exceeding a given threshold, it cannot tell
us anything about the accuracy of a prediction method on sites with
PWM scores below the threshold. Other types of gold standards,
such as the ‘peak-centric’ one used here, must be employed in
order to compare the ability of prediction methods on more difficult
binding sites with lower PWM scores.

4 DISCUSSION
We have demonstrated that the log-posterior odds score is a
powerful method for improving tissue-specific TFBS prediction
when genome-wide histone modification ChIP-seq or DNase I
hypersensitivity data is available. Compared to a sequence-only scan
or to using a hard filter based on histone or DNase I HS tag counts,
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the log-posterior odds score offers a large and consistent advantage.
Among the datasets that we considered, DNase I sensitivity provides
the most useful prior, though some additional benefit can be gained
by combining priors from DNase I and an informative histone
modification such as H3K4me3 or H3K27ac.

When we compare our proposed method to CENTIPEDE, which
leverages additional sources of information such as distance from
transcription start sites, the conclusions are less clear. On the
one hand, when measured via AUC or sensitivity at 1% FPR,
CENTIPEDE appears to provide slightly better results than the log-
posterior odds score. On the other, we have shown that, for this
particular benchmark, simply ranking sites by their smoothed DNase
I tag counts performs comparably to CENTIPEDE. This observation
suggests that, among sites with high PWM scores, measurements
of DNase I sensitivity are much more useful than the PWM score
itself in discriminating between bound and unbound sequences. The
experiment also leaves open the possibility that, in a more realistic
setting (e.g. using a gold standard that includes all sites in the
genome), the relative performance of the methods would be quite
different. Finally, it is worth noting that the relative simplicity of the
proposed log-posterior odds score makes it an appealing alternative
to a more complex approach such as CENTIPEDE.

Although our work has focused on scanning for occurrences
of DNA motifs, the log-posterior odds score framework can be
trivially extended to protein motifs, given a suitable prior. Such
priors might be derived, for example, from the measurements of
evolutionary conservation or from the predicted local attributes such
as signal peptides, solvent accessibility, transmembrane topology
or propensity to bind to DNA or to other proteins. Similarly, the
method described here could be easily incorporated into existing
probabilistic approaches for modeling regulatory sequences as cis-
regulatory modules composed of multiple motifs (Bailey and Noble,
2003; Sinha et al., 2008; Zhou and Wong, 2004). Although our linear
mapping function for constructing epigenetic priors, g(yi), works
well in practice, the use of a non-linear function is a promising
direction for future research.
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