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ABSTRACT
Motivation: The regulatory machinery controlling gene ex-
pression is complex, frequently requiring multiple, simulta-
neous DNA-protein interactions. The rate at which a gene
is transcribed may depend upon the presence or absence
of a collection of transcription factors bound to the DNA
near the gene. Locating transcription factor binding sites
in genomic DNA is difficult because the individual sites are
small and tend to occur frequently by chance. True bind-
ing sites may be identified by their tendency to occur in
clusters, sometimes known as regulatory modules.
Results: We describe an algorithm for detecting oc-
currences of regulatory modules in genomic DNA. The
algorithm, called MCAST, takes as input a DNA database
and a collection of binding site motifs that are known to
operate in concert. MCAST uses a motif-based hidden
Markov model with several novel features. The model
incorporates motif-specific p-values, thereby allowing
scores from motifs of different widths and specificities to
be compared directly. The p-value scoring also allows
MCAST to only accept motif occurrences with significance
below a user-specified threshold, while still assigning
better scores to motif occurrences with lower p-values.
MCAST can search long DNA sequences, modeling length
distributions between motifs within a regulatory module,
but ignoring length distributions between modules. The
algorithm produces a list of predicted regulatory modules,
ranked by E-value. We validate the algorithm using
simulated data as well as real data sets from fruitfly and
human.
Availability: http://meme.sdsc.edu/MCAST/paper
Contact: tlb@maths.uq.edu.au

INTRODUCTION
One surprise from the recent analysis of the mouse
and human genomes is the relatively large portion of
the mouse genome that is evolutionarily conserved but
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does not code for proteins (Mouse Genome Sequencing
Consortium, 2002). Perhaps the most important function
of this non-coding DNA is to regulate the rate at which
individual genes are transcribed. We refer to the se-
quence elements that modulate transcription as regulatory
modules (Krivan and Wasserman, 2001; Wasserman and
Fickett, 1998), though they have alternatively been re-
ferred to as promoter modules (Klingenhoffet al., 1999),
cis-element clusters (Frithet al., 2001), andcis-regulatory
modules (Bermanet al., 2002). A regulatory module typ-
ically lies upstream of the gene that it regulates, though
examples of downstream, intronic and distant regulators
do occur. Each module contains a dispersed collection
of short sequences (approximately 6–20 bases), each of
which specifically binds to a particular transcription factor
protein. The complex interaction among the genomic
DNA, the various transcription factors, and the RNA
polymerase yields an overall rate of transcription for that
particular gene (Ptashne and Gann, 2002).

Two primary computational challenges are associated
with regulatory modules. The first involves identifying
transcription factor binding site motifs. A given transcrip-
tion factor can typically bind to a variety of similar, short
sites. Hence, given a collection of regulatory modules, it
is non-trivial to locate within them the binding sites, even
if the given sequences are knowna priori to interact with
a particular transcription factor. The problem becomes
harder when the locations of the regulatory modules are
uncertain (so that the input sequences must be quite long),
or when multiple transcription factors operate on the same
set of sequences.

In this work, we address a second, related task (see
Fig. 1). We assume that the first problem is solved—that
the binding sites have been located within a collection of
regulatory modules. We are provided as input a handful of
binding site models (motifs) of transcription factors that
are believed to operate together. We are also given a large
sequence database. The task is to locate in that database
occurrences of regulatory modules containing the given
binding sites. Hence, the output is a list of predicted site-
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Fig. 1. The regulatory module search problem. The input consists of
acollection of motif models and a sequence database. The output is
a list of predicted regulatory modules, with annotated binding sites
and an associated confidence value for each module.

annotated regulatory modules, along with a measure of
confidence in each prediction. We will refer to this as the
‘database search task’. This computational problem is a
simplified version of the problem solved in the cell by the
transcription machinery. In the cell, the sequence database
consists of the entire genome, and the binding site models
consist of the entire complement of transcription factor
binding sites.

Our approach to the database search task is based on
a novel scoring function for the alignment of the motif
models in the query with a sequence, and an algorithm for
finding the alignment that optimizes the scoring function.
The scoring function is an extension of theMAST (Bailey
and Gribskov, 1998) scoring function that combines the
scores of multiple, non-overlapping matches to the motifs
in the query. The alignment algorithm is similar to the
repeated match algorithm for aligning two sequences
(Durbin et al., 1998, p. 24–25). We implemented the
algorithm by introducing a new sequence model and
search algorithm intoMeta-MEME(Grundy et al., 1997),
which is part of the MEME family of tools (Bailey
and Elkan, 1994). The search algorithm includes a new
module for estimating theE-values of match scores. This
search algorithm, calledMCAST (Motif Cluster Alignment
Search Tool), can scan extremely long sequences in
limited memory. As a result of several optimizations,
MCAST is efficient and can search a ten megabase
sequence database with a typical five-motif query in less
than a minute on a 800MHz PC, scaling linearly to larger
databases or larger queries.

We describe the scoring function, sequence model,
search algorithm andE-value computation below. We then
describe our methods for testing the algorithm on real
and synthetic data, and describe two sets of experimental
results: simulations demonstrating the accuracy of ourE-
value calculation, and a comparison of the performance of
MCAST and a previously published method on four real
data sets. We end with a discussion of our results and
related methods.

ALGORITHM
The scoring function
Conceptually, we think of the alignment between the
query motifs and a target DNA sequence as consisting
of a set of ‘matches’, where each match corresponds
to a (putative) regulatory module in the sequence. The
positions in the sequence that are aligned with a motif
model are putative transcription factor binding sites, and
we refer to them as ‘hits’. We refer to the positions within
the matches that are not aligned with motifs as ‘gaps’. We
call the positions between matches ‘inter-cluster regions’.
(Note that a match contains one or more hits, and need not
contain hits to all of the motifs in the query.)

The goal of the alignment scoring function is to distin-
guish true regulatory modules from randomly occurring
matches. In light of what is known about regulatory mod-
ules, any such function must take into account the close-
ness of the agreement between the motif models and the
corresponding hits, the number of hits and the proximity
of the hits to each other. Thus, the design of the function
must address:

• how to score the hits,

• how to score (penalize) the gaps,

• how to combine the scores of the hits and gaps within
amatch, and

• how to combine the scores of matches and inter-cluster
regions.

Below, we describe how our scoring function addresses
each of the above issues, and compare it to the scoring
functions of existing methods.

Our scoring function is the sum of scores for the hits,
gaps and inter-cluster regions of an alignment. We define
A, the overall alignment score between a query (a set of
motifs) and a sequence to be

A =
c∑

i=1

Mi + cR,

where c is the number of matches (clusters) in the
alignment,Mi is the match score of thei th cluster, and
R is a ‘match penalty’. The match score of thei th cluster
we define to be

Mi =
n∑

j=1

(h j + d j g),

where n is the number of hits in the match,h j is the
score of thej th hit in the match,d j is the length of the
gap between hitj − 1 and hit j (d1 = 0), andg is a
‘gap penalty’. To complete the description of the scoring
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function, we describe below how we calculate hit scores
and match and gap penalties.

Wemodel a transcription factor binding site motif using
aposition-specific probability matrix (PSPM), in common
with two recent approaches to the database search problem
CIS-ANALYST (Bermanet al., 2002), andCOMET (Frith et
al., 2002). A PSPM defines a hidden Markov model of
motif sites with emission probabilities given by the entries
in the matrix, and transition probabilities of 1 between
adjacent columns from left to right. The probability of a
length-w sequence given such a width-w motif model is
the product of the probabilities of the letters, which are
given by the matrix. Like the other two search methods,
our score for a hit is based on the log-odds score of the
subsequence in the target sequence, and the motif model.
For subsequencex , the log-odds score,s, is defined as

s = log2
Pr(x |motif model)

Pr(x |background model)
.

We use a fixed, user-specified, zero-order Markov back-
ground sequence model, as doesCIS-ANALYST, andun-
like COMET, which uses a background model that varies
with the local sequence composition. (For a more com-
plete discussion of the differences betweenMCAST and
COMET, see the Discussion section.)

We define the hit score for the match between a motif
model and subsequencex to be

Pp(s) = − log2

(
P(s)

p

)
,

wheres is the log-odds score (defined above),p is a user-
specified ‘p-value threshold’, andP(s) is the p-value of
log-odds scores—the probability that a randomly chosen
sequence position would have log-odds score greater than
or equal tos. (In what follows, the variablep always refers
to the user-specifiedp-value threshold.)P(s) is estimated
based on the motif model and the background sequence
model in the same way as for theMAST algorithm (Bailey
and Gribskov, 1998) and further described in Bailey
(2003). Clearly, the scorePp(·), which we refer to as a
‘ p-score’, increases monotonically ins, so large values of
the p-score correspond to large log-odds scores. However,
taking thep-value ofs has the effect of down-weighting
the log-odds scores of wider motifs because the log-
odds score corresponding to a givenp-value increases
with the width of the motif. Finally, dividing thep-
value of s by thresholdp means that only scores that are
more significant thanp will have positivep-scores. The
contribution of hit scores to the match score is proportional
to the product of the hitp-values. This has been shown
to be a highly effective method of combining evidence
from multiple motif matches to sequences (Bailey and
Gribskov, 1998). Our algorithm only considers positions

with positive p-scores as potential hits, so theMCAST

scoring method identifies essentially the same potential
hits asCIS-ANALYST. Incontrast, potential hits considered
by COMET depend on the local composition surrounding
the hit (via the changing background model) and on a user-
specified mean-gap-length parameter,a.

In our scoring function, the total score for a gap is
a linear function of its length. UnlikeCIS-ANALYST,
which ignores gaps up to a user-specified length, gaps are
penalized by our scoring function. Our linear gap cost
is similar to the affine gap cost imposed by a Viterbi
alignment to a hidden Markov model, but avoids the
implicit assumption that gaps within matches are best
modeled by a geometric length distribution.

The gap penalty,g, is calculated so that, with a random
target sequence, random hits and their associated gaps will
have scores that essentially cancel one another. That is,
g is set so that the expected score of a random hit is
approximately equal to (minus) the expected total score
of a random gap. It can be shown (Bailey, 2003) that the
expected value of thep-score of a random subsequence
scored with a single motif is

µ ≈ 1/ log 2.

The expected score of a gap isg times the expected length
of a random gap,Dg. For simplicity, we set

g = −1

D0 log 2
,

assuming that gaps have zero cost, so the resulting value of
g will tend to over-penalize gaps slightly. To estimateDg,
let m be twice the number of motifs in the query. (As we
shall see, below, the model will contain 2m motifs since
we introduce a ‘reverse complement’ motif for each motif
in the query to handle motif occurrences on the reverse
complement DNA strand.) Wheng is zero, Dg can be
shown to be approximately

D0 ≈
L∑

i=0

i pd(i),

wherepd(i) is the probability of a length-i random gap,

pd(i) = p̂(1 − p̂)i

1 − (1 − p)mL
,

and p̂ is the probability of a random hit,

p̂ = 1 − (1 − p)m .

The above derivations assume that the motifs are indepen-
dent of each other and their reverse complements. When
this is not true (for example, with motifs that are perfect
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Fig. 2. The hidden Markov model. Dotted lines correspond to
zero-cost transitions, and dotted circles are non-emitting states.
The valuesg and R are transitioncosts. Motif states emit fixed-
length strings, with costs computed usingp-scores (see text for
details). The ‘+’ and ‘−’ versions of each motif correspond to
forward-strand and reverse-strand occurrences. The inter-module
intra-module states emit single characters with no associated cost.

palindromes), the value ofg estimated above will be larger
than it should be. Experiments indicate that small changes
in g have little effect on the accuracy of the algorithm (data
not shown.)†

The final component of our alignment scoring function
is the penalty for inter-cluster regions (the spaces between
putative regulatory modules). We allow the user to specify
a maximum allowed gap width,L. We then set the match
penalty R to be Lg. Note thatR is a penalty, and, like
g, is negative. The inter-cluster penalty isnot length-
dependent, thereby preventing the optimal alignment from
containing gaps longer thanL. As a side-effect, the
optimal alignment will also contain no matches with score
less thanR.

The model
The Meta-MEME model for regulatory modules in DNA
sequences is shown in Figure 2.MCAST automatically
creates this model from the motifs in the query plus the
reverse complement of each DNA motif. In the model,
motif states emit multiple characters at once, and are
therefore similar to a series of single-character states
connected by transitions with 1.0 probabilities. The score

† For queries with highly dependent motifs,MCAST provides an additional
parameter,α, that can be used to make the value ofg larger. Details are
given in Bailey (2003).

generated when a motif emits a subsequence is thep-
score of the subsequence, as described above. Note that,
although we speak of the model ‘generating’ sequences,
the model is not a traditional HMM, because we allow
the transition costs to be arbitrary, rather than constraining
them to be the logarithms of transition probabilities.

The other states in the model are either non-emitting
or free-emitting. The non-emitting states are simply a
topological shorthand. We could specify an equivalent but
more complex model that did not contain any such states.
The inter-module and intra-module states do emit letters
(one at a time) but do not accrue any score for doing so.
This arrangement is equivalent to setting the background
emission probability equal to the foreground probability in
these states. We thereby assume that the score of a match is
independent of the sequence composition of the non-motif
regions in and around the match.

The linear gap cost of intra-match gaps is controlled by
the single parameterg. Entering the state marked ‘Intra’
costsg, so the cost of an intra-match gap of lengthd is
dg. In contrast, the inter-module state has a match cost
R associated with entering it, but no cost associated with
extending it. Thus this state is like the so-called ‘free-
insertion modules’ used in profile HMMs (Kroghet al.,
1994). The match cost must be paid after generating each
regulatory module, thereby guaranteeing that a match will
occur only if it scores better thanR.

The gap penaltyg and the match penaltyR together
determine the maximum length of a gapL between
adjacent motifs in a regulatory module. The relationship
is simple:L = R/g. Using this definition, any gap longer
than L will receive a score less than−R. The sequence
could therefore be generated with less cost by entering the
inter-module state. Thus, any candidate match containing
a gap longer thanL (or more generally, any subsequence
scoring less than−R) will be split in two.

The MCAST algorithm
Having described theMeta-MEME model, the MCAST

algorithm is simple to describe:MCAST is simply the
Viterbi algorithm (Viterbi, 1967) applied to this slightly
non-conventional HMM, with the added constraint of
forbidding transitions into a motif with a negativep-
score. The algorithm builds a trellis, in which each row
corresponds to a state in the model, and each column
corresponds to a position in the sequence. The transitions
between adjacent columns in the trellis are determined by
the topology of the network. The algorithm finds a path
through the model that scores highest with respect to the
given DNA sequence. The algorithm is provably optimal,
maximizing the scoring function described above. The
Viterbi algorithm runs in timeO(�n), where � is the
number of transitions in the model andn is the length
of the DNA sequence. In our model, the number of
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transitions is proportional to the number of motifs, which
we assume is a small constant. Hence, the algorithm runs
in linear time in the length of the DNA sequence.

For some readers, it may be helpful to note that perform-
ing the Viterbi algorithm with this model is equivalent
to performing a variant of the repeated match algorithm
(Durbinet al., 1998, p. 24–25) with a simpler model. In the
repeated match algorithm, the repeat threshold R is spec-
ified external to the model. Hence, the free-insertion ‘in-
ter’ state is removed and some additional bookkeeping is
stored in the row corresponding to the ‘begin’ state. In this
formulation, the model has a simple star topology, with the
‘intra’ state at the center of the star.

One drawback to the Viterbi algorithm is that its
memory requirement isO(mn), wherem is the number
of states in the model. For a multi-motif model and
a multi-megabase sequence, this memory requirement
quickly becomes unwieldy. Memory-efficient variants
of the Viterbi algorithm are available, but they trade
memory for speed. Our implementation performs the
Viterbi algorithm in large, overlapping sliding windows.
The window width and overlap sizes are set larger than
the maximum length of a biologically plausible match.

Calculating E-values
We calculate theE-values of match scores by assuming
that random match scores follow an exponential distribu-
tion. We show empirically that this is true, below. It has
been reported that match scores using log-odds hit-scores
and affine gap costs also follow an exponential distribution
(Frith et al., 2002).

MCAST estimates the parameters of the score distri-
bution empirically from the actual scores generated in a
database search. To separate the random scores from true
matches we use expectation maximization (EM) (Demp-
steret al., 1977). We assume a Gaussian distribution for
the true match scores, and EM simultaneously estimates
the parameters of both components of the mixture of
scores (exponential random scores and Gaussian true
match scores). The assumption of a Gaussian distribution
for true match scores is made for convenience; any
unimodal distribution would probably work as well.

We assume that random match scores are exponentially
distributed with cumulative density function

F(x) = 1 − exp

(
R − x

µ

)
.

The p-value of match scorex is therefore

P(x) = 1 − F(x) = exp

(
R − x

µ

)
. (1)

We convert p-values toE-values (the expected number of
random match scores greater thanx) by multiplying by

the (estimated) number of random matches found in the
search.

METHODS
We test MCAST to evaluate the accuracy of its estimated
E-values and its predictive accuracy. In this section we
describe the data we use (motifs and sequence datasets),
and our measurement techniques. In all searches, we use
as theMCAST background model the base frequencies in
the DNA database being searched.

Simulated sequence databases and queries
For some tests of the accuracy ofMCAST E-values, we
create synthetic sequences containing simulated occur-
rences of regulatory modules. These are generated using a
Meta-MEME model like the one in Figure 2. The model is
constructed from five human regulatory motifs, selected
at random from TRANSFAC version 6.0 (Wingenderet
al., 2000). The resulting model (minus the ‘Inter’ state) is
used in a generative fashion to produce motif occurrences
interspersed with spacer regions. From a large pool of
such sequences, a collection of 10 are selected that contain
between 9 and 20 motifs in the first 1000 base pairs (bp).
This choice of number and spacing of motifs is based on
known CRMs inDrosophila. These randomly generated,
1000 bp sequences are then padded on either end with
4500 bp of zero-order random background sequence. The
entire process, including motif selection, is repeated 100
times, yielding 100 distinct sets of 10 positive examples.
Each of these positive data sets is embedded in a database
of 2000 negative examples. Like the positive sequences,
the negative sequences are 10000 bp long. The negative
sequences are generated from the same zero-order model
used to generate the non-motif portions of the positive
sequences. For the tests ofE-value accuracy, the queries
consist of subsets of the same TRANSFAC motifs as
used to generate the sequences. For each of the 100 sets
of synthetic sequences, four queries containing one, two,
four or all five motifs are used.

Real sequence databases and queries
Four sets of co-acting regulatory motifs were col-
lected from previous studies. The first set contains five
Drosophila motifs (Bcd, Cad, Hb, Kr, Kni) that control
expression of theeven-skipped gene’s second stripe. For
testing using these motifs, we employ a negative database
of 2039 randomly selected intergenic regions from
Drosophila with average length 1981 bp. The positive
database contains nineteenDrosophila cis-regulatory
modules (CRMs) with average length 1283 bp. These
CRMs are taken from nineDrosophila genes known to be
required for embryonic development and to be regulated
by at least one of the transcription factors Bcd, Cad, Hb,
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Kr and Kni. For further testing of the accuracy of esti-
matedE-values, we use a much larger database (92Mb)
containing all intergenic regions fromDrosophila. These
sequence and motif databases were all taken from Berman
et al. (2002).

The remaining three motif sets are from human. The
first set (LSF) contains four motifs associated with LSF-
regulated promoters: LSF, Sp1, Ets and the TATA box.
These were assembled from Frithet al. (2001) (LSF),
TRANSFAC accession no. M00196 (Sp1) (Wingender
et al., 2000), from Frithet al. (2002) (Ets), and from
Bucher (1990) (TATA). The second set (muscle) contains
five motifs (Mef-2, Myf, SRF, Tef and Sp1) that occur
in 27 experimentally supported muscle-specific regulatory
regions. The third set of motifs (muscle’) is a variant of
the second, in which the motif matrices are derived solely
from non-muscle-specific genes. This latter set avoids
some of the circularity involved in defining matrices
based upon motif occurrences that appear in the test set.
The muscle and muscle’ motif sets were assembled by
Wasserman and Fickett (1998). The positive LSF dataset
contains nine human CRMs assembled by Frithet al.
(2002). The positive muscle and muscle’ datasets contain
the 27 human CRMs assembled by Wasserman and Fickett
(1998). For the three human data sets (LSF, muscle and
muscle’), the negative dataset is a collection of 2005
randomly-chosen, 2000-bp human genomic sequences, as
selected by Frithet al. (2002).

All of the real datasets were processed to mask tandem
repeats using Tandem Repeats Finder (Benson, 1999).
Low complexity regions were then masked withDUST

(R. Tatusov and D. Lipman, manuscript in preparation).
The parameters used with Tandem Repeats Finder are:
(2 7 7 80 10 50 500 -m). WithDUST we use the default
parameters.

Evaluating the accuracy of E-values.
BecauseE-values are justp-values multiplied by the
number of random matches found in the search,E-
value accuracy andp-value accuracy are equivalent. For
simplicity, we consider the accuracy ofMCAST p-values.

No matter what the form of the match score distribution,
the expectedp-value of thei th largest random score in a
search yieldingn matches is

pr (i) = i + 1

n + 1
.

We will refer to pr (i) as the ‘rankp-value’ of the (i th
largest) score.

The accuracy ofp-values estimated byMCAST can be
evaluated by comparison with the corresponding rankp-
values. For a quantitative evaluation, we use the ‘p-value
slope error’ (PSE) (Bailey and Gribskov, 2002) metric.

PSE measures how closely the estimatedp-values match
the corresponding rankp-values. The value of PSE is one
minus the slope of the regression curve to the points{<
P(xi ), pr (i) >}. PSE has the value zero if the estimated
p-values are perfectly accurate. For qualitatively verifying
the accuracy of estimatedp-values, we plot the rankp-
value versus match score for all the random matches found
in a search, along with a plot ofP(x) (Equation (1)).
The accuracy of the estimatedp-values can be judged by
seeing how well the match score points agree with the
P(x) curve.

Measuring predictive accuracy
The output of theMCAST algorithm is a ranked list of
predicted matches. To evaluate the performance of the
algorithm, this ranked list is compared to the set of
true matches, and each predicted match is labeled as
a ‘positive’ or ‘negative’. Starting from the top of the
ranked list, we label as ‘positive’ each predicted match that
overlaps a true match. Whenever a positive is labeled, any
lower-ranked predicted matches that overlap the same true
match are eliminated from the list. Predicted matches that
do not overlap any true match are labeled ‘negative’.

Given the ranked list of positive and negative predicted
matches, we measure the search algorithm’s performance
using a variant of the receiver operating characteristic
(ROC) score (Gribskov and Robinson, 1996; Schafferet
al., 2001). The ROC curve plots the true positive rate as
a function of false positive rate, for varying classification
thresholds in the ranked list of predicted matches. The
ROC50 score is the area under this curve, up to the fiftieth
false positive match, normalized so that the score falls
between 0 and 1. An ROC50 of 1 corresponds to perfect
performance (all positives ranked above all negatives). On
this task, random performance corresponds to an ROC50
close to 0.

For consistency with Frithet al. (2002), we also measure
the average number of (kilo) base-pairs per false positive
at a threshold that yields approximately 60% sensitivity
(FP60). However, we believe that ROC50 is a more
revealing measure of predictive accuracy than FP60 when
comparing search methods, because ROC50 takes into
account the complete ordering, rather than focusing on a
single point along the ROC curve.

RESULTS
In this section we show that theE-values for match scores
computed byMCAST are accurate and show how to use
them to select the best settings of the search parameters
p and g. We then show the predictive accuracy possible
whenMCAST is used to search for cis-regulatory modules
in Drosophila and human sequences, and compare with
results using an earlier method. Finally, we examine
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Table 1. Accuracy of estimatedE-values: real motifs, synthetic sequences

query p
size 0.00001 0.00005 0.0001 0.0005 0.001

1 – 0.100 0.066 0.022 0.021
2 – 0.057 0.039 0.011 0.008
4 0.068 0.034 0.026 0.006 0.005
5 0.067 0.030 0.015 0.005 0.003

The average PSE (see Methods) for searches of synthetic sequences using
various numbers of real human transcription factor binding site motifs in
the query is shown. Each value of PSE is the mean of 100 independent
experiments. Results are shown for distinct values ofp. The parameterg is
200 in all searches. A dash (‘–’) indicates that the minimum number of
matches forE-value estimation (200) are not found in any experiment.

the speed of theMCAST algorithm for searching large
genomic databases.

Accuracy of E-values
Wetest the accuracy of theE-value reported byMCAST in
two ways. First, we search synthetic sequences (some of
which contain synthetic cis-regulatory modules) with sets
of real transcription factor motifs. Second, we search real
sequences with shuffled versions of motifs.

In experiments using actual TRANSFAC motifs and
synthetic sequences containing occurrences of those mo-
tifs, MCAST accurately estimates theE-values of random
matches. (See Methods section: Simulated sequence
databases and queries.) The average PSE under these con-
ditions is shown in Table 1. Similar results are obtained
with different settings ofg between 35 and 1000 (data not
shown). By way of comparison, PSE for Smith-Waterman
alignment scores of protein sequences using the best
empirical estimation methods is around 0.03 (Bailey and
Gribskov, 2002). These experiments show that both the
form of the random match score distribution and our EM
algorithm to estimate the distribution from the empirical
scores work well when the random matches come from
zero-order Markov sequence.

To test the accuracy of theE-values estimated by
MCAST when searching real DNA, we shuffle the motifs
in each of the four real motif sets (Drosophila, LSF,
muscle, muscle’). Shuffling is accomplished by randomly
permuting the entries in each column (motif position)
in the motif. We use the shuffledDrosophila motifs to
search the large (92Mb)Drosophila sequence database.
We search our human genomic database using shuffled
versions of each of the other three motif sets. Because
the motifs are shuffled, we expect all match scores to be
essentially random. Typical results are shown in Figure 3.
The accuracy ofMCAST p-values depends somewhat
on p, the p-value threshold. For settings ofp below
0.001, the rankp-values (y values of points) are virtually
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Fig. 3. E-value accuracy: real sequences, shuffled motifs. The plot
shows threeMCAST searches using the four shuffled LSF motifs
and the human intergenic database. TheMCAST search parameters
are L = 200 and the indicated values ofp. Each set of points
corresponds to oneMCAST search. Each curve is the exponential
score distribution estimated byMCAST (using EM) for that search.

identical to the estimatedp-values (they values of the
estimated exponential distribution curves). Thep-values
continue to be accurate even for settings ofp as low as
0.00005 (data not shown for clarity). Some high-scoring
outliers are seen for larger settings ofp, so the accuracy
of MCAST E-values may suffer with settings ofp ≥ 0.001
in some searches.

Predictive accuracy
We measure the predictive accuracy ofMCAST using
the Drosophila motif set from Bermanet al. (2002) and
the three human motif sets from Frithet al. (2002), as
described in the Methods section. For comparison, we
also measure the accuracy ofCOMET on the same data.
For each search method, we try several parameter settings
and report the optimum value of each accuracy measure.
This optimization is done separately for each method and
each accuracy measure. Five distinct settings ofp and
ten settings ofL are used withMCAST (fifty parameter
combinations). Nine distinct settings of expected gap
length,a, and six window sizes,w, are used withCOMET

(fifty-four parameter combinations). All other parameters
are left at their defaults.‡ The best FP60 is not always
obtained at the same parameter settings as the best ROC50.

‡ Values ofMCAST andCOMET parameters used in experiments:

MCAST

{
p∈{0.00001, 0.00005, 0.0001, 0.0005, 0.001} and
L∈{25, 35, 50, 100, 150, 200, 300, 400, 500, 700}.

COMET

{
w∈{75, 150, 300, 600, 1200, 2400} and
a ∈{5, 10, 15, 25, 35, 50, 100, 125, 150}.
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Table 2. Predictive accuracy for two search methods

motif set FP60 ROC50
MCAST COMET MCAST COMET

Drosophila >4041 1010 0.68 0.61
LSF 167 85 0.44 0.35
muscle 30 69 0.38 0.46
muscle’ 14 6 0.16 0.25

Performance is given in terms of FP60: number of thousands of base-pairs
per false positive at a threshold yielding approximately 60% sensitivity,
and, ROC50: receiver operating characteristic integrated up to the fiftieth
false positive. Performance figures inbold are the better of the two. For
FP60, the sensitivity levels (true positives/total positives) are: 11/19
(Drosophila), 5/9 (LSF) and 16/27 (muscle, muscle’).

The predictive accuracy of the two search methods is
shown in Table 2. The relative performance of the methods
depends on the accuracy metric used. In terms of FP60,
MCAST performs better in three cases and worse in one.
In terms of ROC50 each method performs better on two
motif sets, and worse on two.

The most striking result in Table 2 is with the
Drosophila motifs. MCAST makes at least four times
fewer false positive predictions thanCOMET at a sen-
sitivity of 60%. With that motif set as well as with the
LSF motif set, MCAST achieves higher ROC50 values
than COMET. On the other hand,COMET has better
ROC50 than MCAST with the muscle and muscle’ motif
sets, despite having poorer FP60 on one of them. This
discrepancy highlights the difference in the two accuracy
measures. Whereas FP60 puts emphasis on the selectivity
at a given sensitivity (60%), ROC50 takes both selectivity
and sensitivity into account, ignoring performance beyond
the fiftieth false positive.

The predictive accuracies ofMCAST and COMET vary
greatly as a function of their parameters. Figure 4 is typical
of how ROC50 varies with the settings of the two search
parameters. Each point in the figure shows the accuracy
of a MCAST or COMET search with theDrosophila data.
Curves labeledp = 0.001 etc. show ROC50 for MCAST

searches with the givenp and values ofL shown on the
x-axis. The two curves labeledw = 75 andw = 1200,
respectively, show ROC50 for COMET searches on the
Drosophila data using the given window sizes and various
values of the expected gap length parameter,a, shown on
thex-axis.

The discrepancy in predictive accuracy betweenMCAST

and COMET is much larger (inMCAST’s favor) when
only the default value ofCOMET’s window size parameter
(w = 75) is used. In that case, with the best setting
for the otherCOMET parameter (expected gap length,a),
COMET’s FP60 value on theDrosophila dataset is 59,
sixty-eight times worse thanMCAST’s. As can be seen in
Figure 4,COMET’s ROC50 is also much worse with the
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Fig. 4. ROC50 as a function of the search parameters. The
Drosophila dataset is searched using theDrosophila motifs. The
first four curves are forMCAST searches and show how ROC50
varies as a function of the maximum gap length (L) with the p-
value threshold (p) held constant at different values. The last two
curves show ROC50 as a function ofCOMET’s expected gap length
parameter (a) using the default window size (w = 75) and the
experimentally-determined optimal size (w = 1200).

default window size. This points out the importance of
trying different window sizes when usingCOMET.

On theDrosophila data,COMET achieves its best value
of FP60 (Table 2) and ROC50 (Fig. 4) when its window
size parameter,w, isset to 1200. The average length of the
Drosophila dataset sequences is about 2000bp. This leads
us to speculate thatCOMET’s technique of re-estimating
the background distribution within a sliding window is
responsible for its reduced accuracy (vis-a-visMCAST) on
theDrosophila dataset.

Speed
We have optimized the design ofMCAST for searching
large sequence databases. For databases containing more
than one hundred thousand base pairs, search time scales
nearly linearly in the size of the database and the total
number of columns in the motifs making up the query.
For example, on an 800Mhz Pentium PC running Linux,
MCAST can search about 10 million base-pairs per motif
column per second. Thus, a search of 10 million base
pairs with five motif query (containing a total of 49 motif
columns) takes about 49 seconds. This is approximately
100 times faster than the same search usingCOMET using
its default parameters.

DISCUSSION
We first introduced the idea of using motif-based hid-
den Markov models to model biological sequences as the
Meta-MEME algorithm (Grundyet al., 1997). In the current
work, we explore extensions toMeta-MEME specifically
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tailored to the problem of searching for regulatory mod-
ules. These extensions include a new model, a novel
scoring function, a new search algorithm optimized for
finding multiple clusters of motifs in long sequences, and
a method for determining alignmentE-values. We have
shown that the new search algorithm,MCAST, is efficient
and accurate at recognizing occurrences of regulatory
modules in genomic DNA. In simulation, the algorithm
produces accurateE-values. With real datasets,MCAST

often performs substantially better on the task of locating
regulatory modules than theCOMET algorithm, which
also uses motif-based HMMs.

There are three major differences between theMCAST

andCOMET algorithms.MCAST introduces the concept of
p-scores, andMCAST alignments thus contain only statis-
tically significant hits to the motifs in the query.MCAST

uses a fixed background model in contrast toCOMET’s
sliding-window background. This results inMCAST being
about one hundred times faster thanCOMET when using
its default (width 75) window. Unfortunately, it also re-
sults inMCAST being more prone to false positives (with
very low E-values) in vertebrate sequences due to iso-
chores. A more subtle distinction between the two algo-
rithms is thatMCAST uses the repeated match algorithm
(Durbin et al., 1998, p. 24–25) rather than the Waterman-
Eggert algorithm (Waterman and Eggert, 1987). In the fu-
ture, we may add a Waterman-Eggert search algorithm to
theMeta-MEME toolkit. In conjunction with log-odds scor-
ing (the default forMeta-MEME) and a module for comput-
ing Waterman-Eggertp-values (awaiting publication of a
detailed description of the method sketched in Frithet al.
(2002), this would yeild essentially theCOMET algorithm
(minus the sliding-window background model).

Other related work
Three classes of algorithms for recognizing regulatory
modules have been proposed. Algorithms in the first class
use a sliding window approach, scoring each subsequence
that appears in the window with respect to a given
collection of motifs. Examples include PromoterScan
(Prestridge, 1995), FunSiteP (Kondrakhinet al., 1995),
ModelInspector (Frechet al., 1997), CIS-ANALYST

(Bermanet al., 2002),FLY ENHANCER (Marksteinet al.,
2002), and several other methods (Levy and Hannenhalli,
2002). Typically, a window-based algorithm requires that
the user specify three parameters: the width of the sliding
window, a threshold for determining when a weak match
to a given motif is considered genuine, and the minimum
number of motif occurrences required to appear in a given
subsequence. The sliding window approach has intuitive
appeal, and has recently yielded good results in analyses
of motif clusters inDrosophila (Berman et al., 2002;
Marksteinet al., 2002).

Our work falls into the second class of algorithms,
which use hidden Markov models (HMMs) to address
several of these difficulties (Crowleyet al., 1997; Frith
et al., 2001, 2002). HMMs automatically disallow over-
lapping motifs, and the HMM framework makes it easy
to specify parameters that trade off the quality versus
proximity of motif occurrences. An additional benefit of
HMMs is their ability to learn parameters directly from a
set of observations, freeing the user from having to set the
parametersa priori. Unfortunately, the relative paucity
of knowledge and data concerning the exact locations
of many binding sites renders such a learning approach
infeasible at this time. Consequently, previous models, as
well as our own, require that the user specify the trade-off
parameters, rather than allowing the parameters to be
learned from data (Frithet al., 2001, 2002).

Although the HMM approach has several benefits, it
also brings with it two significant disadvantages. Both are
related to the Markov property. First, within the HMM
framework, it is very difficult to impose distal constraints.
Thus, for example, a sliding window approach has some
intuitive appeal, because the regulatory machinery must
usually be physically proximal to the start of transcrip-
tion. However, enforcing the constraint that a predicted
regulatory module have a total length of at mostn bases is
(nearly) impossible in a Markov framework. The second
drawback is related to the first: Markov processes in
general have a difficult time accurately modeling variable-
length sequences. A simple state with a self-transition
will generate sequences whose lengths are geometrically
distributed. Multi-state models can yield more complex
length distributions, but the geometric distribution re-
curs frequently. This latter problem motivates one of
the ways in which our model violates the probabilistic
HMM framework: we avoid a geometric distribution of
inter-module sequence lengths by removing the length
distribution in this portion of the model.

Both the sliding window and the HMM approaches to
the regulatory module search problem are generative: both
rely upon a model (implicit or explicit) of a regulatory
module. The third class of algorithms uses a discriminative
technique. These methods model the difference between
the regulatory module and non-regulatory sequence. Lo-
gistic regression analysis (LRA) (Wasserman and Fickett,
1998; Krivan and Wasserman, 2001) is a discriminative
technique based upon a sliding window. The Fisher kernel
SVM method (Pavlidiset al., 2001) uses a discriminative
algorithm based upon a hidden Markov model. In the pres-
ence of a small amount of data, discriminative techniques
typically achieve better performance than similar, gener-
ative techniques. However, the discriminative approach
necessarily requires as input a collection of sequences
that are known not to contain regulatory modules, and an
accurate such collection is at this time difficult to obtain.
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Future work
Searching for regulatory modules remains a difficult,
unsolved problem. As pointed out by Frithet al. (2002),
many known, biologically active regulatory modules are
not statistically significant when modeled as unordered
clusters of motifs. One potential solution is to seek ways to
focus the search onto a smaller subset of the genome, thus
increasing the significance of any clusters found. A second
solution might be to post-process the clusters to remove
clusters that don’t satisfy some set of constraints (e.g., that
don’t contain some specific subset of motifs). Yet another
approach is to attempt to introduce ordering and spacing
constraints into the model. This may become feasible as
more data on regulatory modules become available.
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