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Abstract 
 
Shotgun tandem mass spectrometry-based peptide sequencing using programs such as 

SEQUEST allows high-throughput identification of peptides, which in turn allows 

identification of corresponding proteins.  We have applied a machine learning algorithm, 

called the support vector machine, to discriminate between correctly and incorrectly 

identified peptides using SEQUEST output. Each peptide was characterized by SEQUEST-

calculated features such as delta Cn and Xcorr, measurements such as precursor ion 

current and mass, and additional calculated parameters such as the fraction of matched 

MS/MS peaks. The trained SVM classifier performed significantly better than previous 

cutoff-based methods at separating positive from negative peptides. Positive and negative 

peptides were more readily distinguished in training set data acquired on a QTOF 

compared to an ion trap mass spectrometer. The use of 13 features, including four new 

parameters, significantly improved the separation between positive and negative peptides. 

Use of the support vector machine and these additional parameters resulted in a more 

accurate interpretation of peptide MS/MS spectra, and is an important step towards 

automated interpretation of peptide tandem mass spectrometry data in proteomics.  
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Introduction 
 

     The separation and sequencing by capillary hplc-tandem mass spectrometry of 

femtomole (or below) peptide levels is the basis for the high-throughput identification of 

proteins present in cell or tissue samples.  The technique has broad applicability: 

applications include the identification of peptides binding individual MHC proteins of defined 

haplotype1, identification of a peptide recognized by melanoma specific human CTL cell 

lines2, the identification of individual protein complexes3-4, large scale analysis of the yeast 

proteome5, identification in yeast of interacting proteins for a large number of tagged 

protein baits6-7, identification of proteins in urine8, and definition of proteins of the 

nucleolus9. 

     The analysis of peptide collision-induced dissociation spectra to give information on a 

peptide’s sequence was developed by Hunt and coworkers10-14 and Biemann15. To identify 

proteins from mass spectrometry data, protein database searches initially used peptide 

fragments16 or sequence tags17, and included sequenced genomes18 and more 

sophisticated search techniques19-22.  Yates and co-workers developed correlations of 

peptide tandem mass spectrometry data and sequences from protein databases23-25, 

incorporated these in the program SEQUEST, and coupled this software with capillary 

LC/MS/MS data and database searches to identify proteins26  and protein complexes27.  

Due to its early implementation, availability and the widespread use of ion trap, triple 

quadrupole, and quadrupole time-of-flight mass spectrometers that generate compatible 

data, SEQUEST is one of the most commonly used programs. 

     The use of database search programs introduces questions about how to interpret their 

output.  SEQUEST outputs for each spectrum one or more peptides from the given 
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database whose theoretical spectra closely match the given spectrum.  Associated with 

each match is a collection of statistics.  Initially, the difference between normalized cross-

correlation functions (delta Cn) for the first and second ranked results from a search of a 

relatively small database was used to indicate a correctly selected peptide sequence23, 25.  

Additional criteria were subsequently added, including the cross-correlation score between 

the observed peptide fragment mass spectrum and the theoretically predicted one (Xcorr), 

followed by a manual examination of the MS/MS spectra27.  More stringent criteria 

combined the use of Xcorr cutoffs, delta Cn, and the correspondence of peptide sequences 

with those expected for cleavage with the enzymes used for proteolysis5, 28.   

      Recently, Moore et al. described a probabilistic algorithm called Qscore29, for evaluating 

SEQUEST database search results.  In contrast to previous heuristic techniques, Qscore is 

based upon a probability model which includes the expected number of matches from a 

given database, the effective database size, a correction for indistinguishable peptides, and 

a measurement of match quality. The algorithm performs well in distinguishing between 

true and false matches from SEQUEST outputs.  

      The approach described here addresses a similar problem using a different approach.  

Rather than building an algorithm by hand, we use a machine learning algorithm, called the 

support vector machine (SVM), to learn to distinguish between correctly and incorrectly 

identified peptides. The support vector machine (SVM) 30-32 is a supervised learning 

algorithm, useful for recognizing subtle patterns in complex data sets. The algorithm has 

been applied in domains as diverse as text categorization, image recognition, hand-written 

digit recognition32 and in various bioinformatics domains, including protein remote 

homology detection33, protein fold recognition34, and microarray gene expression 



 6

analysis35-36.  The SVM is fundamentally a binary classifier: given two classes of data, the 

SVM learns to distinguish between them and to predict the classification of previously 

unseen examples.  In the application described here, the algorithm is trained from a labeled 

collection of SEQUEST outputs, where the labels indicate whether the peptide represents a 

correct or incorrect identification. The SVM then learns to distinguish between peptides that 

were correctly and incorrectly identified by SEQUEST. 

     The SVM algorithm is surprisingly simple. It treats each training example as a point in a 

high-dimensional space and searches for a hyperplane that separates the positive from the 

negative examples. As such, the SVM is closely related to the perceptron algorithm37, with 

three important differences.  First, motivated by statistical learning theory31, the SVM 

searches for a hyperplane that separates the two classes with the largest margin; i.e., the 

SVM finds a hyperplane which maximizes the minimum perpendicular distance to any 

training example.  Choosing the maximum margin hyperplane reduces the chance that the 

SVM will overfit the training data.  Second, for data sets that are not separable by a simple 

hyperplane, the SVM uses a mathematical trick, known as the kernel trick, to operate 

implicitly in a higher-dimensional space.  By increasing the dimensionality of the space in 

which the points reside, the SVM can learn complex decision boundaries between the two 

given classes.  Finally, for data sets that contain some mislabelled examples, the SVM 

incorporates a soft margin.  The SVM may find a decision boundary that nearly, but not 

perfectly, separates the two given classes.  A few outlier examples are allowed to fall on 

the wrong side of the decision boundary. 

     Here we use tryptic digests of mixtures of known protein standards, purified proteins, or 

of a variety of affinity extracts by specific antibodies or other binding proteins, to generate 
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LC/MS/MS data using ion trap or quadrupole time-of-flight (QTOF) mass spectrometers.  

Peptides are classified as positive examples (derived from proteins known or expected to 

be in the samples) or negative examples (peptides not expected to be in the samples).  

Each example in the training set is characterized by a vector of features, including 

observed data (peptide mass, precursor ion intensity) and SEQUEST-calculated statistics 

(such as the parameters Xcorr, delta Cn, Sp,  and RSp).  These labelled vectors are then 

used to train an SVM to distinguish between positive and negative examples. 

      Our experiments show that the trained SVM, when tested on its ability to classify 

previously unseen examples, exhibits high sensitivity and specificity.  We illustrate the 

learning procedure using two differently-sized databases, as well as using data generated 

on ion trap and QTOF mass spectrometers.  The SVM yields significantly fewer false 

positive and false negative peptides than any of the cutoffs previously proposed, and gives 

a cleaner separation of positive and negative peptides than Qscore-based single peptide 

analysis. The trained SVM is an accurate, high-throughput technique for the examination of 

SEQUEST results, which will enable the processing of large amounts of data generated 

from examinations of complex mixtures of proteins. 

Experimental Section 

 

     Peptide Samples.  Tryptic digest test mixtures containing 500 pmol of reduced, 

iodoacetic acid-alkylated hen egg white lysozyme, horse myoglobin and horse cytochrome 

c, bovine serum albumin and bovine carbonic anhydrase were purchased from Michrom 

Bioresources (Auburn CA). These standards were mixed so that individual test samples 

contained from 5 to 80 fmol of each of the five proteins, with 2-fold differences in each 

concentration. Affinity extracts of cultured human Jurkat cells were prepared using 
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antibodies specific for individual antigens, and were carried out as described38. Individual 

baits or antigens and the source of the antibodies used for the affinity extractions included 

heat shock protein 90 (MA3-010 antibody, Affinity BioReagents, Golden CO), RbAp48 

(13D10 antibody, Upstate Biotechnology, Lake Placid, NY), the synthetic C-terminal 

p21cip1/waf1 peptide biotin-GSGSGSGSGSKRRQTSMTDFYHSKRRLIFS-acid, the fusion 

protein glutathione S-transferase-S5a (AFFINITI Research Products Ltd., Exeter, UK), and 

green fluorescent protein (rabbit polyclonal antibody, Molecular Probes, Eugene OR).  

     Mass Spectrometry and Database Searches.    Ion trap mass spectrometry utilized a 

Finnigan LCQ (ThermoFinnigan, San Jose CA) and an LC Packings (San Francisco CA) 

Ultimate capillary hplc and custom packed 75 micron internal diameter capillary C18 

reversed phase columns for sample injection and chromatography, as described38. 

Quadrupole time of flight mass spectrometry was carried out using a Micromass QTOF-1 

mass spectrometer coupled to an LC Packings capillary hplc as above. Peptides were 

eluted using a 1% acetonitrile/min. gradient. Database searches utilized either the 

nonredundant human protein database of March 15, 2002, or the nonredundant protein 

database of March 6, 2002. Both were downloaded from the National Center for 

Biotechnology Information (http://www.ncbi.nlm.nih.gov). Proteins from the human 

immunodeficiency virus were removed from the nonredundant human protein database 

before use. The version of SEQUEST (ThermoFinnigan, San Jose, CA) used for database 

searches was SEQUEST 2.0 that was distributed with Sequest Browser.  Tryptic cleavages 

at only lys or arg and up to two missed internal cleavage sites in a peptide were allowed. 

The maximal allowed uncertainty in the precursor ion mass was 1.5 m/z. SEQUEST 

searches allowed optional met oxidation and cys carboxamidomethylation since cysteines 
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were derivatized in this fashion after protein thermal denaturation and reduction. Peptides 

with masses from 700-3500 m/z and precursor charge states of +1, +2 and +3 were 

allowed. A few peptides analyzed on the QTOF-1 were present as +4 ions and were left in 

the appropriate positive or negative category. For spectra collected on the LCQ, the 

minimum total ion current required for precursor ion fragmentation was 1.0 x 105, the 

minimum number of ions was 25, and IonQuest filtering was turned off. Single precursor ion 

scans from 350 - 1800 m/z were followed by 6 MS/MS scans from 50 to twice the precursor 

ion m/z, up to a limit of 1800 Da.. Dynamic exclusion was turned on for a duration of 1 min. 

A collision energy on the LCQ of 30 was used for all fragment ion spectra. For the QTOF-1, 

a precursor charge-dependent and peptide mass-dependent collision energy was used, 

ranging from 16-55 ev for +1 ions of 388-2000 Da, 22-65 ev for +2 ions of 400-2000 Da, 

16-50 ev for +3 ions between 435-2000 Da and 19-36 ev for +4 ions between 547-2000Da. 

For database searches using non-human protein test samples, sequences for the non-

human proteins were added to the nonredundant human protein database.  

     Positive and negative peptides.  Positive peptides were selected by several criteria. 

One was tryptic peptides from five known proteins in tryptic digest standards. A second was 

peptides from proteins expected to be present in affinity extracts because they are derived 

from the antibody or affinity reagent used in the extraction, from the known antigen for the 

antibody, from known interacting partners of the antigen, or are autolytic fragments of 

trypsin. A third category includes peptides from extracted proteins thought to be present 

due to the identification of at least two peptides from that protein with SEQUEST scores 

that meet stringent criteria5, 28. This includes common contaminating proteins such as 

myosin, heat shock proteins, defined cytokeratins, and may include proteins not previously 
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demonstrated to interact with a particular bait. Tryptic digests from isolated protein 

standards were injected at different levels between 5-1000 fmol to include SEQUEST 

scores from peptides with strong as well as weak signals. 

     Negative peptides were selected from tryptic digests of known protein standards, in 

which these peptides were assigned by SEQUEST to proteins other than the injected 

protein or its human homolog. A second category of negative peptides included peptides 

selected from lower scoring peptide matches (i.e. from incorrect proteins) to MS/MS data 

from peptides from a known standard protein.  

     Construction of training sets.  Training sets were constructed using data collected 

and analyzed under three different conditions: data collected using an ion trap mass 

spectrometer and analyzed using the nonredundant human and full nonredundant 

databases, and data collected on a QTOF mass spectrometer analyzed using the 

nonredundant human database. All three sets included 9 experimentally measured and 

SEQUEST-calculated parameters23-25: MS/MS spectrum total ion current, peptide charge, 

peptide precursor ion mass, the difference in observed and theoretical precursor ion 

masses for the best-fit peptide, the SEQUEST variables Xcorr (cross-correlation score of 

the observed to the theoretical MS/MS spectrum for a peptide sequence), delta Cn (the 

magnitude of the difference in normalized cross-correlation parameter values for the first 

and second hits found by SEQUEST), Sp (the preliminary score for a peptide after 

correlation analysis to the predicted fragment ion values), RSp (the final correlation score 

rank), and the percent of predicted y and b ions matched in the MS/MS spectrum. 

      A training set representing ion trap data and a SEQUEST nonredundant human 

database search was constructed containing 696 positive peptides, including 338 unique 
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peptides representing 47 different proteins. Multiple copies of some individual peptides 

were obtained from independent runs using from 5 fmol to 1 pmol of individual standard 

proteins, resulting in peptides with a large dynamic range in signal to noise. There were a 

total of 465 negative peptides, of which 435 were unique; 30 negatives were generated 

using peptides that were second or lower choices below a top ranked positive peptide. 

Initial support vector machine calculations incorrectly assigned negative labels to a number 

of positive peptides. Upon examination, in a number of cases the top ranked peptide from a 

SEQUEST database search, for a given precursor ion and MS/MS spectrum, was instead 

from a different protein. SEQUEST had selected a lower ranked peptide from the protein of 

interest and incorrectly listed it as being top ranked. As a result of this round of SVM 

calculations, all gi or accession numbers for positive peptides were verified as 

corresponding to the protein identified, and a number of positive peptides with relatively low 

scores were individually blasted against the nonredundant database to check the identity of 

their source protein. 

     A second training set representing ion trap data and a SEQUEST search using the full 

nonredundant database was constructed. It contained 497 positive peptides assigned to 

280 unique sequences from 33 different proteins. It also contained 479 negative peptides 

assigned to 460 different peptide sequences; 67 negatives were generated using peptides 

that were second or lower choices below a top ranked postive peptide. This database had 

approximately 8 times as many sequences as the nonredundant human protein database, 

and may be useful for finding protein homologs from other organisms when the human 

protein sequence is not in a database (for analyses using human cells) or for analysis of 

non-human samples.  The most significant outliers from initial SVM analyses were 
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examined to uncover errors in SEQUEST-peptide sequence assignment or errors in data 

handling. 

     A third training set representing QTOF data and a SEQUEST search using the 

nonredundant human database was also constructed. It contained 1017 positive and 532 

negative peptides analyzed on a quadrupole time-of-flight mass spectrometer. This training 

set was created for comparison with the two previous training sets since data for these 

peptides was collected on a different instrument. The positive peptides were derived from 

45 different proteins, and represented 493 unique sequences. The negatives contained 

MS/MS spectra assigned to 335 different sequences. Seventy additional negative peptides 

were derived by selecting lower choices than the top ranked peptide, when the top ranked 

peptide was correctly assigned to a known protein from a standard peptide map.  As 

before, initial support vector machine analysis was used to uncover mistakes in data entry 

or incorrect assignments of sequences to proteins by SEQUEST, by analysis of individual 

false positives and false negatives. 

     Four new parameters used to evaluate SEQUEST output.  The basic parameters 

used to evaluate SEQUEST output included experimentally measured or calculated 

parameters such as precursor ion mass, precursor ion current, or peptide charge. They 

also included those calculated using SEQUEST: mass difference between observed and 

calculated precursor ions for the best fit sequence, Xcorr, delta Cn, Sp, RSp, and % y and 

b ions matched. Four additional parameters were measured or calculated. These  included 

a count of the number of peaks in the MS/MS spectrum, and the fraction of these peaks 

matched by predicted peptide fragments. An MS/MS peak for ion trap data was defined as 

having over 103 counts, and for QTOF-1 data as having over 1 count. In a noisy MS/MS 
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spectrum, the fraction of matched peaks should be low, for both positive and negative 

peptides. In other MS/MS spectra it should be lower for negative than for positive peptides. 

A third parameter is the fraction of the MS/MS spectrum total ion current that is in matched 

peptide fragments. For a good match, this fraction should be high, and for a poor match it 

should be low. A fourth parameter is the sequence similarity between the top peptide 

choice and second ranked choice. When delta Cn is low, this parameter is intended to mark 

these peptides for further examination. When the value of this parameter is close to 1 (high 

sequence similarity) and other scores are good, the individual peptides (and consequently 

proteins) identified are examined to see if they are similar. If so, the identification may be 

useful. If the sequences are different, a unique peptide/protein is not defined by the 

combined scores. 

     Support Vector Machine calculations.  The SEQUEST output data is summarized in a 

(number of peptides) by (9 or 13 parameter) matrix, in which each row contains a vector 

consisting of the SEQUEST output parameters associated with a particular protein.  This 

data is then normalized in two ways. First, in order to give equal importance to each of the 

features, the columns of the matrix are normalized by dividing each entry by the column 

sum. This operation ensures that the total for each column is 1.0.  Second, each 9- or 13-

element vector is converted to unit length by dividing each vector component by the 

Euclidean length of the vector.  This operation projects the data onto a unit sphere in the 9- 

or 13-dimensional space defined by the data.  Note that this latter normalization can be 

performed in the feature space, by defining a normalized kernel K' in terms of the original 

kernel K: 
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                       K(X,Y) 

  K'(X,Y) = ------------------- 

            sqrt(K(X,X) K(Y,Y)) 

 

The kernelized normalization has the advantage of implicitly operating in the higher-

dimensional kernel space. 

     Support vector machines are trained using a simple optimization algorithm33.  A software 

implementation in ANSI C is freely available at http://microarray.cpmc.columbia.edu/gist. 

The output of the SVM optimization is a set of  weights, one per peptide in the training set.  

The magnitude of each weight reflects the importance of that peptide in defining the 

separating hyperplane found by the optimization: peptides with zero weights are correctly 

classified and far from the hyperplane; peptides with small weights are correctly classified 

and close to the hyperplane; peptides with large weights are incorrectly classified by the 

hyperplane, as described next.  The SVM weights, together with the original training set, 

can be used to predict the classification of a previously unseen peptide vector.  

     In most classification tasks, the positive and negative class labels assigned to the 

training set are not 100% correct. Therefore, the SVM employs a soft margin, which allows 

some of the training examples to fall on the "wrong" side of the separating hyperplane, as 

shown in Figure 1. An SVM soft margin may be implemented in several ways.  We employ 

a 2-norm soft margin, which charges each misclassified example with a penalty term that 

increases quadratically according to the example's perpendicular distance from the 

hyperplane. In order to account for differences in the number of positive and negative 

examples, errors in the positive class (for which we have fewer examples) are charged 

more heavily than examples in the negative class.  The asymmetric 2-norm soft margin is 
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implemented by adding a constant to the diagonal entries in the kernel matrix32.  The 

diagonal factor added to K(X,X) is 0.2 * (n_X / n), where n_X is the number of training 

examples in the same class as example X, and n is the total number of training examples35. 

     To test the generalization performance of the algorithm, the SVM is trained and tested 

using leave-one-out cross-validation. In this paradigm, a single example is removed from 

the matrix, and the SVM is trained on the remaining examples.  The resulting classifier is 

applied to the held-out example, and the predicted classification is compared to the true 

classification. The held-out example is counted as a true positive, false positive, true 

negative or false negative, depending upon the agreement between the true and predicted 

class. This leave-one-out procedure is repeated for every example in the data set. 

     Evaluation of results.   A straightforward method for evaluating the quality of the 

predictions made by the SVM is to compare the classifications assigned by the SVM to the 

classifications assigned a priori.  Disagreements between the two are counted either as 

false positives or false negatives. Prediction quality can be measured more precisely using 

the receiver operating characteristic (ROC) curve.  Rather than depending upon a particular 

classification threshold, the ROC curve integrates information about the complete ranking 

of examples created by the SVM. The ROC curve plots, for varying classification 

thresholds, the number of true positives as a function of the number of false positives.  The 

area under this curve, normalized to range from 0 to 1, is called the ROC score.  A perfect 

classifier will rank all of the positive examples above negative examples, yielding an ROC 

score of 1.  A random classifier will produce an approximately diagonal curve, yielding a 

score close to 0.5.
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Results and Discussion. 

     The SVM provides good discrimination performance on three different data sets. 

Support vector machine calculations were run on all three datasets, and the results 

compared (Table 1). For the dataset derived from ion trap mass spectrometry and a 

SEQUEST search of the  nonredundant human protein database, there were 48 false 

positives, 117 false negatives, 579 true positives and 417 true negative peptides and a 

ROC score of 0.929. Of the initial training set peptides, 14.2% were false positives or 

negatives. For the dataset derived from ion trap mass spectrometry and a SEQUEST 

search of the full nonredundant human protein database, there were 62 false positives, 81 

false negatives, and a ROC score of 0.920. Of these peptides, 14.7% were false positives 

or negatives. For QTOF mass spectrometry data, searched using the nonredundant human 

database, calculations found 27 false positive and 81 false negative peptides. The ROC 

score for this analysis was 0.981; 7.0% of these peptides were false positives or negatives. 

     ROC plots for the 3 datasets examined with 9 parameters are shown in Figure 2A. Use 

of the full nonredundant protein database, containing approximately 8-fold more 

sequences, still allows a good separation between positive and negative peptides, but the 

ROC scores are slightly lower than for the smaller nonredundant human database. Using 

the same nonredundant human database for comparison, data collected on a quadrupole 

time-of-flight mass spectrometer is more readily separated by the SVM into positives and 

negatives than data collected on this ion trap.  

     In order to understand the errors made by the SVM, we looked in detail at each of the 

false positives and negatives. Many of the errors made by the SVM correspond to 

examples with noisy spectra or poor fragementation.  For the ion trap-nonredundant human 



 17

protein database training set, 7 of the 25 top false positive peptides had noisy MS/MS 

spectra, and another 5 had poor fragmentation, with much of the ion current in a few major 

peaks. Nine of the top 25 false negatives had noisy MS/MS spectra, while 13 had poor 

fragmentation. For the ion trap-full nonredundant protein database training set, 6 of the top 

22 false positives had noisy MS/MS spectra and an additional spectrum had poor 

fragmentation of the precursor ion. Seven of the top 24 false negatives had noisy MS/MS 

spectra, and 7 had poor precursor ion fragmentation. For the QTOF data, 4 of the top 20 

false positive peptides had low signal-to-noise MS/MS spectra and an additional 4 

fragmented poorly. Eight of the top 23 false negatives fragmented poorly, and 4 had noisy 

MS/MS spectra. A lower information content could make it difficult to match the correct 

peptide sequence for peptides with poor MS/MS fragmentation or noisy MS/MS spectra.  

     For each of the three training sets, some of the false positives or false negatives that did 

not have noisy MS/MS spectra, or poorly fragmenting precursor ions, matched the 

predicted MS/MS spectrum from the best-fit peptide fairly well. It is possible that some of 

the false positives were contaminants of the known proteins used as standards, and thus 

were true positives. Some of the false negatives had poor SEQUEST scores and the SVM 

had trouble recognizing them as positive peptides. Overall the these peptides seem to 

represent a core of peptides that are currently difficult to correctly assign with the 

parameters used.   

     Using four additional parameters improves the SVM's performance. Based upon 

the initial analyses described above, we computed four additional parameters that we 

hypothesized would help the SVM recognize noisy or otherwise difficult examples. These 

parameters were tested in the analysis of the three training sets. The use of the number of 
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peaks in an MS/MS spectrum, and the fraction of those peaks matched by fragments 

predicted from the best-fit database peptide sequence, was intended as an additional 

measure of the goodness-of-fit of a peptide sequence to the data. The fraction of the total 

ion current in the MS/MS spectrum matched by predicted peptide fragments was intended 

as an additional measure for the goodness-of-fit of a peptide sequence to the data, and to 

weight the fit by the intensity of the matched fragments. The sequence similarity between 

the top sequence and second choice sequence was intended to allow discrimination, for 

peptides with low delta Cn values, between dissimilar sequences almost equally well-

matched to the data, and very similar sequences matched to the data. In the former case 

the top ranked sequence is not useful, while in the latter case it may be useful if the 

matched peptides are from similar proteins.  

    Training sets were constructed as above for positive and negative peptides associated 

now with 13 parameters, the original 9 and the four additional parameters described above 

(Table 1). For the ion trap-nonredundant human protein database training set with SVM 

calculations, there were 44 false positives, 100 false negatives, and the ROC score was 

improved to 0.950.  This represents a loss of 4 false positives and 17 false negatives 

compared to the 9-parameter dataset. 12.4% of the peptides were false positives or 

negatives.  Addition of these parameters thus improved the overall performance of the SVM 

calcuations. 

     For SVM calculations on the ion trap- full nonredundant protein database training set, 

use of the additional 4 parameters resulted in a reduction of false positives to 53 and the 

false negatives to 70. The ROC score was now 0.939; 12.6% of the peptides were false 
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positives or negatives. Thus for this training set the use of the additional parameters also  

increased the separation between the positive and negative peptides. 

     For SVM calculations on the QTOF- full nonredundant protein database training set,  the 

total false positive peptides decreased from 26 to 18, and the false negative peptides 

decreased from 81 to 51. The ROC score for this analysis was 0.988; now only 4.5% of the 

training set peptides were found to be false positives or negatives. Thus the best 

separation of positives and negatives for any training set was obtained using QTOF-

collected data and 13 parameter analysis. The QTOF  data was collected without internal 

calibration of each run, and SEQUEST searches utilized a 1.5 Da window. Thus the higher 

mass accuracy available with internal calibration or more advanced instruments may further 

improve the separation of these positive and negative peptides. The average mass 

deviation between observed and best-fit peptides for the positive peptides for QTOF data 

was 0.40 + 0.25 Da, compared to an average mass deviation for ion trap positive peptides 

of 0.52 + 0.38 Da. Thus the uncalibrated QTOF data as used here appears to have a 

slightly higher mass accuracy than ion trap data.  

     For all three datasets ROC scores increase with the use of the 4 additional parameters 

beyond the original 9 parameters. ROC curves for the 3 datasets examined with 13 

parameters are shown in Figure 2B. For the full nonredundant protein database, containing 

ca. 8-fold more sequences, there is still a good separation between positive and negative 

peptides, but the ROC scores are slightly lower than for the smaller nonredundant human 

database. For the same database, data collected on the QTOF mass spectrometer is more 

readily separated by the SVM into positives and negatives than data collected on an ion 
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trap. The QTOF ROC scores are noticeably higher for both 9 and 13-parameter training 

sets. 

     For the parameter representing the fraction of MS/MS peaks matched by predicted 

peptide fragments, this value was slightly higher in the ion trap training sets for positive 

peptides (0.499 + 0.120 and 0.512 + 0.113 for the NR human and full NR database sets) 

than for negative peptides (0.410 + 0.098 and 0.438 + 0.090 respectively). The difference 

was more pronounced for QTOF-1 training set data: 0.632 + 0.120 for positive peptides, 

0.352 + 0.139 for negative peptides. For the parameter representing the average fraction of 

MS/MS total ion current matched by predicted peptide fragments, its value was slightly 

higher for ion trap positive peptides (0.646 + 0.163 and 0.656 + 0.156 for the NR human 

and full NR datasets) than for negative peptides (0.468 + 0.153 and 0.520 + 0.141 

respectively). The difference was more pronounced for QTOF-1 data (0.750 + 0.112 and 

0.392 + 0.182 for positive and negative peptides). This suggests that the QTOF-1 data may 

be less noisy than ion trap data, which is consistent with an examination of the MS/MS 

spectra.  

     Fisher scores can be used to understand what features are providing the most 

information.   Although the support vector machine generally produces very accurate 

predictions, this accuracy comes at the price of reduced explanatory power.  Unlike a 

decision tree classifier, the SVM does not explicitly select a few features that are most 

relevant to the classification task at hand.  However, we can use a related technique to 

analyze the correlations between each feature and the classification labels associated with 

each peptide.  The Fisher criterion score (FCS)40 is a simple metric that is closely related to 

the Student's t-test.  The score was developed in the context of linear discriminant analysis, 
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which is closely related to the SVM methodology.  The FCS has been used previously for 

feature selection in conjunction with the SVM classification of microarray data36.  For a 

given pair of distributions A and B, with means Am and Bm and standard deviations σ A and 

σ B, the FCS is defined as 

  ({Am } - { Bm })2 
     ------------- 
     σ A + σ B 
 
     Here, A and B correspond to the distributions of a given feature (say, Xcorr) within the 

positive and negative training sets, respectively.  A high FCS indicates that the distribution 

of Xcorr scores associated with positively labeled peptides is markedly different from the 

Xcorr scores associated with negatively labeled peptides.  We can compute the FCS for 

each feature in our data set, and rank the features to determine which ones are providing 

the most information to the SVM. 

     Unfortunately, SVM results are particularly difficult to explain because the SVM can 

operate in a higher-order feature space defined by the kernel function.  In general, it is not 

possible to compute Fisher criterion scores of the features in this high-dimensional 

space. Indeed, for some functions, such as the radial basis function, the feature space is of 

infinite dimension.  However, for a relatively simple kernel function, such as the quadratic 

polynomial kernel used here, we can explicitly calculate the higher-order features and then 

compute FCS's for each one. 

      Based on FCS analysis, the most predictive single feature (Table 2) for all three 9 and 

13 parameter training sets was delta Cn23, the difference between the normalized cross-

correlation parameters of the first and second ranked peptides. Xcorr, the raw correlation 

score of the top peptide sequence with the observed MS/MS spectrum, was the second 
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most predictive single feature for all but two training sets. Threshold values of both of these 

parameters have been used previously to separate positive from negative peptides5,25,27,28. 

RSp, the ranking of the preliminary raw score, Sp, the preliminary score of the top peptide, 

and % ion match, the percent of predicted y and b ions for a given sequence that were 

matched in the experimental MS/MS spectrum, were also predictive. Two of the new 

parameters, fraction of matched MS/MS TIC and fraction of matched MS/MS peaks, were 

among the most highly predictive features, particularly for QTOF data. The least predictive 

features were delta mass, the difference between the observed and predicted masses for 

individual peptides, and the precursor ion current for individual peptides. The difference 

between observed and predicted precursor ion masses may not be predictive since this 

difference is already restricted when selecting peptides for SEQUEST analysis.  

     Some pairs of features are more informative than either feature alone.  

Combinations of individual features were also analyzed for their utility separating positive 

from negative peptides. Table 3 shows the results of a Fisher criterion score analysis of the 

different data sets using pairwise features. Only discriminant scores of 1.0 or above for at 

least one training set were included for illustration purposes. Compared to the analysis 

using single features, the analysis of pairs of features shows that correlations (or perhaps 

anti-correlations) among some pairs of features can be much more informative. The 

combination of  fraction matched MS/MS TIC and delta Cn receives an FCS of 4.74, much 

higher than the scores assigned to either feature alone. The relatively high ranking of 

pairwise scores explains why the quadratic kernel function yields good SVM classification 

performance. 
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     The most highly predictive combinations included the fraction of matched MS/MS ion 

current and the fraction of matched MS/MS peaks (7 combinations each). Other highly 

predictive combinations included delta Cn or Xcorr with other features. For each of these 

combinations the predictive value was higher with data acquired on the QTOF-1. This 

illustrates the ability of the SVM to learn the predictive value of combinations of features 

that might not be obvious a priori. The mass difference between the observed precursor ion 

mass and calculated mass of the best-fit peptide, which was poorly predictive when 

analyzed alone (Table 2), was also poorly predictive in combination with other parameters 

(data not shown). Thus not all parameters were highly predictive alone or in combination 

with other parameters. As a result of the utility of numerous pairwise feature combinations 

all combinations of features were included in the analysis. Individual variables that are 

highly predictive when analyzed in a pairwise fashion may be relatively independent 

variables. 

     The enhanced performance of the SVM with QTOF data compared to ion trap data 

appears to be due to better predictiveness of a number of parameters, including precursor 

ion charge measurement. This value was significantly more predictive for the separation of 

positives from negatives in QTOF data than for ion trap data (Table 2). Precursor charge 

was also highly predictive in pairwise feature analysis of QTOF data when combined with 

five other parameters (Table 3). One factor in this predictiveness might be the asymmetrical 

distribution of +1 charged precursors: 39 were included as part of the training set positive 

peptides, while 311 were included in the negative peptides. As discussed in the methods 

section, positive and negative peptides were not selected on this basis. Thus observation of 

a +1 precursor ion is significantly more likely for a negative than positive peptide. Other 
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parameters, such as the MS/MS spectrum peak count, the fraction of matched MS/MS 

peaks, and fraction of matched MS/MS  total ion current, were also significantly more 

predictive that for ion trap data, either alone (Table 2) or in combination with other 

parameters in pairwise scoring (Table 3). An enhanced signal-to-noise ratio for this data 

may also be valuable for the separation of positives and negatives. 

     One explanation for the difference in performance for the QTOF versus ion trap datasets 

might be the larger size of the QTOF training set. A subset of the QTOF data including 497 

positive and 479 negative peptides, the same size as the smaller of the two ion trap 

datasets,  was examined by the SVM using 13 parameters, and the ROC score computed. 

The test results contained 20 false positives and 23 false negatives, and a ROC score of 

0.989. This compares well with the ROC score for analysis of the full sized QTOF dataset 

using 13 parameters (0.988). This suggests that the quality of the QTOF data, rather than 

the larger number of examples in the dataset, explains the improved performance 

compared to the ion trap-based results. 

The SVM provides better performance than other techniques.  

     Comparison of SVM results with previous analyses of SEQUEST results based on 

thresholds.  The results of the SVM analysis of the above training sets can be compared 

with approximations of previous methods, employing different cutoffs for delta Cn and/or 

Xcorr, used to evaluate SEQUEST-generated matches between peptide data and database 

sequences (Table 4). One simple method, used before protein sequence databases 

became large, involved selection of peptides as positives with delta Cn values  larger than 

0.123,25. Using a criterion of minimizing false positives (defined here as negative peptides 

missed using the defined cutoffs) and false negatives (defined as positive peptides 
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missed), this was the best performing cutoff of the 3 sets of cutoffs examined. A second 

method27 included selection, as positives, of +1 peptides with Xcorr values larger than 1.5, 

selection of +2 and +3 peptides with Xcorr values larger than 2, and several other criteria 

including manual examination. Use of these cutoffs alone resulted in intermediate 

performance among the 3 sets of cutoffs. A more stringent method5,28 included retention of 

tryptic peptides with Xcorr values above 1.9, 2.2 and 3.75 for +1, +2 and +3 peptides, a 

delta Cn of 0.1 or greater, and tryptic ends, followed by manual confirmation of the 

sequence match to the MS/MS spectrum under some circumstances. The cutoffs from this 

method resulted in the highest sum of false positives and false negatives for the 3 methods 

considered, although it gave lower levels of false positives than some of the other sets of 

cutoffs. The SVM results using both 9 and 13 parameters gave a significantly lower sum of 

false positives and false negatives than these sets of cutoffs.  

     Comparison of SVM results with Qscore results.  Training set peptides analyzed 

using SVM calculations were also analyzed using the Qscore algorithm29. Qscore is a 

program that evaluates the quality of protein identifications from SEQUEST results using 

probabilistic scoring. The program requires at least two peptides for a protein identification, 

thus for comparison purposes with individual peptides contained in the nonredundant 

human database-ion trap training set, we modified the Qscore program to allow the display 

of calculated scores for single peptides. Qscore is not a binary classifier, thus true and false 

positives and negatives were not calculated. In Figure 3, the ROC curve for Qscore 

analysis of the ion trap-nonredundant human dataset is compared with ROC curves 

generated using SVM calculations. For both the 9 and 13 parameter SVM results, the ROC 

curves are shifted to the upper left, indicating that for a fixed percent of false positives, 
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there are significantly more true positive peptides from the SVM analysis. While Qscore 

does not attempt to identify proteins with fewer than two peptides, these results suggest 

that a similar use of SVM peptides, combined with careful examination for mistakes of 

outliers from initial SVM analysis of SEQUEST data, might provide higher quality protein 

identifications.  

     Keller et al. 39 used an expectation maximization algorithm, incorporating for 

analysis four SEQUEST scores and the number of tryptic peptide termini present 

in the matched peptides. Plus 2 and 3 ions were analyzed separately for ion trap 

peptide data; Xcorr’, delta Cn, and ln RSp contributed to most of the 

discrimination between positive and negative peptides. Our data includes more 

parameters, and +1, +2, and +3 ions are included in one analysis. For our 

training sets, we find that more parameters significantly contribute to the 

discrimination between positive and negative peptides, including delta Cn, 

Xcorr, Sp, % ion match, RSp, the fraction of matched MS/MS peaks and total ion 

current, which vary for different training sets.  

 
      Comments on results.  The support vector machine is a binary classifier, and is thus 

useful for making decisions about membership of analyzed entities in either of two classes. 

Here we have defined the two classes as peptides correctly or incorrectly matching 

SEQUEST-assigned sequences. Additional applications using mass spectrometry data 

might include binary decisions between classes such as presence and absence of an early 

stage disease such as cancer41.  Similar decision making could be applied to de novo 

sequenced peptides if there was sufficient information describing the fit of a de novo 

sequence to a peptide, and if the problem was constructed as to whether or not the de 
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novo sequence was correct. This would likely involve other algorithms than SEQUEST, 

which relies mainly on pattern matching between predicted and observed MS/MS spectra.       

     Based on our experience and on the training set data examined, there are several 

categories of incorrectly predicted peptides. First, we initially encountered false positives 

based on the SEQUEST selection of peptides, matched to a given precursor ion and its 

MS/MS spectrum, that were not the top ranked peptides. These, and incorrectly labeled 

peptides, were removed after manual examination of results from initial rounds of SVM 

analysis. Second, analysis of some of the tryptic maps of individual “pure” proteins 

indicated that there were other proteins present with more than one high-scoring peptide. 

Examples of negative peptides were not taken from these samples. They were instead 

substituted with samples of at least 97% protein purity, which were limited to injections of 

no more than 100 fmol of peptides. The presumed levels of impurity should thus be below 

the routine limit of detection for our ion trap or QTOF mass spectrometers (ca. 10 fmol) as 

currently configured. Nonetheless it is possible that some of the proteins assigned as 

negatives might represent impurities present in the sample.  

     We have not been able to completely separate positives from negatives in any of the 

training sets examined, for data acquired on either mass spectrometer. Some of the 

reasons discussed below may help explain this observation. First, the training sets included 

the lowest scoring available positive peptides, which were often among multiple peptides 

correctly identifying a known protein. A number of false positive sequences with high 

SEQUEST scores, for example peptides selected as second choices for known positive 

peptides, were also included. Similar examples have been reported when using reversed-

sequence databases as controls29. For the ion trap-non redundant human database-
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searched training set, there were 124 positive peptides with delta Cn values below 0.1. For 

+1, +2 and +3 ions there were 4, 33, and 75 additional peptides that did not meet the most 

stringent Xcorr cutoffs (method 3) in Table 4. There were 108 negative peptides with delta 

Cn values of 0.1 or above, and 14, 74, and 0 additional +1, +2 and +3 negative peptides 

with Xcorr values above those used for cutoffs in method 3 of Table 4. These were thus 

challenging training sets.  

     Second, a number of false positives and negatives were assigned to peptides with noisy 

MS/MS spectra, or with poor fragmentation in these spectra. In both cases the information 

content necessary for correct sequencing will be compromised, and it is expected that 

accurate sequence assignments will be difficult. Of the 22 poorly fragmenting positive 

peptides incorrectly assigned as negatives, all but one contained an internal residue (pro, 

his, arg) thought to cause uneven peptide fragmentation42,43, and 14 contained more than 

one of these internal residues. It is not clear that even manual examination of these peptide 

MS/MS spectra will lead to a correct sequence match. A tentative identification of proteins 

based on these questionable peptides will require additional experiments, or additional 

matching peptides of higher quality, for verification. A computational indication of 

ambiguously identified peptides, indicated by the computed distance from the 9-parameter 

or 13-parameter hyperplane, should select any peptide so positioned for further scrutiny.  

     More generally, incorrect sequence assignments may also occur if the correct sequence 

is not in the database examined. For human protein sequences 80% of novel gene 

predictions from drafts of the Ensembl and Celera datasets occur in only one of these 

datasets44, thus an accurate and complete human protein sequence database is not yet 

available. Other incorrect assignments may be due to modifications to individual amino 
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acids not incorporated into the sequences searched, or to incorrect assignment of the 

precursor ion charge when a lower mass accuracy instrument is used and the ratio of MS 

to MS/MS scans is low. The best resulting sequence will then be incorrect.  

Conclusions 
 
     Using appropriate training sets, our approach allows an automated computational first-

pass analysis of SEQUEST data on individual peptides. This should allow a higher 

throughput analysis of shotgun peptide sequencing results. For tandem mass spectrometry 

data, SVM analysis of experimentally obtained parameters, SEQUEST-calculated statistics, 

and additional parameters allows a better match between this data and peptide sequences 

than previous methods, using our training sets. The use of four new parameters tested here 

contributed significantly to the separation of positive and negative peptides. A good but not 

complete separation between positive and negative peptides was obtained for ion trap data 

using two different databases. A significantly better separation was obtained for 

uncalibrated QTOF MS/MS data. Using SVM calculations, the contributions of the 

parameters to the separation were individually examined. The parameters delta Cn, Xcorr, 

Sp, the fraction of the MS/MS spectrum ion current matched by peptide fragments, and the 

fraction of the total number of MS/MS spectrum peaks matched by peptide fragments 

contributed significantly to the separation of positive and negative peptides. Each training 

set is customized to the mass spectrometer used to collect data and the database 

examined. Protein identifications from these peptides will then be based on the number of 

individual peptides identifying a particular protein, and the distance of each peptide from 

the hyperplane separating positives and negatives in the appropriate training set. The 

reproducibility and uniqueness of the identification will also be important38 for correct 
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protein identifications. Manual examination of spectra of peptides with poor or ambiguous 

SVM-calculated scores should identify noisy or poorly-fragmenting spectra that may 

compromise peptide identification.  
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Table 1.  Analysis of training sets using different methods a.  
 
Method:              SVM-9 analysis               SVM-13 analysis 

   positive, negative  false positives,    ROC      false positives,    ROC 
Training set:       peptides              negatives      scores   negatives         scores 
 
ion trap, 
NR human 696, 465          48, 117          0.929           44, 100             0.950 
       
ion trap, 
full NR 497, 479          62, 81            0.920           53, 70              0.939 
       
QTOF, 
NR human 1017, 532          27, 81            0.981           18, 51              0.988 
 
___________________________________________________________________ 
a The training sets used either the nonredundant human database (NR human) or the  
full nonredundant database.       
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Table 2. Contribution of single features to the separation of positive and negative 
peptides as reflected by their Fisher criterion scores 
 
mass spectrometer:          ion trap         ion trap      QTOF-1  
       database:        NR human        NR full   NR human 
        features:                    9 or 13 parameters 

 
delta Cn 1.401 1.018           2.861 
Xcorr 0.935 0.477 2.444 
Sp 0.714 0.604           1.158 
MH 0.000 0.000           0.704 
charge 0.118 0.102 0.488 
RSp 0.273 0.447           0.313 
% ion match 0.607 0.447           0.079 
dM 0.000 0.014 0.024 
TIC 
 

0.016 0.011 0.008 

                        13 parameters  
fraction matched  
MSMS TIC 

0.632 0.422           2.804 

fraction matched  
MSMS peaks 

0.335 0.260           2.314 

peak count 0.062 0.018 0.209 
seq similarity 0.060 0.130 0.115 
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Table 3. Pairwise contributions of individual  feature Fisher scores to the separation of 
positive and negative peptides. 
 
mass spectrometer:  ion trap ion trap QTOF-1 
database: NR human NR full NR human 
feature 1              feature 2               9 or 13 parameters 
 
delta Cn Xcorr 1.51 1.15 3.60 
 charge 0.980 0.809 3.56 
 MH 1.05 0.877 3.12 
 % ion match 1.76 1.43 2.81 
 SP 1.43 1.18 2.80 
Xcorr charge 0.208 0.068 1.94 
 MH 0.366 0.162 1.89 
 Sp 0.956 0.698 1.88 
 %ion match 1.37 0.846 1.83 
Sp MH 0.743 0.593 1.92 
 charge 0.502 0.402 1.77 
%ion match MH 1.53 1.13 2.09 
 charge 0.402 0.322 1.25 
 
 

Sp 0.959 0.775 1.12 

              13 parameters 
fraction matched 
MSMS peaks 

delta Cn  
1.48 

 
1.21 

 
4.23 

                     Xcorr 1.08 0.661 3.38 
                     Sp 0.998 0.811 2.38 
                     %ion match 0.998 0.811 2.38 
                     MH 0.114 0.087 1.67 
                     charge 0.014 0.007 1.53 
                     peak count 0.328 0.148 1.18 
fraction matched 
MSMS TIC       

delta Cn  
1.68  

 
1.34  

 
4.74 

                     Xcorr 1.33 0.843 3.82 
 fraction matched 

MSMS peaks 
0.556 0.394 2.82 

                     Sp 1.17 0.931 2.58 
                     MH 0.327 0.229 2.10 
                     charge 0.108 0.057 1.90 
                     % ion match 1.08 0.700 1.47 
peak count delta Cn     1.01 0.861 1.42 
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Table 4.  Analysis of training sets using different methods. 
 

  
Method: a      1            2                 3 SVM-9    SVM-13 
Training      
Set:  --------------------false positives, false negatives-------------------  
 
ion trap, 
NR human 115, 142      133, 187         132, 369 48, 117    44, 100 
      
ion trap, 
full NR 87, 142       305, 55           180, 251 62, 81    53, 70 
      
QTOF, 
NR human 108, 81       126, 86            57, 285 27, 81    18, 51 
 
aThe cutoffs used for these comparative analyses are taken from Eng. et al23 and Yates  
et al. 25 for method 1, from Link et al. 27 for method 2, and from Washburn et al.5 and Gygi  
et al. 28 for method 3; the SVM analyses used both 9 and 13 parameters. False positives 
and negatives for methods 1-3 were calculated as the number of negative and positive 
peptides missed by the cutoffs, respectively. 
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Figure legends. 
 
Figure 1.  A support vector machine learns to recognize high-quality peptide 

matches. The figure illustrates how an SVM learns to discriminate between true and false 

peptide matches (listed as positives and negatives). Peptide data is obtained from 

LC/MS/MS experiments analyzed by SEQUEST. A training set consists of a collection of 

individual peptide matches, each characterized by a vector of statistics (as described in the 

text) and a binary classification (true or false match) provided by manual inspection of the 

training set.  The SVM learning algorithm finds a decision boundary that separates the true 

matches from the false matches.  This decision boundary can then be used by the SVM 

prediction algorithm to determine the classification of previously unseen peptides.  The 

prediction produced by the SVM is a binary classification, along with a discriminant value 

that can be used to estimate the SVM’s confidence in its prediction. Analysis of training 

sets using single or pairwise feature analysis can indicate which individual or 

pairwise features contribute the most to separation of positive and negative peptides 

in 9- or 13-feature space. Comparison of training sets obtained using different mass 

spectrometers or databases estimates the contribution of these variables to the 

separation of positive and negative peptides, and thus to accurate peptide and 

protein identification. 

Figure 2. ROC plots of three different training sets used in SVM calculations. A. ROC plot 

of training sets containing 9 parameters. The normalized true positives are plotted against 

the normalized false positives for each training set. The QTOF-nonredundant human 

database set is represented in open black squares, the ion trap-nonredundant human 

database set in light gray, and the ion trap-nonredundant human database set in darker 
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gray. The QTOF training set has the fewest false positives relative to true positives of any 

set; the ion trap-full nonredundant database set, which has about 8 times as many entries 

as the ion trap-nonredundant human set, has the most false positives relative to true 

positives of any set. Thus the SVM has the most success separating true from false 

positives with the QTOF dataset, and less success with ion trap data using either the full 

nonredundant or nonredundant human databases.  B. ROC plot of training sets containing 

13 parameters. The QTOF-nonredundant human database set (open black squares) has 

the fewest false positives relative to true positives, the ion trap-nonredundant human 

database (light gray) is intermediate in this respect, and the ion trap-full nonredundant 

database (darker gray) has the most false positives relative to true positives of any set. 

Again the SVM has the most success separating true from false positives with the QTOF 

dataset. 

Figure 3. Comparison of Qscore with SVM analyses of a peptide training set. A ROC plot 

was used to compare SVM and Qscore analysis of an ion-trap nonredundant human 

database training set using either 9 or 13 parameters. Qscore was modified to calculate 

values for single peptides rather than requiring two peptides for an analysis, and these 

scores were used for the comparison. Both SVM analyses gave a higher number of true 

positives for a fixed number of false positives than the modified Qscore analysis.  
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