Note: This guide is usage only. The algorithm is described formally in the LaTeX document.
Feature detection (MSExtract)

To build binary: In current revision of pwiz, (r1222), you have to explicitly build the binary for
feature detection. From pwiz/pwiz/analysis/peakdetect, run:

% bjam bin
Binary will be installed in pwiz/pwiz/analysis/peakdetect/bin.

Input: mzXML/mzML file (if using other format, convert with msconvert first)
Output: .features file, XML representation of features detected.

Command line usage string:

godzil | a@ enp- cpas: ~/ pwi z/ pw z/ anal ysi s/ peakdet ect/ bi n$./ nsextract
Usage: nsextract [options] [file]

Opt i ons:

-c [--config] arg . specify file of config
options, in format
opt i onNanme=opt i onVal ue

-d [--defaults] : print configuration
defaul ts

-0 [--outputPath] arg (=) : specify output path

-f [--featureDetectorlnplenentation] arg (=Sinple) : specify inplenentation

of FeatureDetector to
use. Options: Sinple,
Peakel Far mer
--witeFeatureFile arg (=1) Dowite xnm
representation of
detected features
(.features file)

--witeTSV arg (=1) : wite tab-separated
file
--witelLog arg (=0) a %ﬁite I§g file (for
ebuggi ng
--filter arg . add a spectrumli st
filter
filter options:
ndex

i
[i ndexBegi n, i ndexEnd]

nzW ndow [nzLow, nzHi gh]
peakPi cki ng prefer
vendor peak picking:
<true|fal se>

[mrsLevel sBegi n, nsLevel sE
nd] ...
precursor Recal cul ati on
(based on nsl data)
scanNunber

[scanNunber Begi n, scanNum
ber End]

scanEvent

[scanEvent Begi n, scanEven
t End]

scanTi ne

[scanTi neLow, scanTi neHi g
h]

striplT (stripion trap
nsl scans)

Feat ur eDet ect or Peakel Opti ons:

--noi seCal cul at or _2Pass. zVal ueCutof f arg (=1) . specify cutoff for
Noi seCal cul at or _2Pass
- - peakFi nder _SNR. wi ndowRadi us arg (=1) : specify wi ndow
radi us for
PeakFi nder _SNR
- - peakFi nder _SNR. zVal ueThreshol d arg (=3) : specify z threshold
for PeakFi nder SNR
- -peakFi tter_Parabol a. wi ndowRadi us arg (=1) . specify wi ndow
radi us for
PeakFi tter Parabol a
- - peakel Grower _Proximty. meTol erance arg . specify ne

tol erance for
Peakel Grower Proximt

y
--peakel Gower_Proxinmity.rtTol erance arg (=10) : specify rt
tol erance for
Peakel Grower _Proxi mit

y

- - peakel Pi cker _Basi c. m nCharge arg (=2) . specify mn charge
for
Peakel Pi cker Basic

- - peakel Pi cker _Basi c. maxCharge arg (=5) . specify max charge
for

Peakel Pi cker Basic
- - peakel Pi cker _Basi c. mi nMbnoi sot opi cPeakel Si ze arg (=3) : specify nin
nonoi sot opi ¢ peakel
size for
Peakel Pi cker Basi c
- - peakel Pi cker _Basi c. nzTol erance arg . specify ne
tol erance for
Peakel Pi cker Basi c
- - peakel Pi cker _Basic.rtTol erance arg (=5) : specify rt
tol erance for
Peakel Pi cker Basi c
- - peakel Pi cker _Basi c. mi nPeakel Count arg (=3) . specify mn peake
count for
Peakel Pi cker Basi c
Exanpl es:

print default configuration paraneters to config.txt
msextract -d > config.txt

run using paraneters in config.txt, output in outputdir
msextract -c config.txt -o outputdir filel.neM file2. neM

filters: select scan nunbers
meextract filel.meM --filter "scanNunmber [500, 1000]"

Notes:

FeatureDetectorSimple aggregates rectangular feature by iterating through scans in retention time
and accumulating isotope envelopes (“PeakFamily” objects) with the same number of isotopes,
charge state, mz into Feature objects. A Feature must aggregate at least 2 PeakFamily objects (2
scans) to be reported. Currently, (r1222) a Feature is allowed to skip one scan between consecutive
PeakFamily observations. Ask Darren re: FeatureDetectorPeakel

For reference, the Feature struct: (can be found in pwiz/pwiz/data/misc/PeakData.hpp)

struct PWZ_API _DECL Feature
{
Feat ure();
Feat ure(const MSI Handl er:: Record& record);

std::string id; // assigned by feature detection, for easier |ookup
doubl e ng;

doubl e retentionTi ne;

i nt charge;

doubl e total Intensity;

doubl e rtVariance; // calculated fromchild Peakel s?
std: : vect or <Peakel Ptr> peakel s;

void cal cul ateMetadata(); // Fills in nme, rt, totallntensity, rtVariance,
which require all of the Peakels for calcul ation

/1 retention time range cal cul ati on based on first two Peakels
doubl e retentionTi reM n() const;
doubl e retentionTi meMax() const;

void wite(pw z::mninxm:: XMWiter& xm Witer) const;
void read(std::istream& is);

bool operator==(const Feature& that) const;
bool operator!=(const Feature& that) const;

private:

Feat ur e(Feat ur e&) ;
Feat ure operat or =(Feat ureg&) ;

H
AMT Database generation and query (MSEharmony)

To build binaries: (r1222) Binaries are not built by default as the source code is not included in the
Jamfile for pwiz/pwiz/analysis. Invoke bjam from pwiz/pwiz/analysis/eharmony (no bin argument
necessary). Binaries will be installed in the same directory.

This will install two binaries, eharmony and mscupid.
J/eharmony

Input: pep.xml and .features files for every experiment that should be aggregated into the database.
Output: database.xml, an xml representation of the database as a set of SpectrumQuery objects.
(These are the same objects that we read pep.xml into — they store all the information that is in a
single MS2.)

database.tsv, a tab-delimited file with the mass, retention time, and a few other attributes of
the database objects.

Command line usage string:

godzi |l | a@ enp- cpas: ~/ pwi z/ pwi z/ anal ysi s/ ehar nony$./ ehar nony
Usage: eharnmony [options] [fil enanes]

Opt i ons:

-i [--inputPath] arg : specify location of input files

-0 [--outputPath] arg . specify output path

-f [--filenanme] arg . specify file listing input runiDs (e.g
., 20090109- B- Run)

-w [--warpFunctionCalculator] arg : specify method of calculating the rt-c
alibrating warp function.
Options:
default, linear, piecew selLinear

-d [--distanceAttribute] arg . specify distance attribute.
Opt i ons:

hamm ngDi st ance, nunber O M52I Ds, randonDi
stance, rtDistributionD stance, wei ghtedH
anmmi ngDi st ance

Notes: the -i option is not perfected. I think, for example, if you end the path with a /, it will add its
own / also and fail to find your file. This is something I never handled, but it throws immediately
when it can't open your file and writes out the name of the complete path, so you'll be able to see

what went wrong.

“default” retention time calibration is no calibration — retention time values go unchanged.
The distance attributes are summarized with the algorithm description.

J/mscupid

Input: pep.xml and .features file for the query experiment, existing AMT database in xml format.
Output: A variety of files for quality analysis, including an estimate of sensitivity and specificity
using known MS2 ids. A pep.xml file storing all of the matches with scores, for downstream
analysis (1.e., ProteinProphet). Output is handled through the Exporter struct
(pwiz/pwiz/analysis/eharmony/Exporter.hpp). It's easy enough to add a new output file by adding a
new write function to the struct and calling it within the query(args) function in
pwiz/pwiz/analysis/eharmony/AMTDatabase.cpp.

Command line usage string:
godzi |l | a@ enp- cpas: ~/ pwi z/ pwi z/ anal ysi s/ eharnony$./ nmscupi d
Usage: nmscupid [options] filenane.pep.xn filenane.features database. xni

Opt i ons:
-w [--warpFunctionCal culator] arg . specify nmethod of
calculating the rt-calibrating
warp function.

Opt i ons:
| 1 near, piecew seLinear
Def aul t:
no calibration
-t [--threshold] arg (=0.94199999999999995) : specify threshold for natch
accept ance.

Notes: Database “Islandization”. The postprocessing step of making the database into islands is run
as part of mscupid. The Island itself is described in the algorithm documentation This speeds up
the query quite a bit but has proven problematic in that the conversion from mz to mass shows big
differences in mass for both true positives and false negatives — peptides whose mass we observed,
according to the FeatureDetector's mz and charge, hundreds of daltons from where we ought to
have. I think that this concept is a good one but it needs to be refined to work correctly. In
particular, scores are extremely low and hard to differentiate. The method is also overly specific
and tends to miss large amounts of true positives. (Related to the mass difference problem.)

You can run mscupid with or without this step. Without, if you are trying to get ROC info, it is
slow since it continues to search until finding the “next closest” match for a query feature, meaning
lots of search time. If you have a threshold and you only want to look up to that threshold, it is
much faster as it is optimized to search within a small region.

Scripts for analyzing the result of the query:

Run pwiz/pwiz/analysis/eharmony/scripts/eharmonyAnalyser.sh from the scripts directory itself.
Takes two arguments — the first is the original pep.xml from your DB query and the second is the
path to the directory containing the output files from your DB query (e.g.,
.Jamtdb_query/amtdb_query95 for a default query with threshold 95.)
This will make four files:

sequences.txt : a list of all unique sequences found by MS1.5

diff sequences.txt : a list of the subset of the above that were not originally found by MS2

roc.txt : a two-column FPR\tTPR text file for roc plotting

roc.png : a gnuplot image generated from roc.txt

