
ProteoWizard: Open Source Software for
Rapid Proteomics Tools Development

Darren Kessner, Parag Mallick
Spielberg Family Center for Applied Proteomics, Cedars-Sinai Medical Center, Los Angeles, CA

Abstract

Proteomics laboratories often struggle with poor interoperability
between data analysis software and data formats. Historically,
vendor-specific, proprietary, closed formats made the
development of cross-vendor data analysis tools challenging, and
several open data formats were developed as a result. Open
source software projects, such as the Trans-Proteomic Pipeline
(TPP) and The OpenMS Proteomic Pipeline (TOPP), read these
open data formats, and rely on conversion tools to translate
proprietary data files. However, there has been no standard,
open-source software library that provides both full access to and
generation of data in these open formats.

The HUPO Proteomic Standards Initiative has taken the first
important step in solving this problem, with the development of
the new mzML data format standard, which will be released in
June 2008.

ProteoWizard provides not only an implementation of the mzML
standard, but a cross-platform data file abstraction layer. This
allows the data analysis programmer to focus on the actual data
analysis, without having to deal with specific details about the
source file format or the operating system.

Researchers also face the task of evaluating different software
tools, each with different interfaces. The ProteoWizard analysis
framework provides a unified method for implementing and
comparing analysis algorithms.

Introduction

Architecture

Current Development

The ProteoWizard software project provides a modular
and extensible set of open-source, cross-platform tools
and libraries. The tools perform proteomics data
analyses; the libraries enable rapid tool creation by
providing a robust, pluggable development framework
that simplifies and unifies data file access, and performs
standard chemistry and LCMS dataset computations.
Although many common computations are widely used
throughout the proteomics community, there is no single
standard, software development framework. Here we
propose a software library to begin filling this need. The
software is available now, under the Apache open
source license.

Features
•  supports the new HUPO-PSI mzML standard mass
spectrometry data format

•  uses modern C++ techniques and design principles

•  cross-platform with native compilers (gcc, MSVC)

•  has modular design, for testability and extensibility

•  facilitates rapid development of data analysis tools

•  open source license suitable for both academic and commercial
projects (Apache v2)

Data Layer Design

Analysis Layer Design Tools

The underlying data model is a one-to-one translation from mzML
data elements to C++ data structures. The data layer has the
following features:

•  a virtual interface for accessing spectrum lists, to allow lazy
evaluation when accessing the spectra contained in a data file

•  a plug-in Reader interface to allow reading of vendor proprietary
data formats

•  built-in diff calculation, for comparison of two data files, useful
for validation after data format conversion or preprocessing

•  iostream serialization to/from mzML and mzXML

The analysis layer contains classes that provide a simplified
interface to the underlying data structures. The analysis modules
provide reusable plug-in functionality that may be incorporated
into data analysis tools. The design above shows the use of the
Cache and RegionAnalyzer modules for efficient data access and
processing by other modules in the msaccess tool, a tool that
allows users to easily extract segments of LCMS data.

•  The Trans-Proteomic Pipeline tools will be using ProteoWizard to
support mzML in the next major release.

•  We are currently in ongoing collaboration with other proteomics
software groups to support all vendor formats (Institute for
Systems Biology, Vanderbilt University Mass Spectrometry
Research Center).

•  The mzML standard will be officially released at ASMS 2008.

More Information

Darren Kessner
darren.kessner@cshs.org

ProteoWizard
http://proteowizard.sourceforge.net

Spielberg Family Center for Applied Proteomics
http://sfcap.cshs.org

HUPO Proteomic Standards Initiative
http://www.psidev.info

<fileDescription>
 <fileContent>
 <cvParam cvLabel="MS" accession="MS:1000580" name="MSn spectrum" value=""/>
 </fileContent>
 <sourceFileList count="1">
 <sourceFile id="rawfile" name="data01.RAW" location="c:/data/raw">
 <cvParam cvLabel="MS" accession="MS:1000563" name="Xcalibur RAW file" value=""/>
 <cvParam cvLabel="MS" accession="MS:1000569" name="SHA-1 "value="6bde97 [...]"/>
 </sourceFile>
 </sourceFileList>
</fileDescription>

struct SourceFile : public ParamContainer
{
 string id;
 string name;
 string location;
};

analysis peak
detection 1 preprocessing

tools
msdiff msconvert

data data
structures

data format
 abstraction

utility math parsing encoding testing

data
extraction

peak
detection 2

msaccess msprefix

MSData

RegionSIC Pseudo2DGel

RegionAnalyzer

BinaryData SpectrumTable

Cache

RegionTIC RegionSlice

Data File
(RAW, mzXML, mzML)

struct FileDescription
{
 FileContent fileContent;
 vector<SourceFilePtr> sourceFilePtrs;
 vector<Contact> contacts;
};

Figure 2a. mzML fragment

Figure 2b. Corresponding ProteoWizard data structures

class HelloAnalyzer : public MSDataAnalyzer
{
 public:

 virtual void open(const DataInfo& dataInfo)
 {
 cout << "sourceFilename: " << dataInfo.sourceFilename << endl;
 cout << "outputDirectory: " << dataInfo.outputDirectory << endl;
 }

 virtual UpdateRequest updateRequested(const DataInfo& dataInfo,
 const SpectrumIdentity& spectrumIdentity) const
 {
 return UpdateRequest_NoBinary;
 }

 virtual void update(const DataInfo& dataInfo,
 const Spectrum& spectrum)
 {
 cout << "spectrum: "
 << spectrum.index << " "
 << spectrum.id << " "
 << "ms"
 << spectrum.cvParam(MS_ms_level).value << " "
 << spectrum.spectrumDescription.
 scan.cvParam(MS_filter_string).value
 << endl;
 }

 virtual void close(const DataInfo& dataInfo) {}
};

int main(int argc, const char* argv[])
{
 try
 {
 MSDataAnalyzerApplication app(argc, argv);

 if (app.filenames.empty())
 {
 cout << "Usage: hello_analyzer [options] [filenames]\n";
 cout << "Options:\n" << app.usageOptions << endl;
 return 1;
 }

 HelloAnalyzer analyzer;
 app.run(analyzer, &cerr);

 return 0;
 }
 catch (exception& e)
 {
 cerr << e.what() << endl;
 }
 catch (...)
 {
 cerr << "Caught unknown exception.\n";
 }

 return 1;
}

ProteoWizard is built from many independent libraries, grouped
together in dependency levels. Each library is independently
testable, and depends only on libraries in lower levels of the
hierarchy. The utility layer contains independent classes that
perform computations applicable in a wide variety of situations.
The data layer abstracts the source data file, hiding any format-
specific details. The analysis layer contains all scientific
computation, in reusable modules. The tools layer code is
responsible only for regulating interaction between the user and
the analysis modules.

Figure 4a. HelloAnalyzer implementation

Figure 4b. hello_analyzer program

Figure 3. Analysis module design for the msaccess tool

msconvert: data format
conversion from vendor
proprietary formats to mzML
and mzXML

msdiff: comparison of two data
files, for validation of
conversion and preprocessing

msaccess: command line
access to mass spec data files,
including spectrum binary data
and metadata, selected ion
chromatograms, and pseudo-2D
gel image creation.

Figure 5b. gnuplot image generated by script from data
extracted by msaccess

Figure 5a. Pseudo 2D gel image
generated by msaccess

Figure 1. High level architecture of ProteoWizard

ProteoWizard Library

