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Figure 1: Contributions to retention time (RT). Shown are the support vector regression
weights for the linear kernel for the 20 features corresponding to peptide amino acid compo-
sition; higher values indicate a positive contribution to RT.
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Figure 2: Filtering performance as a function of number of training examples. Shown
are the number of true positives at 5% FDR vs the number of peptides used to train the
retention time support vector regressor for the TFA data set.



