Supplement to

Peptide retention time prediction yields improved tandem mass spectrum identification for diverse chromatography conditions

Aaron A. Klammer* aklammer@u.washington.edu

Michael J. MacCoss* maccoss@gs.washington.edu

Xianhua Yi* xhyi@u.washington.edu

William Stafford Noble*† noble@gs.washington.edu

May 25, 2007

^{*}Department of Genome Sciences, University of Washington, Seattle, WA, USA

[†]Department of Computer Science, University of Washington, Seattle, WA, USA

Figure 1: **Contributions to retention time (RT).** Shown are the support vector regression weights for the linear kernel for the 20 features corresponding to peptide amino acid composition; higher values indicate a positive contribution to RT.

Figure 2: **Filtering performance as a function of number of training examples.** Shown are the number of true positives at 5% FDR vs the number of peptides used to train the retention time support vector regressor for the TFA data set.