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ABSTRACT
Motivation: Building an accurate protein classification system
depends critically upon choosing a good representation of the input
sequences of amino acids. Recent work using string kernels for protein
data has achieved state-of-the-art classification performance. How-
ever, such representations are based only on labeled data—examples
with known 3D structures, organized into structural classes—whereas
in practice, unlabeled data are far more plentiful.
Results: In this work, we develop simple and scalable cluster kernel
techniques for incorporating unlabeled data into the representation of
protein sequences. We show that our methods greatly improve the
classification performance of string kernels and outperform stand-
ard approaches for using unlabeled data, such as adding close
homologs of the positive examples to the training data. We achieve
equal or superior performance to previously presented cluster kernel
methods and at the same time achieving far greater computational
efficiency.
Availability: Source code is available at www.kyb.tuebingen.mpg.de/
bs/people/weston/semiprot. The Spider matlab package is available
at www.kyb.tuebingen.mpg.de/bs/people/spider
Contact: jasonw@nec-labs.com
Supplementary information: www.kyb.tuebingen.mpg.de/bs/people/
weston/semiprot

1 INTRODUCTION
A key problem in computational biology is the classification of
proteins into functional and structural classes given their amino
acid sequences. The major methods for homology detection can
be split into three basic groups: pairwise sequence comparison
algorithms (Altschul et al., 1990; Smith and Waterman, 1981), gen-
erative models for protein families (Krogh et al., 1994; Park et al.,
1998) and discriminative classifiers (Jaakkola et al., 2000; Leslie
et al., 2002; Liao and Noble, 2002). Popular sequence comparison
methods such as BLAST and Smith–Waterman (SW) are based on
unsupervised alignment scores. Generative models such as profile
hidden Markov models (HMMs) represent positive examples of a
protein family, but they can be trained iteratively using both posit-
ively labeled and unlabeled examples by pulling in close homologs
and adding them to the positive set. A compromise between these
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methods is PSI-BLAST (Altschul et al., 1997), which uses BLAST to
iteratively build a probabilistic profile of a query sequence and obtain
a more sensitive sequence comparison score. Finally, classifiers such
as support vector machines (SVMs) use both positive and negat-
ive examples and provide state-of-the-art performance when used
with appropriate distance metrics (i.e. appropriate kernels) (Jaakkola
et al., 2000; Leslie et al., 2002; Liao and Noble, 2002; Saigo et al.,
2004). However, these classifiers still require an auxiliary method
(such as PSI-BLAST) to handle unlabeled data; one generally adds
predicted homologs of the positive training examples to the training
set before training the classifier.

In practice, relatively few labeled data are available—∼30 000
proteins with known 3D structure, some belonging to families and
superfamilies with only a handful of labeled members—whereas
there are close to one million sequenced proteins, providing abund-
ant unlabeled data. New semi-supervised learning techniques should
be able to make better use of this unlabeled data.

Recent work in semi-supervised learning has focused on chang-
ing the representation given to a classifier by taking into account
the structure described by the unlabeled data (Zhu and Ghahramani,
2002; Chapelle et al., 2002; Szummer and Jaakkola, 2001). These
works can be viewed as cases of cluster kernels that produce simil-
arity metrics based on the cluster assumption, i.e. two points in the
same ‘cluster’ or region of high density should have a small distance
between each other. In this work, we investigate the use of cluster
kernels for protein classification by developing two simple and scal-
able methods for modifying a base kernel. The neighborhood kernel
uses averaging over a neighborhood of sequences defined by a local
sequence similarity measure, and the bagged kernel uses bagged
clustering of the full sequence dataset to modify the base kernel. In
both the semi-supervised and transductive settings, these techniques
greatly improve the classification performance when used with mis-
match string kernels, and the techniques achieve equal or superior
results to all previously presented cluster kernel methods that we
tried. Moreover, the neighborhood and bagged kernel approaches
are far more computationally efficient than these competing
methods.

The current work is an expanded version of a conference proceed-
ings paper (Weston et al., 2003). We haved included new large scale
experiments for the cluster kernel methods using the Swiss-Prot data-
base as a source of unlabeled protein sequence data and comparison
with the recent profile kernel method (Kuang et al., 2004).
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2 REPRESENTATIONS AND KERNELS FOR
PROTEIN SEQUENCES

Proteins can be represented as sequences of variable length, typically
several hundred characters long, from the alphabet of 20 amino acids.
In order to use learning algorithms that require vector inputs, we must
first find a suitable feature vector representation, mapping sequence
x into a vector space by x �→ �(x). Kernel methods, such as SVMs,
need to compute only inner products, called kernels, K(x, y) =
〈�(x), �(y)〉, for training and testing. Thus, we can accomplish the
above mapping using a kernel for sequence data.

Biologically motivated sequence comparison scores, such as SW
or BLAST, provide an appealing representation of sequence data. The
SW algorithm (Smith and Waterman, 1981) uses dynamic program-
ming to compute the optimal local gapped alignment score between
two sequences, whereas BLAST (Altschul et al., 1990) approxim-
ates SW by computing a heuristic alignment score. Both methods
return empirically estimated E-values indicating the confidence of
the score. These alignment-based scores do not define a positive def-
inite kernel; however, one can use a feature representation based on
the empirical kernel map

�(x) = 〈d(x1, x), . . . , d(xm, x)〉,
where d(x, y) is the pairwise score (or E-value) between x and y

and xi , i = 1, . . . , m, are the training sequences. Using E-values of
SW algorithm in this fashion gives strong classification performance
(Liao and Noble, 2002). Note, however, that the method is slow, both
because computing each SW score is O(|x|2) and because computing
each empirically mapped kernel value is O(m).

Another appealing idea is to derive the feature representation from
a generative model for a protein family. In the Fisher kernel method
(Jaakkola et al., 2000), one first builds a profile HMM for the positive
training sequences, defining a log-likelihood function log P(x|θ) for
any protein sequence x. Then the gradient vector ∇θ log P(x|θ)|θ=θ0 ,
where θ0 is the maximum-likelihood estimate for model paramet-
ers, defines an explicit vector of features, called Fisher scores, for
x. This representation gives excellent classification results, but the
Fisher scores must be computed by an O(|x|2) forward–backward
algorithm, making the kernel tractable but slow.

It is possible to construct useful kernels directly without expli-
citly depending on generative models by using string kernels. For
example, the mismatch kernel (Leslie et al., 2002) is defined by a
histogram-like feature map that uses mismatches to capture inexact
string matching. The feature space is indexed by all possible k-length
subsequences α = a1, a2, . . . , ak , where each ai is a character in the
alphabet A of amino acids. The feature map is defined on k-gram α by
�(α) = (φβ(α))Ak , where φβ(α) = 1 if α is within m mismatches
of β, 0 otherwise, and is extended additively to longer sequences:
�(x) = ∑

k−gramsα∈x �(α). The mismatch kernel can be computed
efficiently using a trie data structure: the complexity of calculating
K(x, y) is O(cK(|x|+|y|)), where cK = km+1|A|m. For typical ker-
nel parameters k = 5 and m = 1 (Leslie et al., 2002), the mismatch
kernel is fast, scalable and yields impressive performance.

Other direct string kernel methods include pair HMM and convo-
lution kernels (Watkins, 1999; Haussler, 1999; Lodhi et al., 2000),
which are quite general but also have complexity O(|x||y|); more
recent and related string alignment kernels (Saigo et al., 2004), also
with complexity O(|x||y|); and exact-matching string kernels built
with suffix trees and suffix links, with complexity O(|x| + |y|)

(Vishwanathan and Smola, 2002). Inexact string matching models
similar to the mismatch kernel but with complexity O(cK(|x|+|y|)),
with cK independent of alphabet size, have also been presented
(Leslie and Kuang, 2003). The motif kernel (Ben-Hur and Brutlag,
2003) uses features that are built from a fixed database of motifs;
computing these features is linear in the length of the sequence.
Finally, almost all these kernels can be constructed using the rational
kernel framework of Cortes et al. (2002). We concentrate on the
mismatch kernel representation for the current work.

3 SEMI-SUPERVISED KERNELS FOR PROTEIN
SEQUENCES

In semi-supervised learning, one tries to improve a classifier trained
on labeled data by exploiting a relatively large set of unlabeled
data. An extensive review of techniques can be found in Seeger
(2001). It has been shown experimentally that under certain con-
ditions, the decision function can be estimated more accurately
in a semi-supervised setting, yielding lower generalization error.
The most common assumption one makes in this setting is called
the ‘cluster assumption’, i.e. that the class does not change in
regions of high density. Similarly, one assumes that the true decision
boundary lies in regions of low density. In this section, we review
previous semi-supervised kernel approaches that implement the
cluster assumption.

3.1 Cluster kernels
We will focus on classifiers that re-represent the given data to reflect
structure revealed by unlabeled data. The main idea is to change
the distance metric so that the relative distance between two points
is smaller if the points are in the same cluster. If one is using ker-
nels, rather than explicit feature vectors, one can modify the kernel
representation by constructing a cluster kernel.

Previous work of Chapelle et al. (2002) presented a general frame-
work for producing cluster kernels by modifying the eigenspectrum
of the kernel matrix. Two of the main methods presented are the ran-
dom walk kernel and the spectral clustering kernel. The random walk
kernel is a normalized and symmetrized version of a transition matrix
corresponding to a t-step random walk. As described in Szummer
and Jaakkola (2001), one can define a random walk representation
by viewing an RBF kernel as a transition matrix of a random walk on
a graph with vertices xi . One then uses the eigendecomposition of
the normalized transition matrix to compute the t-step random walk
kernel. The spectral clustering kernel is a simple use of the repres-
entation derived from spectral clustering (Ng et al., 2001) using the
first k eigenvectors of a normalized affinity matrix.

A serious problem with these methods is that one must diagonalize
a matrix of size m, where m is the number of labeled and unlabeled
data, giving a complexity O(m3). Other methods of implementing
the cluster assumption, such as transductive SVMs (Joachims, 1999),
also suffer from computational efficiency issues. A second drawback
is that these kernels are better suited to a transductive setting (where
one is given both the unlabeled and test points in advance) rather
than a semi-supervising setting. In order to estimate the kernel for
a sequence not present during training, one is forced to solve a dif-
ficult regression problem (Chapelle et al., 2002). In Sections 4 and
5, we will describe two simple methods to implement the cluster
assumption that do not suffer from these issues.
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3.2 Model-based semi-supervised kernels
Another approach for exploiting unlabeled data in kernel meth-
ods is to use semi-supervised training of probabilistic models and
then define model-based kernels. For example, in the Fisher kernel
approach (Jaakkola et al., 2000), one can use an iterative training
algorithm to alternately pull in homologs of the positive training
examples from a large unlabeled sequence database and reestimate
the profile HMM.

More recently, Kuang et al. (2004) introduced a semi-supervised
profile-based string kernel for protein sequences. In the profile ker-
nel approach, each sequence is represented by a profile estimated
from a large sequence database (e.g. using PSI-BLAST), and each
length k segment of the profile is used to define the local muta-
tion neighborhood and a corresponding contribution to the feature
vector in a kmer feature space. Unlike the Fisher kernel approach—
where a single probabilistic model is used to define feature vectors for
sequence examples—in the profile kernel, every example is repres-
ented by a probabilistic model in the form of a profile, and the kernel
is defined on profile examples. The profile kernel method achieves
state-of-the-art performance for the remote homology detection task,
strongly outperforming all strictly supervised methods, including the
mismatch kernel, the SVM-pairwise method, string alignment ker-
nels (Saigo et al., 2004) and other recent methods (Kuang et al.,
2005). We compare the new cluster kernel methods we define here
to the profile kernel method in large-scale benchmark experiments
in Section 6.3.

4 THE NEIGHBORHOOD MISMATCH KERNEL
In this section and section 5, we introduce two fast and general cluster
kernels that leverage unlabeled data to improve a base kernel repres-
entation. Unlike other cluster kernel approaches, our kernels make
use of two complementary (dis)similarity measures: (1) a base kernel
representation that implicitly exploits features useful for discrimin-
ation between classes; and (2) a distance measure that describes
how close examples are to each other. In our application to protein
classification, we use the mismatch string kernel as the base ker-
nel and standard sequence comparison metrics (such as BLAST or
PSI-BLAST E-values) as the distance measure. We note that string
kernels have proved to be powerful representations for SVM classific-
ation (Leslie et al., 2002), but do not give sensitive pairwise similarity
scores like the BLAST family methods; thus, the two sequence
similarity measures play distinct roles in the kernel definition.

For our first cluster kernel, we use a standard sequence similarity
measure like BLAST or PSI-BLAST to define a neighborhood for
each input sequence. The neighborhood Nbd(x) of sequence x is the
set of sequences x ′ with similarity score to x below a fixed E-value
threshold, together with x itself. Now given a fixed original feature
representation, we represent x by the average of the feature vectors
for members of its neighborhood:

�nbd(x) = 1

|Nbd(x)|
∑

x′∈Nbd(x)

�orig(x
′).

The neighborhood kernel is then defined by

Knbd(x, y) =
∑

x′∈Nbd(x),y′∈Nbd(y) Korig(x
′, y ′)

|Nbd(x)||Nbd(y)| .

We will see in the experimental results that this simple neighborhood-
averaging technique, used in a semi-supervised setting with the
mismatch kernel, dramatically improves classification performance.

In general, computing each neighborhood kernel value is quadratic
in neighborhood size, as is clear from the kernel expression given
above. However, in the special case where we use the mismatch ker-
nel as base kernel, we can modify the mismatch kernel algorithm by
presenting each neighborhood set as a concatentation of the neighbor
sequences (keeping track of where the ends of sequences are loc-
ated); using a trie data structure, the kernel computation is linear in
sequence length, giving a complexity of O(km+1|A|m(

∑
x ′+∑

y ′))
(i.e. linear in neighborhood size) to compute Knbd(x, y), where |A|
is the size of the alphabet of amino acids (Leslie et al., 2002).

To see how the neighborhood approach fits with the cluster
assumption, consider a set of points in feature space that form a
‘cluster’ or dense region of the dataset, and consider the region R

formed by the union of the convex hulls of the neighborhood point
sets. If the dissimilarity measure is a true distance, the neighbor-
hood averaged vector �nbd(x) stays inside the convex hull of the
vectors in its neighborhood, and all the neighborhood vectors stay
within region R. In general, the cluster contracts inside R under the
averaging operation. Thus, under the new representation, different
clusters can become better separated from each other.

5 THE BAGGED MISMATCH KERNEL
A number of existing clustering techniques are much more efficient
than the methods mentioned in Section 3. For example, the clas-
sical k-means algorithm is O(rkmd), where m is the number of data
points, d their dimensionality and r the number of iterations required.
Empirically, this running time grows sublinearly with k, m and d.
Therefore, in practice, it is computationally efficient to run k-means
multiple times, which can be useful because k-means can converge
to local minima. We therefore consider the following method:

(1) Run k-meansn times, givingp = 1, . . . , n cluster assignments
cp(xi) for each i.

(2) Build a bagged-clustering representation based on the fraction
of times that xi and xj are in the same cluster

Kbag(xi , xj ) =
∑

p[cp(xi) = cp(xj )]
n

. (1)

(3) Take the product between the original and bagged kernel

K(xi , xj ) = Korig(xi , xj ) · Kbag(xi , xj ).

Since k-means gives different solutions on each run, Step (1) will
give different results; for other clustering algorithms one could sub-
sample the data instead. Step (2) is a valid kernel because it is the
inner product in an nk-dimensional space �(xi) = 〈[cp(xi) = q] :
p = 1, . . . , n, q = 1, . . . , k〉, and products of kernels as in Step (3)
are also valid kernels. The intuition behind the approach is that the
original kernel is rescaled by the ‘probability’ that two points are in
the same cluster, hence encoding the cluster assumption. To estimate
the kernel on a test sequence x in a semi-supervised setting, one can
assign x to the nearest cluster in each of the bagged runs to compute
Kbag(x, xi). We apply the bagged kernel method with Korig as the
mismatch kernel and Kbag built by running k-means on the distances
induced by PSI-BLAST.
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6 EXPERIMENTS
We measure the recognition performance of cluster kernel methods
by testing their ability to classify protein domains into superfamil-
ies in the structural classification of proteins (SCOP) (Murzin et al.,
1995). For the purposes of this experiment, two domains that come
from the same superfamily are assumed to be homologous, and two
domains from different folds are assumed to be unrelated. For pairs
of proteins in the same fold but different superfamilies, their rela-
tionship is uncertain, and so these pairs are not used in evaluating
the algorithm. This labeling scheme has been used in several pre-
vious studies of remote homology detection algorithms (Jaakkola
et al., 2000; Liao and Noble, 2002). We use the same 54 target
families and the same test and training set splits as in the remote
homology experiments from Liao and Noble (2002). The sequences
are 7329 SCOP domains obtained from version 1.59 of the database
after purging with astral.stanford.edu so that no pair of sequences
share >95% identity. Compared with Liao and Noble (2002), we
reduce the number of available labeled training patterns roughly by
one-third. Dataset sequences that were neither in the training nor test
sets for experiments from Liao and Noble (2002) are included as
unlabeled data.

All methods are evaluated using receiver operating characteristic
(ROC) analysis (Hanley and McNeil, 1982). An ROC curve plots
the rate of true positives as a function of the rate of false positives
at varying decision thresholds. The ROC score is the area under this
curve. A perfect classifier, which places all positive examples above
all negative examples, receives an ROC score of 1, and a random
classifier receives a score of ∼0.5. In addition to the ROC score, we
compute the ROC50 score, which is the ROC score computed only
up to the first 50 false positives (Gribskov and Robinson, 1996). This
score focuses on the top of the ranking, which in some applications
is the most important.

In all experiments, we use an SVM classifier with a small soft
margin parameter, set as Kii ← Kii + γ where γ is 0.02ρ times
the median diagonal kernel entry, and ρ is the fraction of training set
sequences that have the same label as the i-th sequence. The SVM
computations are performed using the freely available Spider Matlab
machine learning package.

6.1 Semi-supervised setting
Our first experiment shows that the neighborhood mismatch ker-
nel makes better use of unlabeled data than the baseline method
of ‘pulling in homologs’ prior to training the SVM classifier, i.e.
simply finding close homologs of the positive training examples in
the unlabeled set and adding them to the positive training set for the
SVM. Homologs come from the unlabeled set (not the test set), and
‘neighbors’ for the neighborhood kernel come from the training plus
unlabeled data. We compare the methods using the mismatch kernel
representation with k = 5 and m = 1, as used in Leslie et al. (2002).
Homologs are chosen via BLAST or PSI-BLAST as having a pair-
wise E-value <0.05 [the default parameter setting (Altschul et al.,
1990)] with any of the positive training samples. The neighborhood
mismatch kernel uses the same threshold to choose neighborhoods.
For the neighborhood kernel, we normalize before and after the aver-
aging operation via Kij ← Kij /

√
KiiKjj . The results are given in

Figure 1 and Table 1.
Figure 1 plots the number of families achieving a given ROC50

score. A signed rank test shows that the neighborhood mismatch
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Fig. 1. Comparison of protein representations and classifiers using unlabeled
data. The mismatch kernel is used to represent proteins, with close homologs
being pulled in from the unlabeled set with BLAST (left) or PSI-BLAST
(right). Building a neighborhood with the neighborhood mismatch kernel in
both cases improves over the baseline of pulling in homologs. Note: We also
pull in homologs during the SVM training for the neighborhood kernel.

Table 1. Mean ROC50 and ROC scores over 54 target families for semi-
supervised experiments, using BLAST and PSI-BLAST for adding homologs
and defining the neighborhood kernel

BLAST PSI-BLAST
ROC50 ROC ROC50 ROC

Mismatch kernel 0.416 0.870 0.416 0.870
Mismatch kernel + homologs 0.480 0.900 0.550 0.910
Neighborhood mismatch kernel 0.639 0.922 0.699 0.923

kernel yields significant improvement over adding homologs (P -
value = 3.9 × 10−5). Note that the PSI-BLAST scores in these
experiments are built using the whole database of 7329 sequences
(i.e. test sequences in a given experiment are also available to the PSI-
BLAST algorithm); so these results are slightly optimistic. However,
the comparison of methods in a truly inductive setting using BLAST
shows the same improvement of the neighborhood mismatch kernel
over adding homologs (P -value = 8.4 × 10−5).

The improvement from the neighborhood kernel does not come
from the BLAST and PSI-BLAST representations alone. The mean
ROC50 score for these representations using an empirical map (see
the transductive setting for a description) are 0.368 and 0.533 without
pulling in homologs, and 0.448 and 0.595 with pulled-in homologs.
Moreover, simply adding the BLAST and mismatch kernels together
(using an empirical map) without using homologs yields a mean
ROC50 of 0.3943. Therefore the improvement is not because the
methods give independent information about the targets which can
be easily combined.
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Fig. 2. Comparison of protein representations and classifiers using unlabeled
data in a transductive setting. Neighborhood and bagged mismatch kernels
outperform pulling in close homologs (left panel) and equal or outper-
form previous semi-supervised methods (right panel). Note: We also pull
in homologs during the SVM training for the neighborhood and bagged
kernels.

6.2 Transductive setting
In the following experiments, we consider a transductive setting, in
which the test points are given to the methods in advance as unlabeled
data, giving slightly improved results over the last section. Although
this setting is unrealistic for a real protein classification system, it
enables comparison with random walk and spectral clustering ker-
nels, which do not easily work in the semi-supervised setting. In
Figure 2 (left panel), we again show the mismatch kernel compared
with pulling in homologs and the neighborhood kernel. This time
we also compared with the bagged mismatch kernel using bagged k-
means with k = 100 and n = 100 runs, which gave the best results.
We found the method quite insensitive to k. The result for k = 400 is
also given in Table 2. We then compare these methods with random
walk and spectral clustering kernels. Neither of the two methods
works well for the mismatch kernel (Supplementary data), perhaps
because the feature vectors are so orthogonal. However, for a PSI-
BLAST representation via empirical kernel map, the random walk
outperforms pulling in homologs. We take the empirical map with
�(x) = (exp(−λd(x1, x)), . . . , exp(−λ(d(xm, x))), where d(x, y)

are PSI-BLAST E-values and λ = 1/1000, which improves over
a linear map. We report the results for the best parameter choices,
t = 2 for the random walk and k = 200 for spectral clustering. We
found the latter quite brittle with respect to the parameter choice;
the results for other parameters can be found on the Supplementary
website. For pulling in close homologs, we take the empirical kernel
map only for points in the training set and the chosen close homo-
logs. Finally, we also run transductive SVMs. The results are given in
Table 2 and right panel of Figure 2. A signed rank test (with adjusted
P -value cutoff of 0.05) finds no significant difference between the
neighborhood kernel, the bagged kernel (k = 100) and the random
walk kernel in this transductive setting. Thus, the new techniques are
comparable with random walk, but are feasible to calculate on full
scale problems.

6.3 Large-scale experiments
Semi-supervised and transductive methods are most interesting and
potentially give the greatest benefit in the realistic setting where a
large amount of unlabeled data is used. We therefore test our cluster
kernel methods in large-scale experiments, using 101 602 Swiss-
Prot protein sequences as additional unlabeled data. For simplicity,
we first give results for both the neighborhood and bagged kernels

Table 2. Mean ROC50 and ROC scores over 54 target families for transduct-
ive experiments

ROC50 ROC

Mismatch kernel 0.416 0.875
Mismatch kernel + homologs 0.625 0.924
Neighborhood mismatch kernel 0.704 0.917
Bagged mismatch kernel (k = 100) 0.719 0.943
Bagged mismatch kernel (k = 400) 0.671 0.935
PSI-BLAST kernel 0.533 0.866
PSI-BLAST+homologs kernel 0.585 0.873
Spectral clustering kernel 0.581 0.861
Random walk kernel 0.691 0.915
Transductive SVM 0.637 0.874

in the transductive setting, i.e. in the case where test sequences are
available as additional unlabeled examples in all the experiments.
Then, for a clean comparison against the profile kernel, we test the
neighborhood kernel and the profile kernel in a semi-supervised set-
ting, where the Swiss-Prot database alone is used as the source of
unlabeled data.

For the large-scale neighborhood mismatch kernel experiments,
we first compute the entire SCOP plus Swiss-Prot kernel (108931 ×
108931) matrix with mismatch kernel parameters k = 5 and m = 1.
We then apply the neighborhood averaging operation to produce
the 7329 × 7329 kernel matrix for SCOP sequences needed for
SVM training. We normalize the kernel matrix before and after the
neighborhood averaging operation. Results in Table 3 clearly show
that the inclusion of a large amount of additional unlabeled data
from Swiss-Prot significantly improves classification performance.
Moreover, the neighborhood kernel again outperforms the baseline
method of adding homologs of the positive training sequences to the
training set.

For the large-scale bagged mismatch kernel experiments, the fact
that many of the sequences in the Swiss-Prot database are multi-
domain protein sequences complicates the clustering step. Since the
PSI-BLAST E-values used as the dissimilarity metric are based
on local alignment, a multi-domain sequence can be similar to
many unrelated single-domain sequences, and hence the clustering
algorithm may fail to converge. As an approximate remedy, we only
use Swiss-Prot protein sequences with maximal length of 250 for the
large-scale k-means clustering, reasoning that most multi-domain
sequences would be eliminated by this length constraint. We ran-
domly sample 30 000 protein sequences from the set of Swiss-Prot
with length 250 or less to use as unlabeled data for clustering. Since
the method mainly depends on the quality of the clusters containing
the labeled points, we terminate the k-means clustering algorithm
once there are no more changes in the label assignment for the SCOP
sequences. It is worth noting that a small number of two-domain
sequences may have length below our cutoff, but we observe that
the k-means clustering algorithm still behaves relatively stably. We
use the same mismatch kernel parameters for the bagged kernel as
the ones we use for the small-scale bagged kernel experiments. A
comparison of results is shown in Table 3. Again, bagged kernel per-
formance significantly improves when a large amount of unlabeled
data is provided to the clustering algorithm.
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Table 3. Mean ROC50 and ROC scores over 54 target families for large-scale
transductive experiments

Without Swiss-Prot With Swiss-Prot
ROC50 ROC ROC50 ROC

Mismatch kernel + homologs 0.625 0.924 0.706 0.945
Neighborhood mismatch kernel 0.704 0.917 0.871 0.971
Bagged mismatch kernel (k = 100) 0.719 0.943 0.803 0.953
Bagged mismatch kernel (k = 400) 0.671 0.935 0.775 0.955

We include homologs from the unlabeled set and the test set (SCOP + Swiss-Prot) for
the training of all our SVMs.

Table 4. Mean ROC50 and ROC scores over 54 target families for large-scale
semi-supervised experiments

ROC50 ROC

Neighborhood mismatch kernel 0.810 0.955
Profile kernel 0.842 0.980

We do not include homologs from the unlabeled set (Swiss-Prot) for the training of our
SVMs in these experiments.

Finally, we compare the performance of the stronger of the
cluster kernels, the neighborhood kernel, to a state-of-the-art semi-
supervised kernel method, the profile kernel. The profile kernel
representation depends on estimating sequence profiles for each input
sequence using a large sequence database, and therefore, we only
present results in the large-scale setting. In these experiments, we
use a semi-supervised training set-up: the Swiss-Prot database alone
is used as the source of unlabeled data for estimating PSI-BLAST
profiles and defining sequence neighborhoods; SCOP sequences are
not used for profile learning or for neighborhood averaging. For the
cleanest comparison, we do not add SCOP homologs to the positive
training set before training the SVMs. Mean ROC50 and ROC res-
ults are given in Table 4, and a comparison of ROC50 results over all
experiments is given in Figure 3. Although the cluster kernel method
does not outperform the profile kernel on average, results of the two
methods are similar (20 wins, 25 losses, 9 ties for the cluster ker-
nel); a signed rank test with a P -value threshold of 0.05 finds no
significant difference in performance between the two methods.

The computational cost of the profile kernel depends on the para-
meter σ controlling the size of the local mutation neighborhoods; the
mutation neighborhood of each length k window of the profile con-
sists of k-mers whose negative log-likelihood given the profile is <σ .
If Mσ is the maximum size of any local mutation neighborhood in the
input sequences, the complexity of computing the profile kernel for
profiles of sequences x and y can be bounded by O(kMσ (|x|+|y|)).
In practice, in the large-scale experiments reported, the profile kernel
takes less time to compute than the neighborhood kernel, since we do
not limit the number of sequences represented in the neighborhoods
and hence the neighborhood representation is much less compact
than the profile kernel representation. Various schemes could make
the neighborhood kernel running time comparable or faster than the
profile kernel, e.g. sampling from the neighborhood rather than using
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Fig. 3. Comparison of neighborhood kernel and profile kernel ROC50 per-
formance for large-scale semi-supervised experiments. No homologs were
added to the training set for the purpose of training the SVMs.

all sequences; one would have to investigate how much sampling is
needed to retain classification performance.

Although the neighborhood and profile kernels have a similar num-
ber of wins in this set of experiments, performance on individual
experiments can be quite different. We speculate that the profile ker-
nel might perform best when the training profiles themselves are
not too distant from the test sequences (as measured, e.g. by PSI-
BLAST E-value), whereas the neighborhood kernel might perform
better in the more difficult situation where the test sequences are
poorly described by every positive training profile. (Note that, in
both situations, the discriminative profile kernel SVM outperforms
the PSI-BLAST algorithm used directly as a ranking method.) To
test this hypothesis, we consider the top 10 wins of the profile kernel
method and of the neighborhood kernel method, as ranked by the dif-
ference in ROC50 performance, and for each positive test sequence in
these experiments, we find the positive training profile that detected
the test sequence with minimum PSI-BLAST E-value. We then rank
the test sequences by this minimum E-value and record the median
E-value in this list. We find that in the top 10 profile kernel wins, 8
of the experiments has median minimum E-value <0.05, and 9 are
<0.1, whereas in the neighborhood kernel wins, only 2 experiments
have median minimum E-value <0.05, and only 3 are <0.1. We
conclude that the neighborhood kernel may have an advantage over
the profile kernel in situations where the training profiles are very
distant from the remote homolog sequences to be detected.

7 DISCUSSION
Two of the most important issues in protein classification are
representation of sequences and handling unlabeled data. Two devel-
opments in recent kernel methods research, string kernels and cluster
kernels, address these issues separately. We have described two ker-
nels, the neighborhood mismatch kernel and the bagged mismatch
kernel, which combine both approaches and yield state-of-the-art
performance in protein classification. These approaches, used with
an efficient string kernel, are fast and scalable cluster kernels for
sequence data and do not require diagonalization of the kernel mat-
rix as in other cluster kernel methods. A potential direction for
improvement in the neighborhood kernel would be to extract only
those segments of ‘neighboring’ sequences that correspond to the
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local alignment-based E-value score; when we use the entire multi-
domain Swiss-Prot sequences as neighbors of a single-domain SCOP
sequence, these neighbor sequences may include long regions that
are unrelated to the SCOP domain, and hence we introduce noise in
the neighborhood averaging operation.

Although we have motivated our kernels by earlier work on cluster
kernels and the cluster assumption, one can also view the neighbor-
hood and bagged kernels as using unlabeled data locally (from nearby
sequences or the local cluster) for smoothing the kernel representa-
tion. Related work using probabilistic models instead of unlabeled
data for smoothing includes the recently introduced Bhattacharyya
kernel (Jebara et al., 2004), which assigns a probability distribution
to each example and defines a kernel on these distributions.

We also compared with the profile-based string kernels of Kuang
et al. (2004), which are also based on a semi-supervised learning
paradigm. These string kernels are also scalable and achieve very
high classification accuracy; in our experiments, the neighborhood
kernel performs similar to the profile kernel. However, the profile
kernel method requires producing a profile for each query sequence,
which is necessarily tied to alignment. In contrast, the cluster ker-
nels that we present here are more general, in that any dissimilarity
measure can be used for neighborhood averaging or bagging and any
base kernel chosen for the initial representation. These kernels may,
therefore, be applicable to a wider range of problems. For example,
one could use the expression coherence in a set of microarray exper-
iments as a measure of functional similarity of genes combined with
a base kernel to define cluster kernels for functional gene classific-
ation. One could also hope to further improve the performance for
the protein classification task by using a more powerful base kernel
than the mismatch kernel [e.g. the string alignment kernel of Saigo
et al. (2004)], although the computational expense of the improved
base kernel representation may become a concern.
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