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1 The Barista model

We are given a set of observed spectra S = {s1, . . . , sNS} and a database D of target and decoy proteins
against which we perform a database search. The search produces a set of peptide-spectrum matches
(PSMs). Denoting the set of peptides as E1, . . . , ENE

, the PSMs are written as the tuples (Ei, sj) ∈ M,
each representing a match of peptide i to spectrum j. Note that, in general, we may opt to retain the single
best-scoring peptide for each spectrum, or a small constant number of top-ranked PSMs per spectrum. Each
of the identified peptides Ek belongs to one or more proteins, leading to a set of proteins R1, . . . ,RNR

that
cover the set of peptides. Thus, R includes every protein in D that has at least one identified peptide (i.e.
the maximal set of proteins that can explain the observed spectra).

For our algorithm, we define a feature representation φ(E, s) ∈ Rd for any given PSM. Our particular
choice for this feature representation, which is described in Supplementary Table 1, contains a variety of
scores of the quality of the peptide-spectrum match, as well as features that capture properties of the
spectrum and properties of the peptide.

1.1 PSM Scoring Function

We now define the score of a PSM to be a parameterized function of its feature vector φ(E, s). We consider
two possibilities.

Linear Parameterization Previous works used a family of linear functions of the form:

f(E, s) = w>φ(E, s) + b,

where w ∈ Rd. This is the model chosen by methods such as PeptideProphet [Keller et al., 2002] and
Percolator [Käll et al., 2007].
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Nonlinear Parameterization We choose a family of nonlinear functions given by two-layer neural net-
works:

f(E, s) =
HU∑
i=1

wO
i hi(φ(E, s)) + b,

where wO ∈ RHU are the output layer weights for the HU hidden units, and hk(φ(E, s)) is the kth hidden
unit, defined as:

hk(φ(E, s)) = tanh((wH
k )>φ(E, s) + bk),

where wH
k ∈ Rd and bk ∈ R are the weight vector and threshold for the kth hidden unit. The number of

hidden units HU is a hyperparameter that can be chosen by cross-validation. This nonlinear function is the
improved model used in Q-ranker [Spivak et al., 2009]. Throughout this work, we use a fixed value of 3
hidden units. In preliminary experiments, we observed that 3 or 4 hidden units provided approximately the
same performance, whereas using 5 hidden units led to evidence of over-fitting.

1.2 Peptide Scoring Function

A single peptide can have several spectra matching to it (several PSMs). For each distinct peptide we would
like to rank the likelihood that they have been matched. Hence, we define the score of a peptide as the
maximum score assigned to any of its PSMs:

g(E) = max
s:(E,s)∈M

f(E, s)

where (E, s) ∈ M is the set of PSMs assigned to peptide E. We take the max over the PSMs for each
peptide because of the argument presented in [Nesvizhskii et al., 2003], that many spectra matching the
same peptide are not an indication of the correctness of the identification.

1.3 Protein Scoring Function

Finally, the score of a protein is defined in terms of the scores of the peptides in that protein as follows:

F (R) =
1

|N(R)|α
∑

E∈N ′(R)

g(E) (1)

where N(R) is the set of predicted peptides in protein R, N ′(R) is the set of peptides in the protein R that
were observed during the MS/MS experiment, and α is a hyperparameter of the model. The set N(R) is
created by virtually digesting the protein database D with the protease used to digest the protein mixture
for the mass spectrometry experiment. Therefore, the sum of the scores of all the peptides identified during
the database seach is used to estimate the accuracy of the protein identification. Dividing by a function of
the predicted number of peptides is designed to correct for the number of the peptides not identified during
the database search. Setting α = 1 penalizes linearly, whereas setting α < 1 punishes larger sets of peptides
to a lesser degree - for example, this can be used if not all peptides in a protein are observervable. In our
results we use the fixed value α = 0.3, after selecting it in validation experiments (Supplementary Figure 10).

2 Training the model

The training proceeds as follows (see Supplementary Algorithm 1). Draw a protein R at random and
determine its score F (R) based on the scores of its peptides. Because the parameters w of the PSM scoring
function f(E, s) change during training, the scores of all PSMs belonging to the peptides are recalculated,
and a max operation is performed each time a protein is drawn.

For each protein Ri ∈ D we also have a label yi ∈ ±1 indicating whether it is a target (positive) or decoy
(negative). Given our set of proteins R and corresponding labels y, the goal is to choose the parameters w
of the discriminant function F (R), such that

F (R) > 0 if yi = 1
F (R) < 0 if yi = −1.
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To find F (R) we search for the function in the family that best fits the empirical data. The quality of the fit
is measured using a loss function L(F (R), y) which quantifies the discrepancy between the values of F (R)
and the true labels y. We thus train the weights w using stochastic gradient descent with the hinge loss
function [Cortes and Vapnik, 1995]

L(F (R), y) = max(0, 1− yF (R))

During training, the gradients δL(F (R),y)
δw of the loss function are calculated with respect to each weight w,

and the weights are updated. After convergence, the final output is a ranked list of proteins, sorted by score.

3 Multi-task training

For the multi-task version of Barista, we train the protein and peptide optimization tasks in parallel using
a shared neural network representation. For the protein-level training, we use the the hinge loss to optimize
Lprot(F (Ri), yi) = max(0, 1 − yiF (Ri)) and follow the procedure outlined above. For peptide ranking we
use a similar procedure: we pick a peptide example, Ei, and we assign this peptide a label based on the
target/decoy labels of the corresponding proteins. We then make a gradient step to optimize the hinge loss
function on the peptide level: Lpep(g(Ej), yj) = max(0, 1− yjg(Ej)).

To learn both tasks simultaneously, we optimize Lmulti = Lprot(F (Ri), yi)+Lpep(g(Ej), yj). The training
follows the procedure discribed in [Collobert and Weston, 2008]:

1. Select next task.

2. Select a random training example for this task.

3. Update the NN for this task by taking a gradient step with respect to this exampe.

4. Go to 1.

4 Degeneracy

For degenerate peptides—peptides that appear in several proteins—our approach is as follows:

1. Merge all proteins that contain a common set of identified peptides into a single meta-protein, and
count it as a single protein in all the reported results.

2. Identify proteins whose peptides are completely contained in another protein, and report only the
larger protein.

3. For proteins sharing only a portion of their peptides, we propose two solutions: non-parsimonious and
parsimonious. By default, Barista returns a non-parsimonious solution, which is simply a ranking of
proteins after the two steps above. The parsimonious solution (referred to as p-Barista) is as described
in [Bern and Goldberg, 2008]: the final protein scores are composed such that if several proteins share
at least one peptide, then this peptide is assigned only to the highest-scoring protein in the group and
does not contribute to the score of any other protein.

5 Running PeptideProphet, ProteinProphet and IDPicker

We used the versions of PeptideProphet and ProteinProphet from the Trans Proteomic Pipeline version 4.0.
Each data set was analyzed using PeptideProphet with the appropriate enzyme specificity and decoy option.
The default peptide probability of 0.05 assigned by PeptideProphet was used to filter the input for further
analysis by ProteinProphet. IDPicker version 2.0 was run using four different FDR thresholds: 0.01, 0.05,
0.1 and 0.25.
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6 Defining a gold standard based on external data sets

For our ROC analysis, we treated as positives the intersection of the protein sets identified by the mRNA
[Holstege et al., 1998] and protein-tagging experiments [Ghaemmaghami et al., 2003]. The following thresh-
olds applied to the datasets: (1) all 1627 proteins whose mRNA copy count was higher than the average
copies/cell counts (2.4 copies/cell) were considered as present according to the microarray experiments, and
(2) all 3790 proteins detected by both GFP (green flourenscent protein) and TAP (a specific antigen) were
considered present according to the protein-tagging experiment. The intersection of these two sets contains
1295 proteins, and was used as an independent gold standard.
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1 XCorr Cross correlation between calculated and observed spectra
2 ∆Cn Fractional difference between current and second best XCorr

3 ∆CL
n Fractional difference between current and fifth best XCorr

4 Sp Preliminary score for peptide versus predicted fragment ion values
5 ln(rSp) The natural logarithm of the rank of the match based on the Sp score

8 Mass The observed mass [M+H]+

6 ∆M The difference in calculated and observed mass
7 abs(∆M) The absolute value of the difference in calculated and observed mass
9 ionFrac The fraction of matched b and y ions
10 ln(NumSp) The natural logarithm of the number of database peptides within the specified m/z range
11 enzN Boolean: Is the peptide preceded by an enzymatic (tryptic) site?
12 enzC Boolean: Does the peptide have an enzymatic (tryptic) C-terminus?
13 enzInt Number of missed internal enzymatic (tryptic) sites
14 pepLen The length of the matched peptide, in residues
15–17 charge1–3 Three Boolean features indicating the charge state

Supplementary Table 1: Features used to represent PSMs. Each PSM obtained from the search is
represented using 17 features. These are the same features used by Percolator, except that three features were
removed. These three features—for example, the number of other spectra that match to the same peptide—
captured properties of the entire collection of PSMs. We removed them to ensure complete separation
between the training set and the test set.

Input: labeled proteins (Ri,yi)
repeat

Pick a random protein (Ri,yi)
Compute F (Ri) given by equation (1).
if 1− yF (Ri) > 0 then

Make a gradient step to optimize L(F (Ri),yi)
end if

until convergence

Supplementary Algorithm 1: Training Barista
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Supplementary Figure 1: Comparison of Barista and ProteinProphet, using q value thresholds.
This figure is similar to Figure ??, except that Barista results are reported with respect to a range of q value
thresholds plotting on the x-axis, instead of numbers of false positives. The q value is defined as the minimal
FDR threshold at which a given score is deemed significant.
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Method PP Barista %>PP IDP %>IDP
Yeast trypsin 1079 1351 25% 1084 24%
Worm trypsin 271 475 74% 327 45%
Chymotrypsin 289 210 37% 184 57%
Elastase 204 158 29% 144 41%

Supplementary Table 2: Comparison of protein identification methods at a q value threshold
of 0.01. The table lists, for each of the four datasets, the number of proteins identified at q < 0.01 by
ProteinProphet (PP), Barista and IDPicker (IDP), as well as the improvement provided by Barista relative
to the other two methods.

7



(A) Yeast trypsin (B) Yeast elastase (C) Yeast chymotrypsin (D) Worm trypsin

false positive proteins

tru
e 

po
si

tiv
e 

pr
ot

ei
ns

0 25 50 75 100
0

250

500

750

1000

1250

false positive proteins

tru
e 

po
si

tiv
e 

pr
ot

ei
ns

0 25 50 75 100
0

100

200

300

400

false positive proteins

tru
e 

po
si

tiv
e 

pr
ot

ei
ns

0 25 50 75 100 125 150 175
0

100

200

300

400

500

false positive proteins

tru
e 

po
si

tiv
e 

pr
ot

ei
ns

0 25 50 75 100 125 150
0

100

200

300

400

500

600

700

800

(E) (F) (G) (H)

789211 57 14053 34 16179 25 292198 43

(I) (J) (K)

positive proteins

co
nf

irm
ed

 p
os

iti
ve

 p
ro

te
in

s

0 250 500 750 1000
0

100

200

300

positive proteins

co
nf

irm
ed

 p
os

iti
ve

 p
ro

te
in

s

0 100 200 300
0

25

50

75

100

125

150

positive proteins

co
nf

irm
ed

 p
os

iti
ve

 p
ro

te
in

s

0 100 200 300 400
0

100

200

ProteinProphet

Barista

Barista and 
ProteinProphet:overlap

Supplementary Figure 2: Comparison of Barista (training set) and ProteinProphet. This figure is
similar to Figure ??, except that Barista results are reported with respect to a training set consisting of
approximately 75% of the data.
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Supplementary Figure 3: Comparison of Barista (test set) and ProteinProphet. This figure is
complementary to the previous figure: Barista results are reported with respect to a test set consisting of
approximately 25% of the data.
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(C) Yeast chymotrypsin (D) Worm trypsin
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Supplementary Figure 4: Comparison of methods, including parsimonious Barista. This figure is
similar to Figure ??, except that p-Barista is also included.

10



(A) Yeast trypsin (B) Yeast elastase

251 501 751 1001 1251 1501 1751 2001 2251 2501
0

0.1

0.2

0.3

0.4

length in bin

fr
ac

tio
n 

of
 to

ta
l p

ro
te

in
s

Barista
whole database
ProteinProphet

251 501 751 1001 1251 1501 1751 2001 2251 2501
0

0.2

0.4

0.6

length in bin

fr
ac

tio
n 

of
 to

ta
l p

ro
te

in
s

Barista
whole database
ProteinProphet

(C) Yeast chymotrypsin (D) Worm trypsin

251 501 751 1001 1251 1501 1751 2001 2251 2501
0

0.2

0.4

0.6

length in bin

fr
ac

tio
n 

of
 to

ta
l p

ro
te

in
s

Barista
whole database
ProteinProphet

251 501 751 1001 1251 1501 1751 2001 2251 2501
0

0.1

0.2

0.3

0.4

0.5

length in bin

fr
ac

tio
n 

of
 to

ta
l p

ro
te

in
s

Barista
whole database
ProteinProphet

Supplementary Figure 5: Lengths of proteins identified by Barista and ProteinProphet. The figure
shows histograms of normalized protein counts within different protein length ranges (bins). The protein
counts are normalized by the total numbers of proteins in the sample. Proteins are selected using a threshold
of 10 false positives.
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Data/Method FP Barista ProteinProphet Overlap Only Barista Only ProtProphet
Yeast 0 512 569 555 401 853
Predicted 5 513 574 546 398 924

10 514 576 544 402 964
50 523 582 547 431 957

Yeast 0 556 569 574 497 496
Observed 5 552 574 565 496 669

10 551 576 563 491 690
50 555 582 568 495 718

Elastase 0 357 389 378 325 505
Predicted 5 356 418 376 320 740

10 356 441 378 313 762
50 372 483 378 364 997

Elastase 0 336 389 380 269 495
Observed 5 349 418 378 306 767

10 355 441 371 327 927
50 381 483 383 377 983

Chymotrypsin 0 357 389 378 325 505
Predicted 5 356 418 376 320 740

10 356 441 378 313 762
50 372 483 378 364 997

Chymotrypsin 0 336 389 380 269 495
Observed 5 349 418 378 306 767

10 355 441 371 327 927
50 381 483 383 377 983

Worm 0 565 668 645 468 825
Predicted 5 553 629 613 466 721

10 530 621 582 446 814
50 508 652 559 425 1012

Worm 0 680 668 735 595 465
Observed 5 653 629 695 591 460

10 626 621 657 576 537
50 575 652 627 483 710

Supplementary Table 3: Average lengths of identified proteins. The table reports, for each data set,
the average length of the proteins identified at various thresholds. Results for two variants of Barista are
reported, using the standard protein score normalization (“predicted”) and using normalization based on
the number of matched peptides (“observed”).
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Supplementary Figure 6: Performance of ProteinProphet as a function of threshold. This fig-
ure is similar to Figure ??, using the “yeast trypsin” dataset, except that ProteinProphet was run with
PeptideProphet thresholds of 0.01, 0.02 and 0.05.
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Supplementary Figure 7: Abundances of proteins identified by Barista. The figure plots average pro-
tein abundance of the top n proteins, as a function of n. Protein abundances are taken from [Ghaemmaghami
et al., 2003].
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Supplementary Figure 8: Comparison of Barista (with modified protein normalization) and Pro-
teinProphet. This figure is similar to Figure ??, except that the number of matched (“observed”) peptides
was used as the normalization factor in the protein scoring function.

15



Training Set Test Set
P
ep

ti
d
es

false positive proteins

tru
e 

po
si

tiv
e 

pr
ot

ei
ns

0 100 200
0

1000

2000

3000

4000

5000

6000

false positive proteins

tru
e 

po
si

tiv
e 

pr
ot

ei
ns

0 10 20 30 40 50 60 70
0

250

500

750

1000

1250

1500

P
ro

te
in

s

false positive proteins

tru
e 

po
si

tiv
e 

pr
ot

ei
ns

0 25 50 75 100
0

250

500

750

1000

1250

false positive proteins

tru
e 

po
si

tiv
e 

pr
ot

ei
ns

0 10 20 30 40
0

100

200

300

400

ProteinProphet

Barista multi-task

Barista proteins only

Barista peptides only

Supplementary Figure 9: Multi-task optimization of protein and peptide ranking. The figure shows,
for the tryptic yeast data set, the performance of ProteinProphet, PeptideProphet and three variants of
Barista. Each panel plots the number of distinct peptides (top) or proteins (bottom) as a function of the
number of false positives. ProteinProphet is evaluated at the protein level and PeptideProphet at the peptide
level. Barista is trained on the protein ranking task, on the peptide ranking task, or both.
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Supplementary Figure 10: Hyperparameter selection. Barista uses a hyperparameter α when normalizing
for the number N of peptides per protein. The figure shows, for the “yeast trypsin” data set, the performance
on the training set and test set for different choices of α. Based on this analysis, we used a fixed value of
α = 0.3 for all subsequent experiments. The plot also shows (“overlap”) the size of the protein set that was
identified by all three runs.
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trypsin elastase chymotrypsin
Barista true positives 1256 259 318
ProteinProphet true positives 1087 227 254
overlap 992 176 212
Barista only 264 84 107
ProteinProphet only 95 51 42
Barista-only confirmed 18% 32% 49%
ProteinProphet-only confirmed 10% 21% 37%

Supplementary Table 4: Comparison of protein sets identified by Barista and ProteinProphet.
The table describes the overlap between proteins identified by the two methods, and provides the percentage
of proteins identified by a single method that are confirmed by the external gold standard. All of the
measurements were done at 10 false positives.
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Supplementary Figure 11: Barista results using reversed decoys This figure is similar to Figure ??A,
except that the decoys were generated by reversing the proteins in target database, instead of shuffling each
protein.
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