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Abstract: Shotgun proteomics coupled with database
search software allows the identification of a large num-
ber of peptides in a single experiment. However, some
existing search algorithms, such as SEQUEST, use score
functions that are designed primarily to identify the best
peptide for a given spectrum. Consequently, when com-
paring identifications across spectra, the SEQUEST score
function Xcorr fails to discriminate accurately between
correct and incorrect peptide identifications. Several
machine learning methods have been proposed to ad-
dress the resulting classification task of distinguishing
between correct and incorrect peptide-spectrum matches
(PSMs). A recent example is Percolator, which uses
semisupervised learning and a decoy database search
strategy to learn to distinguish between correct and
incorrect PSMs identified by a database search algorithm.
The current work describes three improvements to Per-
colator. (1) Percolator’s heuristic optimization is replaced
with a clear objective function, with intuitive reasons
behind its choice. (2) Tractable nonlinear models are used
instead of linear models, leading to improved accuracy
over the original Percolator. (3) A method, Q-ranker, for
directly optimizing the number of identified spectra at a
specified q value is proposed, which achieves further
gains.

Keywords: shotgun proteomics • tandem mass spectrom-
etry • machine learning • peptide identification

1. Introduction

A shotgun proteomics mass spectrometry experiment pro-
duces, for a given biological sample, a collection of spectra,
each of which may be mapped back to its generating peptide
using either de novo or database search techniques (reviewed

in refs 25 and 26). Critical to any database search procedure is
the score function that evaluates the quality of the match
between an observed spectrum and a candidate peptide. This
function plays two complementary roles. First, the function
ranks candidate peptides relative to a single spectrum, produc-
ing a single, top-scoring peptide-spectrum match (PSM) for
each spectrum. Second, the function ranks the PSMs from
different spectra with respect to one another. This latter
absolute ranking task is intrinsically more difficult than the
relative ranking task. A perfect absolute ranking function is by
definition also a perfect relative ranking function, but the
converse is not true because PSM scores may not be well-
calibrated from one spectrum to the next.

A variety of approaches have been developed to learn PSM
scoring functions from real data. Typically, the input to these
PSM postprocessing methods is the relative score, as well as
properties of the spectrum, the peptide, and features that
represent the quality of the PSM. PeptideProphet,19 for ex-
ample, uses four statistics computed by the SEQUEST database
search algorithm as input to a linear discriminant analysis
classifier. The system is trained from labeled correct and
incorrect PSMs derived from a purified sample of known
proteins. Other approaches use alternative feature representa-
tions or classification algorithms, such as support vector
machines (SVMs)1 or decision trees.11

One drawback to these machine learning approaches is that
they often do not generalize well across different machine
platforms, chromatography conditions, etc. Consequently,
when the experimental conditions change, a new training set
must be acquired, and this acquisition and training can be
expensive.

To combat this problem, several methods have been de-
scribed that adjust the parameters of the model with respect
to each new data set. PeptideProphet, for example, uses a fixed
linear discriminant function but couples it with a postprocessor
that maps the resulting unitless discriminant score to an
estimated probability. In the original version of PeptidePro-
phet,19 this mapping function was learned from each data set
in an unsupervised fashion (i.e., without knowing which PSMs
are correct and which are incorrect) using the expectation-
maximization (EM) algorithm.9

Subsequently, several algorithms have been described that
use semisupervised learning to adjust model parameters with
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respect to each new data set. In contrast to supervised learning,
in which the given training set is fully labeled, a semisupervised
learner is provided with a partially labeled training set. In the
context of PSM scoring, these labels are created using a decoy
database.24 Each spectrum is searched once against the real
(“target”) protein database and once against a decoy database
composed of reversed,24 shuffled,20 or Markov-chain generated
proteins.6 Matches to the target database are unlabeledsthey
may or may not be correct (we expect 50-90% are false
positives), but matches to the decoy database can be confi-
dently labeled “incorrect”.

The semisupervised version of PeptideProphet5 uses decoy
PSMs to improve the mapping from discriminant scores to
probabilities. During the EM step, PeptideProphet includes
decoy PSMs, forcing them to be labeled “incorrect”. The
resulting probabilities are significantly more accurate than
probabilities estimated in an unsupervised fashion.

The Percolator algorithm17 takes the semisupervised ap-
proach one step further. Rather than using a fixed discriminant
function and employing semisupervised learning as a postpro-
cessor, Percolator solves the entire problem in a semisupervised
fashion, learning a function that consistently ranks the decoy
PSMs below a subset of high-confidence target PSMs. Percola-
tor uses an iterative, SVM-based algorithm, initially identifying
a small set of high-scoring target PSMs, and then learning to
separate these from the decoy PSMs. The learned classifier is
applied to the entire set, and if new high-confidence PSMs are
identified, then the procedure is repeated. Critical to the
success of the algorithm is a statistical scoring procedure, based
on estimated false discovery rates,2 that prevents explosion of
the high-confidence set of PSMs.

A subsequent version of PeptideProphet10 extends that
algorithm in a similar fashion. Like Percolator, the newest
version of PeptideProphet adjusts the parameters of the dis-
criminant function to reflect specific features of the data set
and allows the algorithm to use more than one PSM for the
identification of the best scoring peptide. In addition, the
algorithm uses a measure of spectrum quality in its model.

Despite the good performance of Percolator, the algorithm
itself is somewhat heuristic; indeed, it is unclear what exactly
Percolator optimizes and whether the algorithm’s iterative
optimization process provably converges. The current work
proposes a novel, well-founded approach to this problem.
Although only some of the matches to the target database are
positive examples, we opt to treat this problem as a fully
supervised classification problem with noisy labels; that is, we
label all the target PSMs “correct” (but some of these are
mislabeled) and all the decoy PSMs “incorrect”. However, we
define a loss function that does not severely penalize examples
that are far from the decision boundary. In this way, incorrect
target PSMs do not strongly affect the learning procedure. We
show how this choice of loss is superior to more classical
choices of loss function and in the linear case how this yields
results similar to the original semisupervised Percolator algo-
rithm. An important benefit of using a fully supervised ap-
proach is that, in contrast to Percolator, the new approach
defines a clear, intuitive objective function whose minimization
is known to converge. Furthermore, the resulting classifier can
be trained with tractable nonlinear models which then signifi-
cantly improve the results of Percolator. Subsequently, we
propose a modification of our algorithm that directly optimizes
the number of PSMs relative to a user-specific statistical
confidence threshold. This ability to specify the desired con-

fidence threshold a priori is useful in practice and leads to
further improvement in the results. The new algorithm, called
Q-ranker, is implemented in Crux version 2.0, which is available
with source code at http://noble.gs.washington/proj/crux.

2. Materials and Methods

2.1. Data Sets. We used four previously described data sets
to test our algorithms.17 The first is a yeast data set containing
69 705 target PSMs and twice that number of decoy PSMs.
These data were acquired from a tryptic digest of an unfrac-
tionated yeast lysate and analyzed using a 4 h reverse-phase
separation. Throughout this work, peptides were assigned to
spectra by using SEQUEST with no enzyme specificity and with
no amino acid modifications enabled. The next two data sets
were derived from the same yeast lysate but treated by different
proteolytic enzymes: elastase and chymotrypsin. These data
sets, respectively, contain 57 860 and 60 217 target PSMs and
twice that number of decoy PSMs. The final data set was
derived from a Caenorhabditis elegans lysate proteolytically
digested by trypsin and processed analogously to the yeast data
sets.

Each PSM was represented using the 17 features listed in
Table 1. Note that, originally, Percolator used 20 features. In
this work, we removed three features that exploit protein-level
information because of the difficulty of accurately validating,
via decoy database search, methods that use this type of
information. We also defined 20 additional features for each
peptide, also defined in Table 1, corresponding to the counts
of amino acids in the given peptide. Using these additional
features yields a feature vector of length 37.

2.2. Statistical Confidence Estimates. Throughout this work,
we use the q value28 as a statistical confidence measure
assigned to each PSM. If we specify a score threshold t and
refer to PSMs with scores better than t as accepted PSMs, then
the false discovery rate (FDR) is defined as the percentage of
accepted PSMs that are incorrect (i.e., the peptide was not
present in the mass spectrometer when the spectrum was
produced). The q value is defined as the minimal FDR threshold
at which a given PSM is accepted. Note that the q value is a
general statistical confidence metric that is unrelated to the
Qscore method for evaluating SEQUEST results.24

We calculate q values by using decoy PSMs,18 derived by
searching each spectrum against a database of shuffled protein
sequences. Denote the scores of target PSMs f1,f2, ..., fmf and
the scores of decoy PSMs d1,d2, ..., dmd. For a given score
threshold t, the number of accepted PSMs (positives) is P(t) )
|(fi > t;i ) 1, ..., mf)|. The estimated number of false positives
among the positives is given by E(FP(t)) ) π0(mf)/(md)|(di > t;i
) 1, ..., md)|, where π0 is the estimated proportion of target
PSMs that are incorrect. In this work, as previously,17 we use a
fixed π0 ) 0.9. We can then estimate the FDR at a given
threshold t as

The q value assigned to score fi is then

E{FDR(t)} )
π0

mf

md
|{di > t;i ) 1, ..., md}|

|{fi > t;i ) 1, ..., mf}|

q(fi) ) min
fiefi

E{FDR(fi)}
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3. Results

3.1. Supervised Algorithm for Target-Decoy Discrimina-
tion. Given a set of examples (PSMs) (x1, ..., xn) (where the bold
face denotes a vector) and corresponding labels (y1, ..., yn), the
goal is to choose a discriminant function f(x), such that

To find f(x), we first choose a parametrized family of functions
and then search for the function in the family that best fits the
empirical data. The quality of the fit is measured using a loss
function L(f(x),y) which quantifies the discrepancy between the
values of f(x) and the true labels y.

Initially, we consider the family of functions that are
implemented by a linear model:

The possible choices of weights define the members of the
family of functions.

To find the function that best minimizes the loss, we choose
to use gradient descent, so the loss function itself must be

differentiable. This requirement prevents us from simply
counting the number of mistakes (mislabeled examples), which
is called the zero-one loss. Typical differentiable loss functions
include the squared loss, often used in neural networks,22 the
hinge loss, which is used in support vector machines,8 and the
sigmoid loss. These loss functions are illustrated in Figure 1.

In general, choosing an appropriate loss function is critical
to achieving good performance. Insight into choosing the loss
function comes from the problem domain. In the current
setting, we can safely assume that a significant proportion of
the PSMs produced by a given search algorithm are incorrect,
either because the score function used to identify PSMs failed
to accurately identify the correct peptide or because the
spectrum corresponds to a peptide not in the given database,
to a peptide with post-translational modifications, to a het-
erogeneous population of peptides, or to nonpeptide contami-
nants. Therefore, in this scenario, a desirable loss function will
be robust with respect to the multiple false positives in the data.
In other words, a desirable loss function will not strongly
penalize misclassified examples if they are too far away from
the separating hyperplane. Considering the loss functions in
Figure 1, the sigmoid loss is the only function with the desired
property: when yif(x) < -5, the gradient is close to zero. The
squared loss, on the other hand, has a larger gradient for
misclassified examples far from the boundary than for examples
close to the boundary, whereas the hinge loss penalizes
examples linearly (it has a constant gradient if an example is

Table 1. Features Used to Represent PSMsa

1 XCorr cross correlation between calculated and observed spectra
2 ∆Cn fractional difference between current and second best XCorr
3 ∆Cn

L fractional difference between current and fifth best XCorr
4 Sp preliminary score for peptide versus predicted fragment ion

values
5 ln(rSp) the natural logarithm of the rank of the match based on the Sp

score
8 mass the observed mass [M + H]+
6 ∆M the difference in calculated and observed mass
7 abs(∆M) the absolute value of the difference in calculated and observed

mass
9 ionFrac the fraction of matched b and y ions
10 ln(NumSp) the natural logarithm of the number of database peptides within

the specified m/z range
11 enzN Boolean: is the peptide preceded by an enzymatic (tryptic) site?
12 enzC Boolean: does the peptide have an enzymatic (tryptic)

C-terminus?
13 enzInt number of missed internal enzymatic (tryptic) sites
14 pepLen the length of the matched peptide, in residues
15-17 charge 1-3 three Boolean features indicating the charge state
18-37 A, ..., Y counts of each of the 20 amino acids

a The first 10 features are computed by SEQUEST. Features 18-37 are used in section 3.6.

Figure 1. Three types of loss function. Each panel plots the loss as a function of the difference between the true and predicted label.
The squared loss L(f(x),y) ) (f(x) - y)2 is often used in regression problems and also in classification.22 The hinge loss L(f(x),y) )
max(0,1 - yf(x)) is used as a convex approximation to the zero-one loss in support vector machines.8 The sigmoid loss L(f(x),y) )
1/exp(1 + f(x)) is perhaps less commonly used but is discussed in, for example, refs 23 and 27.

f(xi) > 0 if yi ) 1

f(xi) < 0 if yi ) -1

f(x) ) ∑
i

wixi + b
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incorrectly classified). We therefore conjecture that the sigmoid
loss function should work much better than the alternatives.

3.2. Supervised Learning Yields Performance Comparable
to Percolator. We test this conjecture by measuring the
performance of the learned scoring function using a target-
decoy search strategy. For this experiment, we use a collection
of spectra derived via microcapillary liquid chromatography
MS/MS of a yeast whole cell lysate. These spectra were searched
using SEQUEST13 against one target database and two inde-
pendently shuffled decoy databases, producing a collection of
PSMs. For a given ranking of target PSMs, we use the corre-
sponding collection of decoy PSMs to estimate q values (section
2.2). Our goal is to correctly identify as many PSMs as possible
for a given q value. Therefore, in Figure 2, we plot the number
of identified PSMs as a function of q value threshold.

To ensure a valid experiment, we split the target and decoy
PSMs into two equal parts. We train on the data set composed
of the first half of positives and negatives, and we use the
second half of the data as a testing set. The q value estimates
are derived from the test set, not the training set. This approach
is more rigorous than the methodology employed in ref 17, in
which the positive examples were used both for training and
for testing. However, the similarity between Figure 2A and B
indicates that overfitting is not occurring. Nonetheless, in
subsequent experiments, we retain a full separation of the train
and test sets.

Figure 2 compares the performance of ranking by XCorr,
Percolator, and a linear model trained using three different loss

functions. The figure shows that, for example, the Percolator
algorithm identifies 5917 PSMs at a q value threshold of 0.01.
As expected, the sigmoid loss dominates the other two loss
functions that we considered, square loss and hinge loss.

In fact, the linear model with the sigmoid loss achieves
almost identical results to the Percolator algorithm. This
concordance can be explained in the following way. Percolator
also uses a linear classifier (a linear SVM) with a hinge loss
function. However, on each iteration, only a subset of the
positive examples is used as labeled training data according to
the position of the hyperplane. The rest of the positive examples
that have a small value of yif(xi) are ignored during training.
Consequently, one can say that their gradient is zero; hence,
the hinge loss function is “cut” at a certain point so that it no
longer linearly penalizes mistakes at any distance, as shown
in Figure 3. A cut hinge loss is effectively a piece-wise linear
version of a sigmoid function. Indeed, such a cut hinge loss
has been used before and is referred to as a ramp loss.7 By
using a sigmoid loss function, we have thus developed a
method that explains the heuristic choices of the Percolator
algorithm but instead implements a direct, intuitive objective
function. Hereafter, we refer to this method as “direct clas-
sification”.

3.3. Nonlinear Families of Discriminant Functions Yield
Improved Performance. Having established that direct clas-
sification using a linear model performs as well as Percolator
on this data set, we next consider a nonlinear family of
functions by considering two-layer neural networks

Figure 2. Comparison of loss functions. Each panel plots the number of accepted PSMs for the yeast (A) training set and (B) test set
as a function of the q value threshold. Each series corresponds to one of the three loss functions shown in Figure 1, with series for
Percolator and SEQUEST included for comparison.

Figure 3. “Cutting” the hinge loss makes a sigmoid-like loss called the ramp loss. Making the hinge loss have zero gradient when z )
yif(x) < s for some chosen value s effectively makes a piece-wise linear version of a sigmoid function.
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where hk(x) is defined as tanh((wk)Tx + bk), and wk and bk index
the weight vector and threshold for the kth hidden unit.

We can choose the capacity of our nonlinear family of
discriminant functions by increasing or decreasing the number
of hidden units of our neural network. On the basis of
preliminary experiments with the yeast training data set, we
chose the first layer to have five linear hidden units. An
experimental comparison in Figure 4 shows that a nonlinear
classifier outperforms the linear model on the same data set
as before. For every q value in the plot, the nonlinear model
(the solid blue line with the label “direct classification (linear)”)
produces as many or more PSMs than its linear counterpart
(solid black line labeled “direct classification (nonlinear)”).

3.4. Q-ranker Algorithm for Optimizing Relative to a
Specified q Value. We have established that framing our
problem as a supervised classification task, utilizing nonlinear
models, yields slightly improved results compared with Per-
colator’s semisupervised approach. We now show that refor-
mulating the problem as a ranking task, rather than as a
classification task, leads to even better performance.

Generally speaking, the goal of many shotgun proteomics
experiments is to identify as many proteins as possible at a
given q value threshold. For the peptide identification problem,
this task corresponds to finding a ranking of PSMs that
maximizes the number of accepted PSMs for a specified q value
threshold. To solve this ranking problem directly, we therefore
assume that the user specifies a particular desired q value
threshold a priori. We then search for a ranking that is optimal
with respect to the given q value. A standard formulation for
solving the ranking problem is the ranking SVM,15,16 which can
be stated as follows:

subject to

This algorithm reorders the examples so that larger values of
wTx correspond to positive examples. Note that, compared to
the classification problem posed before, this formulation no
longer has a threshold b because a class label is no longer
predicted, only an ordering. The ranking formulation is equiva-
lent to optimizing the area under the receiver operating
characteristic (ROC) curve14 and hence would optimize all q
values at once. The optimization tries to satisfy every pairwise
ordering constraint. Again, as in the classification problem,
because we expect 50-90% of the positive examples are false
positives, the objective function will pay too much attention
to these examples.

However, if optimization of only a certain q value is desired,
then reordering of examples far beyond the q value threshold
point on either side of the boundary will not have an effect on
the q value of interest. Therefore, we instead focus on a subset of
examples in the vicinity of the q value cutoff and seek to reorder
the examples specifically in this region.

The proposed algorithm is thus as follows. We first find a
general discriminant f(x) using the direct classification algo-

rithm described in the previous section. We then specify a q
value to be optimized and focus sequentially on several
intervals in the data set chosen in the vicinity of the specified
q value. The selection of intervals is heuristic and in our case
involves defining a set Q̂ of q value thresholds 0 to 0.1 with a
step size of 0.01 and iterating over these steps. The interval ε

is set to equal twice the number of peptides up to the threshold
point. In the course of training, we record the best result for
the specified q value after each epoch. A pseudocode descrip-
tion of the direct ranking algorithm for specified q values (Q-
ranker) is given in Algorithm 1.

Q-ranker can be extended trivially to search for optimal
solutions to several q values at once by recording the best
network for each of the specified q values after each epoch.
In all the experimental runs presented below, the set Q̂ of
threshold q values also served as a set of specified q values.

In practice, because Q-ranker focuses on a subset of the
training set, we found that use of regularization techniques to
control for the model complexity improves our results. In this
work, we use the standard weight decay procedure, which
optimizes the error function:

where wi are all the weights of the discriminant function f(x)
that we are attempting to learn, µ is a weight decay parameter,
and E is the original error function. Before training the network,
we perform a three-fold cross-validation procedure to choose
the learning rate and µ.

Q-ranker generalizes the ranking SVM formulation in two
ways: (i) this formulation is nonlinear (but does not use
kernels); and (ii) if ε is very large, then the algorithms are
equivalent, but as ε is reduced, our algorithm begins to focus
on given q values.

Interestingly, choosing examples from a certain region of
the data set is also roughly equivalent to placing the region
of the sigmoid with high gradient over the region of interest
about the threshold q value. Because examples further than
ε are not picked, this approach is equivalent to making a
loss function which has gradient zero in those regions. This
means that we are able to replace the sigmoid loss function
used for training the general neural net with an even more
intuitive choice of loss. In particular, here we use a linear

f(x) ) ∑
i

wihi(x) + b

min ||w||2 (1)

wTxi g wTxj + 1 if yi ) 1 and yj ) -1 (2) E′ ) E + µ1
2 ∑

i

wi
2
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loss L(f(x),y) ) |f(x) - y| which effecively becomes a “ramp
loss” (cf. Figure 3) centered around the q value threshold
with flat parts at (ε. Because we are solving a ranking
problem in the nonlinear case, we now choose a network
with the following architecture:

That is, we no longer have a final bias output.
3.5. Q-ranker Yields Even Better Performance. We tested

our direct classification and Q-ranker algorithms on the tryp-
tically digested yeast data set in Figure 4. It is clear from this
figure that, although the linear Q-ranker algorithm does not
improve over the direct classification algorithm, using a
nonlinear architecture leads to a large improvement, especially
for larger q values. Other choices of nonlinear architectures
(number of hidden units) are given in Supporting Information
Figure 1, each leading to improved performance relative to
Percolator.

Compared to the direct classification approach described in
section 3.1, Q-ranker also yields more consistent training
behavior when observed for any given q value. To illustrate this
phenomenon, we fix the interval ε for the Q-ranker algorithm
to be defined by the single threshold corresponding to the
specified q value. Figure 5A shows how the results for different
specified q values change during the course of training the
direct classification model. The number of PSMs over lower q
value thresholds (for example, 0.0075, 0.01) reach their peak
early during training and then become suboptimal, while the
best results for higher q value thresholds take longer to achieve.

This means that, during the course of training, different q value

thresholds are being optimized depending on the number of

iterations. In contrast, as shown in Figure 5B, the Q-ranker
algorithm learns the best decision boundary for a specified q
value threshold and does not substantially diverge from the
best result during further training. This behavior indicates that
the algorithm in fact optimizes the desired quantity. In the
following experiments, we therefore adopt Q-ranker as our

Figure 4. Comparison of Percolator, direct classification, and Q-ranker. The figure plots the number of accepted PSMs as a function of
q value threshold for the yeast data set. Each series corresponds to a different ranking algorithm, including Percolator, as well as
linear and nonlinear versions of the direct classification algorithm and Q-ranker. The nonlinear methods use five hidden units.

Figure 5. Comparison of training optimization methods (iteration vs error rate). The Q-ranker optimization starts from the best result
of direct optimization achieved during the course of training and continues for a further 300 iterations. These results are on the training
set. Note that for each q value choice, Q-ranker improves the training error over the best result from the classification algorithm.

f(x) ) ∑
i

wihi(x), where hk(x) ) tanh((wk)Tx + bk)
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algorithm of choice, and we compare it further to Percolator
and PeptideProphet.

3.6. Comparison of Algorithms across Multiple Data
Sets. For our final round of experiments, we compare the
performance of Q-ranker, Percolator, and two versions of
PeptideProphetsthe original parametric version,19 which assumes
that the decoy scores are distributed according to a γ distribution
and the target scores acording to a Gaussian distribution, and a
newer, semiparametric approach,4 which uses a mixture model
of kernel functions to model the two distributions. For both sets
of PeptideProphet results, we use the semisupervised version of
the algorithm.5 The same set of decoy PSMs is provided to
Percolator, Q-ranker, and PeptideProphet. For Percolator and
Q-ranker, we use 50% of the PSMs for training and 50% for testing,
as before. PeptideProphet does not provide the ability to learn
model parameters on one set of data and apply the learned model
to the second; therefore, PeptideProphet results are generated by
applying the algorithm to the entire data set. This difference gives
an advantage to PeptideProphet because that algorithm learns
its model from twice as much data and is not penalized for
overfitting.

We report results using either 17 or 37 features, as described
in Table 1, for both Percolator and Q-Ranker. Figure 6 shows
the results of this experiment, conducted using the four data
sets described in section 2.1. Across the four data sets, Q-ranker

consistently outperforms PeptideProphet across all q value
thresholds. The left half of Table 2 shows a detailed comparison
of Percolator and Q-ranker on all four data sets using 17
features as input. At q values of 0.05 or 0.10, Q-ranker yields
more accepted target PSMs than either Percolator or Pep-
tideProphet, whereas Percolator performs slightly better for q
< 0.01.

Theoretically, a nonlinear network could yield a larger benefit
than a linear model when the input feature space is increased,
as long as the model does not overfit. We therefore experi-
mented with extending the PSM feature vectors, adding 20 new
features corresponding to the counts of amino acids in the
peptide. The results of running Q-ranker with these extended
vectors are shown in Figure 6, labeled “Q-ranker 37”. Increasing
the number of features gives a larger boost to the performance
of the nonlinear version of Q-ranker. The effect is particularly
evident on data sets derived from yeast lysate digested with
chymotrypsin and elastase. After this extension, Q-ranker
identifies more spectra than either of the other algorithms, even
at q < 0.01 (right half of Table 2).

Finally, we further investigated the behavior of Q-ranker by
measuring the performance of networks trained for a specified
q value on other q values. We focused on specified q values
0.01, 0.05, and 0.1. Table 3 shows that, when all 37 features
are employed, a network trained for a specified q value is

Figure 6. Comparison of PeptideProphet, Percolator, and Q-ranker on four data sets. Each panel plots the number of accepted target
PSMs as a function of q value. The series corresponds to the three different algorithms, including two variants of Q-ranker that use 17
features and 37 features.
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consistently better or equal to the performance on this q value,
compared with networks trained for other specified q values.

4. Discussion

In this work, we have performed all of our analyses using a
combination of SEQUEST and Percolator. However, the con-
clusions that we draw here have implications for researchers
who do not employ these particular software systems. First,
the conclusions likely generalize across search engines. For
example, Percolator has previously been demonstrated to work
well with the Inspect17 and MASCOT search engines,3 so it
seems likely that Q-ranker will also generalize to these search
engines. Second, we have demonstrated the utility of shifting
from a semisupervised framework to a supervised framework
with a modified loss function, both in terms of improved
understanding of the objective function being maximized and
improved discriminative power. A similar shift should be
straightforward to apply, for example, to the semisupervised
version of PeptideProphet and may result in similar benefits.

Throughout our evaluations, we have focused on maximizing
the number of spectra that are correctly assigned a peptide (i.e.,
the number of accepted PSMs). It is conceivable that a given
algorithm might be biased in the types of peptides it can
identify. In this case, the relative performance of two peptide
identifications could depend on whether we count the number
of accepted PSMs or the number of distinct peptides that are
identified from a set of spectra. Supporting Information
Figure 2 demonstrates that this bias is not occurring in our
results: the relative performance of the algorithms that we
considered does not change significantly when we count the
number of distinct peptides identified.

One surprising result from our experiments is the relatively
large benefit provided by amino acid composition features. We
hypothesize that this information allows the classifier to learn
to expect certain characteristics of a spectrum. For example,
the presence of a proline implies a pair of high-intensity peaks

corresponding to the cleavage N-terminal to the proline; the
presence of many basic residues leads to more +2 ions, and
the presence of many hydrophobic residues leads to more
singly charged +1 ions.21 However, previous experiments with
Percolator using amino acid composition features did not yield
significant performance improvements. The difference, in the
current setting, is that we have switched from a semisupervised
to a fully supervised setting. This switch allows us to use a more
complex, nonlinear model. In general, a complex model has
more opportunity to improve over a simpler model if the
feature space is rich. Thus, although a simple linear model such
as the one in Percolator cannot fully exploit the richer,
37-dimensional feature space, the nonlinear model can. This
conclusion is supported by the observation that adding com-
positional features also improves the performance of the direct
classification method (results not shown).

An alternative, possible explanation for the added discrimina-
tive power provided by the amino acid composition feature is that
they provide the algorithm with a way to “cheat”. In our experi-
ments, we did not guarantee that the training set and the test set
contain disjoint sets of peptides. Hence, an algorithm might overfit
on the amino acid composition features and successfully identify
the recurrence of a peptide in the train and test sets. To eliminate
this alternative explanation, we performed a follow-up experiment
in which we prevented the same peptide from occurring in the
training and test set. The results, shown in Supporting Information
Figure 4 show that the improved performance of Q-ranker over
Percolator still holds.

A drawback to using a nonlinear discriminative classifier is the
difficulty in interpreting the learned model. In this work, we have
focused on optimizing error rate, not interpretability; sometimes it
is hard to have both. Indeed, as shown in Supporting Information
Figure 5, simply switching to a linear SVM in the direct classification
setting yields markedly decreased performance. However, even with
a nonlinear model, it is still possible to gain some insight into the
relative contributions of the various features by “knocking out” each

Table 2. Comparison of Percolator and Q-ranker on 17 and 37 Feature Data Setsa

17 features 37 features

data set q value Percolator Q-ranker Percolator Q-ranker

yeast trypsin 0.01 5917 5885 5983 6072
0.05 6793 6940 6813 7501
0.1 7168 7610 7200 8430

yeast elastase 0.01 1389 1380 1491 1615
0.05 1806 1851 1958 2140
0.1 2103 2196 2301 2561

yeast chymotrypsin 0.01 2077 2086 2158 2312
0.05 2576 2620 2680 2844
0.1 2914 2961 3057 3214

worm trypsin 0.01 5116 5031 5192 5238
0.05 5864 6119 5830 6419
0.1 6169 6730 6146 7128

a Each entry in the table indicates the number of accepted PSMs for the given algorithm (column) on the given data set at the given specified q value
(row). Entries in boldface indicate that this algorithm performed better than the other algorithm for this data set and q value threshold.

Table 3. Q-ranker successfully optimizes the specified q valuea

yeast trypsin worm trypsin yeast elastase yeast chymotrypsin

specified 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

0.01 6072 7453 8360 5238 6412 7098 1615 2054 2395 2312 2843 3199
0.05 6032 7501 8426 5238 6419 7047 1615 2140 2561 2302 2844 3198
0.10 6030 7500 8430 5213 6418 7128 1615 2140 2561 2300 2830 3214

a Each entry in the table lists the number of accepted PSMs at a given q value (column) obtained by Q-ranker with 37 features when optimizing a
specified q value (row). Entries in boldface indicate the maximum value within each column. Note that, for each data set, all diagonal entries are in
boldface.
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feature individually and measuring the performance of the resulting
classifier. Supporting Information Table 1 shows the percent reduc-
tion in the number of identified PSMs at q < 0.01 when we knock
out each feature of Q-Ranker with 17 features. Not surprisingly, the
enzymatic features are most significant, followed by the score
features (XCorr and ∆Cn). The relatively small percentage decrease
for many features suggests that many provide redundant informa-
tion. A more detailed interpretation of the model could be derived
via further knockout experiments aimed at groups of related features,
as was done in ref 17.

It is worth noting that the relative performance of the
methods that we considered does not change when we use an
alternative q value estimation scheme. Elias et al.12 advocate
estimating the FDR using target-decoy competition (i.e., search-
ing each spectrum against a concatenated database of targets
and decoys and only retaining the single top-scoring peptide)
and estimating FDRs with respect to the combined collection
of target and decoy PSMs. To show that our results do not
depend upon our q value estimation procedure, we report in
Supporting Information Figure 3 results analogous to those
given in Figure 6, but using FDRs estimated by following the
protocol of Elias et al. Even in this case, the Q-ranker algorithm
outperforms Percolator and both versions of PeptideProphet.

In general, using a large feature space generally requires a
concomitantly large number of training examples. For smaller
collections of spectra, or for lower quality spectra in which the
effective number of positive examples is small, we would expect
a larger feature space to lead to overfitting. In the current version
of the software, the user must check for overfitting explicitly and
select the regularization parameter explicitly. One focus of our
future work will be the implementation and validation of robust
methods for avoiding such overfitting, either by adjusting the
regularization parameter or reducing the complexity of the model.

5. Conclusions

We have described a series of algorithms that improve in
various ways upon the Percolator algorithm. Given unlabeled
target PSMs and negatively labeled decoy PSMs, Percolator treats
the problem as a semisupervised classification problem. In this
work, we instead use a supervised approach to the same problem.
This change allows us to state an explicit objective function and
also allows us to generalize to more powerful, nonlinear models.
Finally, if the user is willing to specify a desired confidence
threshold, then the Q-ranker algorithm finds an optimal ranking
with respect to the specified threshold, yielding consistently
improved performance relative to either Percolator or PeptidePro-
phet. Both the direct classification and the Q-ranker algorithms
are implemented in the Crux toolkit, which is available with source
code from http://noble.gs.washington.edu/proj/crux.
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