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Abstract. DNA periodicity and its relationship to the formation of nu-
cleosomes has been investigated extensively using autocorrelation and
Fourier transform methods. We provide a precise treatment of the math-
ematical foundation for this type of analysis, and we apply the resulting
method to quantify dinucleotide periodicity in several datasets. We begin
by demonstrating, via simulation, the sensitivity of our method relative
to previous methods. We then provide evidence of pervasive ∼10 bp
periodicity in S. cerevisiae, with stronger periodicity in sequences asso-
ciated with positioned nucleosomes. In human, although repeat-masked
sequences do not exhibit significant periodicity on average, we find that
experimentally determined nucleosome positions show a periodicity of
the AA dinucleotide similar to that found in S. cerevisiae. Furthermore,
transcription start sites in the human genome are marked by a sharp
drop in the 10 bp periodicity of the AA dinucleotide, while occupied
CTCF sites are surrounded by a local increase.
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1 Introduction

A relationship between DNA sequence periodicity and local curvature of the
DNA molecule and hence local chromatin structure has been hypothesized for
over 30 years, going back to a “kinky helix” model proposed by Crick and Klug in
1975 [1]. The strongest periodic component in DNA sequences (excluding simple
repeats) is generally observed in coding regions and is induced by the codon
length and the bias in both amino acid usage and codon usage. This codon
effect results in a spike in the spectrum at the normalized frequency f = 1/3,
corresponding to a period of T = 3 bp. A second, weaker periodicity near 10
bp has also been observed in many different organisms, in coding, non-coding
and repeat-masked sequences. This periodicity has been linked to the pitch of
the DNA helix [2] as well as to the alternation of hydrophobic and hydrophilic
amino acids in protein sequences [3]. The earliest evidence of this periodicity was
based on just 36 kb of DNA sequence collected from several different eukaryotes
as well as certain viruses [2]. Satchwell et al. isolated and sequenced 177 chicken
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nucleosomes, and observed a 10 bp periodicity of both AA/TT and GG/CC with
the minor groove of AA/TT facing predominantly inward toward the histone
and GG/CC facing outward [4]. Similar ∼10 bp periodicity signals derived from
short patterns (up to tetra-nucleotides) have been observed in a wide variety of
organisms and datasets, both natural and artificial [5], [6], [7], [8], [9]. These ∼10
bp periodicities are strongly correlated with nucleosome positioning, supporting
the hypothesis that periodic sequence elements in phase with the DNA helix are
related to large-scale bending of the DNA molecule. DNA bendability has been
extensively modeled [10], [11], [12], and experimentally measured [13], with a
general consensus that poly(dA:dT) tracts are extremely stiff [14], while some
short sequences are very flexible, particularly the CA/TG dinucleotide and the
CAG/CTG trinucleotide [15], and others such as TA are context-dependent [10].

Most previous approaches to quantifying periodicity in DNA sequences have
been based on Fourier techniques which require that the symbolic DNA sequence
be translated first into a numerical sequence. The spectrum of the numerical
sequence can then be estimated directly using the Fourier transform [7], [16], [17],
or by first computing the autocorrelation function [2], [18], [19], [20]. Sequence
periodicity has also been studied using a machine-learning based approach which
sought to learn a periodic nucleotide pattern in an unsupervised fashion using a
cyclic hidden Markov model (HMM) [23], [24]. In the current work, we describe
the drawbacks to these previously described approaches to characterizing DNA
periodicity and we introduce a mathematically precise approach to evaluating
the spectral content of DNA sequences.

With respect to the HMM analysis [24], we report that the scarcity of the
CpG dinucleotide appears to be the main contributing factor that led the 10-state
cyclic HMM to learn the apparently periodic (not-T)(A/T)(G) pattern. Using
a dynamic Bayesian network (DBN) similar to the HMM described by Baldi
et al. [24], we were able to reproduce this pattern by training on the repeat-
masked ENCODE regions of the human genome. However, we found that the
same pattern is learned from random DNA generated according to a second order
Markov model which reproduces only the single, di- and trinucleotide statistics
of human DNA. Additionally we found that the same pattern can be learned by
smaller cyclic models constrained to allow period lengths as short as 4-6 bases.

We introduce ACSE (AutoCorrelation Spectral Estimation), a method for
quantifying the periodicity of a specified fixed length pattern in DNA, which
includes a null model and an estimation of the variance in the estimated spec-
tral amplitude, and we demonstrate that our method is more sensitive to weak
evidence of periodicity than previous spectral methods. We have applied our
method to a variety of datasets from the human and yeast genomes, including
the complete yeast genome, the human ENCODE regions, experimentally iden-
tified nucleosome sequences from human and yeast, and human DNA sequences
proximal to transcription start sites (TSSs) and CTCF binding sites. We show
that nucleosome sequences in both genomes exhibit increased ∼10 bp periodicity,
especially of the AA/TT dinucleotide. This result contrasts with a recent study
that found no evidence of 10-bp periodicity in human nucleosome sequences [25].
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In addition, we report a sharp decrease of the 10-bp AA/TT periodicity in the
vicinity of TSSs, and a local increase around binding sites of the CTCF insulator
protein. These results indicate a strong relationship between DNA periodicity
and local chromatin structure and are consistent with the classical statistical
positioning theory of nucleosome organization [26], [27], which posits that nu-
cleosomes are stochastically positioned along the genome and are distributed
between boundary events that comprise nucleosome-free regions, such as those
known to be found at active promoters, insulators or enhancers.

2 Methods

Spectral estimation seeks to estimate the frequency content of a time-dependent
waveform, representing it as the weighted sum of a family of sinusoids. In this
application, the dimension of “time” is genomic position, and in order to use clas-
sical spectral estimation techniques, the DNA sequence must first be translated
into a numerical sequence. Our method uses a common approach to represent a
DNA sequence as a binary sequence: given a DNA sequence s of length S and a
k-mer m of length k, we create a binary sequence b of length S−k+1 such that

bi = 1 if si:i+k−1 = m and

bi = 0 otherwise, (1)

where si:i+k−1 is the length k substring in s, starting at position i. The num-
ber of 1’s in the binary sequence is equal to the total number of occurrences
of the k-mer, including overlapping copies. For example, the 10 base sequence
GCAAAGCTAA becomes 001100001 for the dinucleotide AA.

The binary sequence can then be transformed from the “time” domain to
the frequency domain in two different ways. Some methods [7], [16], [17] con-
vert directly to the frequency domain via the Fourier transform, and then use
the magnitude squared of the resulting complex spectrum. Another approach is
to compute the autocorrelation function out to some maximum lag (typically
in the range 50 to 500 bases) [2], [18], [19], [20], and then the power spectrum
is obtained by a Fourier transform of the autocorrelation function. Under cer-
tain conditions, namely that the time-series is wide sense stationary1 (WSS)
[21], and that the two-sided, symmetric autocorrelation function is used, these
two approaches are mathematically equivalent. The previously cited approaches
have, however, routinely truncated the autocorrelation function which, as we will
show, negatively impacts the sensitivity and accuracy of the resulting spectrum.

We prefer the autocorrelation-based approach over the direct Fourier trans-
form approach for three reasons. The first is simply that the autocorrelation
provides easily interpretable information about the self-similarity of a sequence,

1 A process is said to be WSS if its first and second moments are time-invariant,
resulting in an autocorrelation function that depends only on the time lag. This
assumption does not generally hold for DNA segments, e.g. those spanning GC-rich
and GC-poor regions, but it is not an unreasonable approximation.



4 Sheila M. Reynolds et al.

irrespective of subsequent transforms. Second, this approach provides a natural
way to combine any number of sequences of varying lengths such that each se-
quence will contribute in proportion to the number of times the k-mer is present
in the sequence. Third, because the variance of the spectral estimates increases
as the square of the Fourier transform length [22], the direct transform of several
hundred kilobases of sequence requires some form of smoothing in the frequency
domain. In our approach, the symmetric autocorrelation function is windowed2

prior to the Fourier transform in order to reduce the variance in the resulting
spectrum and to minimize the spectral leakage from strong periodic signals (such
as the 3 bp codon periodicity). It is also useful to extend a time series with zeros
prior to computing the Fourier transform in order to increase the resolution in
the frequency domain. (This practice is known as zero-padding, and although
it cannot increase the information content in a signal, it results in a smoothly
interpolated spectrum.) In the results presented here, we have generally used a
Fourier transform size of 720 which produces spectra with samples at several in-
teger values of T, thereby reducing the amount of spectral leakage due to strong
peaks that may exist at those positions, and with a resolution of 0.14 bp near
T=10 bp, which allows us to distinguish fairly subtle variations in periodicity.

In the case of the binary sequence described here, the autocorrelation function
has a probabilistic interpretation. Since E[bi] (defined in (1)) is the probability
of observing the k-mer of interest at position i in the DNA sequence, the auto-
correlation function R(d) is equivalent to the joint probability of observing two
1s in the binary sequence, one at position i and the second at a relative lag d :

R(d) = R(−d) = E[bibi−d] = Pr[bi =1 and bi−d =1] (2)

If the binary sequence represents occurrences of the AA dinucleotide, then:

RAA(d) = Pr[bi =1 and bi−d =1]

= Pr[si =A, si+1 =A, si−d =A, si−d+1 =A] (3)

In order to test whether a particular DNA sequence shows evidence of pe-
riodicity, a null model of the spectrum is required. We derive an analytic null
model by modeling a random DNA sequence with no periodicity in which the nu-
cleotides are independent and identically distributed. The autocorrelation func-
tion of the binary sequence representing the AA dinucleotide derived from such
a random DNA sequence can be described by the following three equations:

RAA(0) = Pr[A]2 (4)

RAA(±1) = Pr[A]3 (5)

RAA(d) = Pr[A]4 for all |d| > 1. (6)

A dinucleotide composed of two distinct bases (e.g. GC), results in an autocor-
relation function with a value of 0 at ±1 :

RGC(0) = Pr[G]Pr[C] (7)

2 A point-by-point multiplication of the symmetric autocorrelation function with a
symmetric, tapered window such as the Hann window.
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RGC(±1) = 0 (8)

RGC(d) = Pr[G]2Pr[C]2 for all |d| > 1. (9)

In both of these cases, the autocorrelation function for dinucleotide m can be
expressed as the sum of four terms:

Rm(d) ∝ δ(d) + Umδ(d + 1) + Umδ(d − 1) + Vm (10)

where Um is positive for a dinucleotide such as AA or CC and negative for a
dinucleotide such as TA or GC. (Um and Vm are constants that depend only on
R(0), R(±1) and R(d), and δ(d) is the Kronecker delta.) The Fourier transform
of (10) yields the power spectrum:

Sm(k) ∝ 1 + 2Umcos(2πk/K) + Vmδ(k) (11)

where K is the length of the symmetric autocorrelation function being trans-
formed, and k is an integer in the range [−K/2,+K/2]. The normalized fre-
quency f is defined as k/K and has a range [−1/2, 1/2], and corresponds to
periods of length T = 1/f with a range of [2,∞]. The cosine term in the spec-
trum for a dinucleotide such as AA results in a local maximum at f = 0 and
a local minimum at f =1/2, meaning more energy at lower frequencies (longer
periods) and less energy at higher frequencies (shorter periods). For a dinu-
cleotide such as TA, the reverse is true, with more spectral energy at higher
frequencies and less at lower frequencies. An intuitive explanation of this effect
is that consecutive AA dinucleotides result in the low frequency binary signal
1111111111 (f =0 and T =∞), while consecutive TA dinucleotides result in the
high frequency signal 1010101010 (f =1/2 and T =2).

Real DNA sequences are of course not random as described above, and yet
the autocorrelation function of the binary sequences generated from real DNA
sequences is dominated by the same three components: (i) R(0) ≫ R(d) ∀ d 6= 0;
(ii) either R(±1) = 0, or R(±1) > R(d) ∀ |d| > 1; and (iii) a relatively flat or
slowly-decaying background level with small-amplitude variations for all |d| > 1.
The extent to which the dinucleotide spectrum estimated from real DNA deviates
from the random model described above can be estimated by fitting a cosine to
the spectrum (11) using a linear least-squares fit in cosine space. This fitted
cosine will serve as our null model for the dinucleotide of interest.

Finally, in order to estimate the variance in the spectral estimate, we gen-
erated random DNA sequences of varying lengths, applied ACSE to each one
and computed the variance in the estimate. The random DNA sequences var-
ied in length from 150 bases to 500 kb. For each length, we generated 10,000
random sequences and computed the estimated ACSE spectrum. A linear regres-
sion (R2 > 0.989) of the ratio of the standard deviation to the mean amplitude
against five independent variables yielded the following error model:

log10

(

σ

µ

)

= −0.513log10N + 0.000791Dmax − 0.124b

− 0.572p + 0.226f + 1.042 (12)
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where N is the total sequence length used in estimating the spectrum; Dmax is
the maximum lag in the autocorrelation function; b=1 if the k-mer is a repeat
(e.g. AA, CC) and b=0 if it is not (e.g. AT, GC); p is the average probability
of observing the k-mer (0<p<1); and f is the normalized frequency (f =1/T ,
and f <1/2). As expected, increasing N by a factor of four reduces the standard
deviation by approximately a factor of 2. The remaining terms are less significant
assuming N is large, e.g. ≥ 100 kb.

3 Results

3.1 A Cyclic HMM Identifies Spurious Periodicity

Baldi et al. [24] used a cyclic HMM to identify an apparently periodic signal
in human genomic DNA. The signal is roughly characterized by a three-letter
pattern of the form (not-T)(A/T)(G) and was reported to occur approximately
every 10 bp. The HMM that identified this pattern consists of 10 states, each
of which emits a single nucleotide. The state-transition matrix is defined such
that each state i ∈ {0, . . . , 9} can transition to one of three states: i (a self-
loop), i+1 (the next consecutive state), or i+2 (skipping over one state), with
the addition being modulo-10 to create a cycle. Because of the potential for a
state to self-loop, the number of nucleotides emitted prior to transitioning to a
different state follows a geometric distribution, and the duration of one complete
cycle can range between a minimum length of 5 nucleotides (if every other state
is skipped) and an unbounded maximum length. The number of free parameters
in this model is 50: 30 for the emission distributions and 20 for the transition
probabilities.

Working within the framework of dynamic Bayesian networks (DBN) which
include and extend HMMs, we reimplemented the HMM described above, and
developed two additional models based on this idea in an attempt to both recre-
ate and expand upon this previous result. In both of our models, we sought to
constrain the complete cycle length by allowing only one or two “background”
states to self-loop (i.e., emit more than one nucleotide before transitioning to a
distinct state), and by not allowing any states to be skipped. These background
states are not implemented in the typical manner of a self-looping HMM state;
rather, we use the DBN framework to specify a histogram of allowed lengths for
these states (for details of a similar DBN with finite length models, see [28]).

Model-I is an eight-state model based on the hypothesis that there is a three
nucleotide pattern that occurs roughly every 10 bases, and that there may be
a second, complementary pattern that also occurs every 10 bases but out of
phase with the first. States 1-3 represent the primary pattern and states 5-6 the
complementary pattern; each of these states emits a single nucleotide. States
0 and 4 are “background” states and emit between one and four nucleotides,
according to a shared length distribution. Each state i transitions directly to
the next state, i+1 (modulo-8). The length of one complete cycle is therefore
constrained between 8 and 14 nucleotides. The total number of free parameters
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exons introns ENCODE 0th order 1st order 2nd order

Fig. 1. Patterns learned by (a) the Baldi HMM trained on exons, (b) the Baldi HMM
trained on introns, (c) Model-I trained on the ENCODE repeat-masked data, and
Model-I trained on (d) 0th order (e) 1st order and (f) 2nd order random DNA sequences.

in this model is 27: 24 for the emission distributions and an additional 3 for the
length distribution.

Model-II is one of a class of N -state models, also similar to the cyclic HMM,
but with additional constraints. In each model, state 0 is the background state
and emits 1, 2 or 3 nucleotides, while states 1 through N−1 each emit a single
nucleotide. Again each state i transitions only to state i+1 (modulo-N). The total
cycle length is thus constrained between N and N +2 bases. The total number
of free parameters in these models is 3N + 2 (3N for the emission distributions,
and an additional 2 for the length distribution for state 0).

When trained on the repeat-masked ENCODE regions, Model-I learned a
three position pattern (Fig. 1c) very similar to the ones reported by Baldi et al.

(Fig. 1a and b). By “pattern” we mean the learned emission probabilities from
any three consecutive states in the model that best matches the (not-T)(A/T)(G)
pattern. However, in trying to understand this result with the goal of expanding
upon it, we discovered that the pattern could be replicated by training on simu-
lated DNA generated according to a second order Markov model, i.e. a generative
model (trained on the same repeat-masked ENCODE sequences) in which the
probability of each nucleotide depends on the previous two nucleotides. DNA
generated according to such a model reproduces the statistics of the training
data for single, di- and trinucleotides. The pattern in Fig. 1(d) was learned from
0th order random DNA (independent and identically-distributed nucleotides).
As expected, no distinctive pattern was found. However, Figs. 1(e) and (f) show
the corresponding patterns learned from 1st and 2nd order random DNA. Both
patterns closely resemble the one learned from the ENCODE repeat-masked
data. Furthermore, using Model-II, we found that the same pattern is learned
by cyclic models of different sizes (data not shown), with as few as 4 states
(which allows periods of length 4-6 bp), showing again that the perceived peri-
odicity is spurious. Based on these experiments, we conclude that it is the rarity
(on average) of the CpG dinucleotide that causes this type of sequential-state,
probabilistic model to learn this C(A/T)G pattern. The fact that the learned
pattern is stronger (lower entropy) when trained on human DNA than when
trained on yeast DNA also supports this, as CpG’s are far more rare in human
than in yeast.
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Despite the fact that these results show that C(A/T)G does not exhibit ∼10
bp periodicity, there are other indications that this trinucleotide may be related
to DNA bending and nucleosome formation. Numerous papers (most recently
[29], for example) describing a relationship between the periodicity of the (not-
T)(A/T)G (also referred to as VWG) motif and chromatin structure have cited
the work by Baldi et al. as a starting point. Perhaps the relationship between
C(A/T)G and chromatin structure is instead due to the extreme flexibility of this
trinucleotide [14]. It should also be noted that CTG, one of the six codons that
code for leucine, is the most commonly used codon in human, while CAG, one
of just two codons that code for glutamine, is the third most common – together
they account for over 7% of all codons. Overall, in the ENCODE repeat-masked
data, CTG/CAG is the fourth most common trinucleotide (after AAA/TTT,
AAT/ATT, and AGA/TCT), accounting for 4.4% of all trinucleotides. Intrigu-
ingly, repeats of the CTG/CAG trinucleotide are also responsible for several
degenerative disorders [30].

3.2 Simulation Results Show ACSE Has Greater Sensitivity and
Accuracy

Next, to demonstrate the power of ACSE to identify subtle periodic signals,
we applied the method to simulated DNA with embedded periodic signals. Our
simulation creates a random DNA sequence with equal representation of all four
bases, and then adds to the DNA sequence two noisy periodic signals: one at 3
bp, and another with a period length that slowly increases from 10 bp to 11.5 bp
across the length of the sequence. Figure 2 compares the output of ACSE with
the two previously described methods: the direct Fourier transform approach,
and the truncated autocorrelation approach for the simulated DNA described
above, and for S. cerevisiae chromosome IV. The output of ACSE and the direct
FFT have both had the null model spectrum subtracted, and all three have been
normalized such that the regions between 4 and 9 bp and 14 and 24 bp combined
have zero mean and unit standard deviation. For the simulated data, ACSE cor-
rectly shows a relatively smooth, broad peak between 10.1 and 11.4 bp, while
the truncated autocorrelation method predicts two distinct peaks, one at 9.7 bp
and the other at 10.9 bp. The truncated autocorrelation approach also errs on
the exact position of the 3 bp peak, placing it instead at 2.9 bp. The direct FFT
approach (after smoothing) yields a curve comparable to ACSE, although some-
what noisier. For yeast chromosome IV, the truncated autocorrelation method
largely misses the evidence of the ∼10 bp periodicity of the AA dinucleotide.

3.3 Identifying Coding Regions in Yeast

As a proof of concept that dinucleotide periodicity can be used to identify bi-
ologically meaningful regions in DNA segments, we developed a period 3 score,
defined to be the sum over all 10 dinucleotides of the maximum 3 bp period-
icity observed on either the forward or reverse strand. We applied this scoring
technique to the genome of S. cerevisiae, computing the score on short blocks
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of length 500 bp, and comparing the score to the fraction of bases within that
block that lie in coding regions (excluding those coding regions that are anno-
tated as “dubious”). The average Pearson correlation between the period 3 score
and the coding fraction was 0.51, with the highest correlation observed for the
mitochondrial chromosome (0.85), illustrated in Fig. 3.

3.4 Genome-Wide Evidence for ∼10 bp Periodicity of AA/TT
Dinucleotide in S. cerevisiae.

Next, we computed the dinucleotide spectra from genome-wide autocorrelation
functions for S. cerevisiae, as well as for each chromosome individually. As shown
in Fig. 4, the strongest evidence for ∼10 bp periodicity is seen when analyzing the
AA/TT dinucleotide. Each dinucleotide spectrum in Fig. 4 is accompanied by a
null model curve, and deviations from that null model represent increases (above
the null curve) or decreases (below) in periodic signal energy relative to what
would be expected in a random signal. The other three dinucleotides show much
less, if any, evidence of genome-wide 10 bp periodicity. The spectra computed
separately for each chromosome show some differences from the genome-wide
average (data not shown). Overall, for every chromosome in yeast, we observe a
clear periodicity in the 10-11 bp range for the AA/TT dinucleotide.

3.5 Positioned Nucleosomes in Yeast Show Increased Periodicity

A comprehensive map of S. cerevisiae nucleosomes containing the histone vari-
ant H2A.Z in functionally important regions was described by Albert et al. [31],
including a list of 41,103 nucleosome positions. More recently over one million nu-
cleosomes obtained using antibodies against histones H3 and H4 were sequenced
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Fig. 4. Dinucleotide spectra averaged across the entire yeast genome (12.3 Mb) for
AA, CC, GC and TA, with null model curves for each.
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[32], and 54,750 consensus nucleosome locations were identified and assigned
confidence scores. After removing nucleosome positions that were within 157 bp
of any higher-scoring positions, we were left with 38,356 H2A.Z nucleosome po-
sitions and 49,751 H3/H4 positions. (As all nucleosomes contain the H3 and H4
histones, although these two datasets are derived from different experiments, the
H2A.Z set is essentially a subset of the H3/H4 set.) Several dinucleotide spectra
for these nucleosome core sequences show greater evidence of periodicity between
10 and 12 bp than the genome-wide spectra. Using only the highest scoring nu-
cleosome positions, which are thought to be the most stably positioned, yields
spectra even more significantly different from the genome-wide background. Fig-
ure 5 shows the dinucleotide spectra computed using the highest scoring 20%
from each dataset as compared to the genome-wide curve. Both dinucleotides
show two distinct peaks, one at 10.4 bp and the other at 11.6 bp. These peaks
may indicate different preferred periodicities in different portions of the core
nucleosomal sequence, as the double helix underwinds at sites of major-groove
bending and overwinds at sites of minor-groove bending [33], [34].

3.6 No Evidence of Genome-Wide Periodicity Human

Turning to the human genome, we began by analyzing the repeat-masked EN-
CODE regions. These regions comprise 1% of the human genome, selected to
cover regions of varying gene content and varying concentrations of non-coding
conserved elements [35]. Our analysis shows little to no evidence of dinucleotide
periodicity when we average across the repeat-masked ENCODE regions. The
AA dinucleotide spectrum deviates remarkably little from the null model curve,
and none of the other dinucleotides exhibit any strong periodicity near 10 or
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12 bp although some deviate significantly in overall shape from the null model.
Figure 6 shows the spectra for AA and CC, with the null model for AA.
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3.7 Human Nucleosome Sequences Show Evidence of Periodicity

In contrast, when we focus on nucleosome sequences, we observe strong evi-
dence of periodicity. Using experimentally determined nucleosome positions in
the HOX cluster [25], we extracted 147 bp nucleosome core sequences at 1086
positions based on HeLa data and 1169 positions for K562. The HeLa nucleo-
some cores show evidence of 10 bp periodicity of the AA dinucleotide, as shown
in Fig. 7. The spectra in this pair of plots are shown after subtracting the null
model curve, and are compared to the background curve for AA obtained from
the repeat-masked ENCODE regions (Fig. 6). The positioned nucleosomes de-
rived from the HeLa data show a significant increase over both the null model
and the background between 10 and 12 bp, with local maxima at 10.14 and 11.25
bp. The shape of this peak is similar to the one observed for the AA dinucleotide
in yeast (Fig. 4). More strikingly, if we expand the amount of sequence used by an
additional 50 bases on either side of the original 147 bp core sequence, the 11.25
bp peak disappears completely while the 10.14 bp peak is somewhat reduced.
The spectrum computed from the K562 nucleosome positions is not as striking
although there is still a doublet peak with local maxima at 10.00 and 11.25 bp,
and again the 11.25 bp peak disappears when the sequence window is widened.
Restricting the analysis to the 589 nucleosome positions that are shared between
the two subsets (data not shown), the periodicity signal is slightly stronger than
the one shown for HeLa in Fig. 7, which may indicate that the remaining K562
positions represent less well positioned nucleosomes or nucleosomes that have
been shifted from the most energetically favorable positions.

3.8 Decreased Periodicity near Transcription Start Sites

Using 20,334 transcription start sites from the RefSeq Genes track, we extracted
short (150 bp) segments of DNA centered at positions relative to each TSS rang-
ing from 10 kb upstream to 10 kb downstream, and staggered by 10 bases. For
each set of sequences, we computed the AA dinucleotide spectrum and extracted
the amplitudes at 10 and 11 bp. We then chose the regions between 5 and 10
kb away from the TSS (upstream and downstream) to serve as a background
model, and normalized both traces relative to that background. As shown in
Fig. 8, shortly before and after the TSS, the 11 bp amplitude is significantly
elevated relative to the background while the 10 bp amplitude is relatively flat.
Both drop sharply in the immediate vicinity of the TSS. We examined the aver-
age AA/TT counts within the same windows to see if this effect could be entirely
attributed to local increases or decreases in the counts of these dinucleotides, but
this was not the case. The sharp decrease in periodicity near the TSS will inhibit
nucleosome formation, while the increase in the 11 bp periodicity upstream and
downstream of the TSS will encourage the stable positioning of the canonical -1
and +1 nucleosomes.
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Fig. 8. (a) Average spectral amplitude at 10 and 11 bp for AA/TT dinucleotide relative
to the TSS of 20,334 human genes. The amplitude has been normalized to have zero
mean and unit standard deviation in the regions 5 to 10 kb from the TSS. (b) Average
spectral amplitude for AA/TT dinucleotide at 11 bp for occupied and unoccupied
CTCF sites, similarly normalized.

3.9 Dinucleotide Periodicity Increases Near Occupied CTCF Sites

CTCF is a DNA-binding protein which binds to insulator elements to restrict
access to transcriptional promoters. CTCF is believed to play a wide-spread role
in gene regulation [36], and a relationship between CTCF binding and strongly
positioned nucleosomes has been shown experimentally [37]. We used a list of
6432 occupied and the same number of unoccupied CTCF binding sites [37] to
examine the AA dinucleotide periodicity in the region surrounding CTCF sites
using the same approach used above for transcription start sites. The spectral
amplitudes at both 10 and 11 bp peak in the vicinity of the occupied CTCF
sites, while there is little difference from the background for the unoccupied
CTCF sites (Fig. 8b plots only the 11 bp spectral amplitude). The unoccupied
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CTCF sites represent predicted sites and may include a large number of false
positives, while the occupied CTCF sites have been experimentally proven to be
true positives. Based on our results, a significant difference between true sites
and false sites may be the local curvature of the DNA induced by AA periodicity,
despite the local similarity in DNA sequence at the binding site. This increased
local curvature may be necessary for CTCF to effectively bind the DNA.

4 Discussion

We have described a spectral estimation technique that is both mathematically
precise and more sensitive than previously published approaches. Unlike previ-
ous methods, ACSE includes an analytic null model as well as a model of the
variance in the spectral amplitude estimates. Provided sufficient data, ACSE
can identify weak periodic signals in DNA sequences. Previous autocorrelation
based approaches have truncated the autocorrelation function, using R(d) only
for d ≥ 1 or d ≥ 2. Truncating the autocorrelation function reduces the sensitiv-
ity of the spectral estimation to weak periodic signals and distorts the resulting
spectrum. Based on truncated autocorrelation functions some studies have re-
ported not finding any indication of periodicity near 10 bp either in complete
human chromosomes [18] or nucleosome core sequences [25].

We have confirmed previously-reported genome-wide evidence of ∼10 bp pe-
riodicity in S. cerevisiae. The spectral pattern shows a doublet peak, with one
local maximum near 10 bp and a second near 11 bp. Sequences associated with
well positioned nucleosomes show stronger spectral peaks than the genome-wide
average, in particular for the 11 bp peak. There is no similar widespread evidence
of periodicity in the human genome; however, positioned nucleosomes within the
HOX cluster show evidence of the same doublet peak for the nucleosome core
sequence. Extending the analysis to include even just an additional 50 bases on
either side of the core causes the 11 bp peak to disappear. In the neighborhood
of transcription start sites, we observed a sharp decrease in the AA dinucleotide
periodicity at both 10 and 11 bp, and it is interesting to note that the 11 bp
periodicity is significantly increased both immediately before and after the TSS
whereas the 10 bp periodicity is not. This apparent distinction between period-
icities of 10 and 11 bases may indicate regions in the nucleosome core where the
double helix is alternately under- or overwound [33], [34]. Finally, we find that
CTCF sites show a local increase in the strength of the AA periodicity at both
10 and 11 bp, but more strongly at 11 bp. No crystal structure of the CTCF-
DNA complex is available, but this evidence of periodicity at CTCF binding sites
may indicate that some curvature of the DNA is required for effective binding.
Alternatively, these sites may be occupied by nucleosomes when CTCF is not
bound.

Overall, our analysis suggests a clear relationship between local periodic pat-
terns in DNA and local chromatin architecture. The lack of a global periodic
signal in human, and the correspondence between local periodic signals and func-
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tionally significant chromatin events, such as promoters and insulators, supports
the classical statistical positioning theory of nucleosome organization.
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